
Bulletin of the Transilvania University of Braşov • Vol 8(57), No. 1 - 2015

Series III: Mathematics, Informatics, Physics, 117-122

FIFO PREFLOW ALGORITHM FOR MAXIMUM FLOW IN
SEMI-BIPARTITE NETWORKS

Laura CIUPALĂ1

Abstract

In this paper, we develop a special implementation of the generic algo-
rithm for determining a maximum flow in a semi-bipartite network introduced
in [3]. This generic algorithm allows only nodes in N1 to be active. For this
reason, it performs pushes on individual arcs having both endpoints in N1

or admissible paths of length 2 whose starting and ending nodes are both
contained in N1. Because it is a generic algorithm, it doesn’t specify any
rule for selecting active nodes. In this paper, we will impose the FIFO rule
for the active nodes selection and we will obtain a specific implementation
of the generic algorithm for maximum flow in semi-bipartite networks, which
has a better running time than the generic algorithm.

2000 Mathematics Subject Classification: 90B10, 90C90.
Key words: network flow, maximum flow, bipartite network, semi-bipartite

network.

1 Indroduction

Let G = (N,A) be a directed graph, defined by a set N of n nodes and a set A
of m arcs. Each arc (x, y) ∈ A has a nonnegative capacity c(x, y). In the directed
network G = (N,A, c, s, t), two special nodes are specified: the source node s and
the sink node t.

Let X and Y be two subsets of the node set N . We define the set of arcs
(X,Y) = {(x, y)|(x, y) ∈ A, x ∈ X, y ∈ Y }.

For any function g : N ×N → R+ and for any function h : N → R+ we define

g(X,Y) =
∑
(X,Y)

g(x, y)

and
h(X) =

∑
X

h(x).

1Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail:
laura ciupala@yahoo.com

118 Laura Ciupală

If X = {x} or Y = {y} then we will use g(x, Y) or g(X, y) instead of g(X,Y).
A flow from the source node s to the sink node t in the directed network

G = (N,A, c, s, t) is a function f : A→ R+ which meets the follwing conditions:

f(x,N)− f(N, x) =

v, x = s

0, x 6= s, t
−v, x = t

(1)

0 ≤ f(x, y) ≤ c(x, y), ∀(x, y) ∈ A. (2)

We refer to v as the value of the flow f . A flow whose value is maximum is
called a maximum flow.

A preflow is a function f : A → R+ satisfying relations (2) and the next
conditions:

f(x,N)− f(N, x) ≥ 0, ∀x ∈ N\{s, t}. (3)

Let f be a preflow. The excess of a node x ∈ N is defined in the following
manner:

e(x) = f(x,N)− f(N, x)

Thus, for any preflow f , we have e(x) ≥ 0,∀x ∈ N\{s, t}. A node x ∈ N\{s, t}
is called active if e(x) > 0 and balanced if e(x) = 0. A preflow f for which
e(x) = 0, ∀x ∈ N\{s, t} is a flow. Consequently, a flow is a particular case of
preflow.

Let f be a flow from the source node s to the sink node t in the directed
network G = (N,A, c, s, t). The residual capacity of the arc (x, y) corresponding
to the flow f is defined as r(x, y) = c(x, y)−f(x, y)+f(y, x) and it is the maximum
amount of additional flow that can be sent from x to y using both arcs (x, y) and
(y, x). By convention, if an arbitrary arc (x, y) /∈ A, then we can add (x, y) to A
and we will consider that c(x, y) = 0.

The residual network G(f) = (N,A(f)) corresponding to flow f contains all
those arcs with strictly positive residual capacity.

A network G = (N,A) is called bipartite if its node set N can be partitioned
into two subsets N1 and N2, such that all arcs have one endpoint in N1 and the
other in N2.

A network G = (N,A) is called semi-bipartite if its node set N can be par-
titioned into two subsets N1 and N2, such that no arc has both its endpoints in
N2. Thus, a semi-bipartite network can contain arcs having both their endpoints
in N1. Consequently, the notion of semi-bipartite network is less restrictive than
the notion of bipartite network.

We consider a semi-bipartite capacitated network G = (N,A, c, s, t). We dis-
tinguish two special nodes in the network G: a source node s and a sink node
t. We assume without loss of generality that s ∈ N2. If s ∈ N1, then we could
create a new source node s′ ∈ N2 and add a new arc (s′, s) with sufficiently large
capacity.

FIFO preflow algorithm for maximum flow in semi-bipartite networks 119

Let n = |N |, n1 = |N1|, n2 = |N2|, m = |A| and C =max{c(i, j)|(i, j) ∈ A}.
In the residual network G(f), the distance function d : N → N with respect to

a given preflow f is a function from the set of nodes to the nonnegative integers.
We say that a distance function is valid if it satisfies the following conditions:

d(t) = 0

d(i) ≤ d(j) + 1, for every arc(i, j) ∈ A(f).

We refer to d(i) as the distance label of node i.
We say that the distance labels are exact if, for each node i, d(i) equals the

length of the shortest path from node s to node i in the residual network.
We refer to an arc (i, j) from the residual network as an admissible arc if

d(i) = d(j) + 1; otherwise it is inadmissible.
Let G = (N,A, c, s, t) be a semi-bipartite directed network, N = N1∪N2. Any

path in the network G or in the residual network G(f), that is also a semi-bipartite
network, can have at most 2n1 arcs. Consequently, if we set d(s) = 2n1+1 then the
residual network will never contain an admissible directed path from the source
node s to the sink node t.

Lemma 1. [3] In the semi-bipartite directed network G = (N,A, c, s, t), for any
node i ∈ N , d(i) < 4n1 + 1.

When developing a new algorithm for solving a specified problem, it is quite
difficult to establish a balance between the generality of the algorithm and its
efficiency when apllying it on particular networks (that arise in real world). In
this paper, we try to find this balance by developing an algorithm for determin-
ing maximum flow in semi-bipartite networks, which are less restrictive than the
bipartite networks. The algorithm that we will develop uses the particulatities
of a semi-bipartite network and, consequently, it is more efficient than the corre-
sponding algorithm for maximum flow in regular networks.

The generic preflow algorithm (see [3]) allows only the nodes in N1 to be-
come active. In order to do this, it pushes flow on individual admissible arcs or
along paths consisting of two admissible arcs. The generic preflow algorithm for
maximum flow in semi-bipartite networks runs in O(n2

1m) time. Being a generic
algorithm, it doesn’t specify any rule for selecting the active node from which
it performs a push if possible or a relabel operation otherwise. We can impose
different rules for the active node selection, each of them yielding different specific
implementations of the generic preflow algorithm.

2 FIFO preflow algorithm for maximum flow in semi-
bipartite networks

If the generic preflow algorithm for maximum flow in a semi-bipartite network
selects in a iteration an active node, say i, it can perform a push that leaves i

120 Laura Ciupală

still active, but it isn’t mandatory that the algorithm select the same node in the
next iteration. We can impose the following rule: if in an iteration the algorithm
selects an active node, say i, and performs a push after that the node remains
active, then it is compulsory that the algorithm selects the node i in the following
iteration. These succesive selections of an active node i until either it becomes
inactive, either it is relabelled constitute the active node examination.

If we impose the restriction that the active nodes are examined in FIFO order,
we obtain a specific implementation of the generic algorithm for maximum flow
in semi-bipartite networks, called FIFO preflow algorithm. For an easy selection
of the active nodes in FIFO order, a queue L of active nodes is maintained.
The FIFO preflow algorithm for maximum flow in semi-bipartite networks is the
following:

FIFO Preflow Algorithm;
Begin

let f = 0;
determine the residual network G(f);
compute the exact distance labels d in the residual network G(f);
L = ∅;
for each arc (s, i) ∈ A do
begin

f(s, i) = c(s, i);
if (e(i) > 0) and (i 6= t) then

add i to the rear of the queue L;
end;
d(s) = 4n1 + 1;
while (L 6= ∅) do
begin

remove the node i from the front of the queue L;
push/relabel(i);

end
end.

procedure push/relabel(i);
begin

B = false;
repeat
if there is an admissible arc (i, j) in G(f) then

if j ∈ N1 then begin
push g =min{e(i), r(i, j)} units of flow on the arc (i, j);
if (j /∈ L) and (j 6= s) and (j 6= t) then

add j to the rear of L;
end;
else

if there is an admissible arc (j, k) in G(f) then begin

FIFO preflow algorithm for maximum flow in semi-bipartite networks 121

push g =min{e(i), r(i, j), r(j, k)} units of flow along the
path i− j − k;
if (k /∈ L) and (k 6= s) and (k 6= t) then

add k to the rear of L;
end;
else d(j) =min{d(k)|(j, k) ∈ A(f)}+ 1;

else begin
d(i) =min{d(j)|(i, j) ∈ A(f)}+ 1;
B = true;

end
until e(i) = 0 or B;
if e(i) > 0 then

add i to the rear of L;
end;

Theorem 1. (
¯

Correctness theorem) The FIFO preflow algorithm computes cor-
rectly a maximum flow in the semi-bipartite network G = (N, A, c, s, t).

Proof. The correctness of the FIFO preflow algorithm for maximum flow in semi-
bipartite networks is a straight consequence of the correctness of the generic pre-
flow algorithm for maximum flow in semi-bipartite networks, proved in [3].

Theorem 2. The FIFO preflow algorithm determines a maximum flow in a semi-
bipartite network in O(n3

1) time.

Proof. We prove this theorem in a manner similar to the way the running time
of the FIFO preflow-push algorithm for maximum flow in regular networks is
proved in [1]. First we divide the node examinations in phases. The first phase
contains the node examinations of the nodes that became active when saturating
the outgoing arcs from the source node s in the beginning of the algorithm. The
second phase consists of the node examinations of the nodes that are active at
the end of the first phase. In the third phase the nodes that are active at the end
of the second phase are examinated and so on.

We will use the potential function Φ = max{d(i)|i ∈ L}, where L is the set of
active nodes. The initial value of Φ is at most 2n1, at the end of the algorithm
Φ = 0 and during its execution one of the following 2 cases might appear:

1. The algorithm performs at least one relabel operation during a phase. In
this case Φ might increase at most by the maximum increase in any distance
label. Using Lemma 1 and the fact that only nodes in N1 can be active, it
follows that the total increase in Φ caused by all relabel operations over all
the phases is at most 4n2

1.

2. The algorithm performs no relabel operation during a phase. Then the
excesses of the nodes that were active at the beginning of the phase (and
became inactive at the end of it) are moved closer to the sink, i.e. to nodes
with smaller distance labels. In this case Φ decreases by at least 1 unit.

122 Laura Ciupală

Combining these 2 cases it follows that the algorithm performs at most 4n2
1 +

2n1 phases. Consequently, it runs in O(n3
1) time.

References

[1] Ahuja, R., Magnanti, T., Orlin, J., Network Flow. Theory, Algorithms and
Applications, Prentice Hall, New Jersey, 1993.

[2] Bang-Jensen, J., Gutin, G., Digraphs, Theory, Algorithms and Applications,
Springer-Verlag, London, 2001.

[3] Ciupală, L., A generic preflow algorithm for maximum flow in semi-bipartite
networks, Bulletin of the Transilvania University of Braşov 7(56) (2014),
103-108.

[4] Fujishige, S., A maximum flow algorithm using MA ordering, Operation Re-
search Letters 31(3) (2003), 176-178.

[5] Fujishige, S. and Isotani, S. New maximum flow algorithms by MA order-
ings and scaling, Journal of the Operational Research Society of Japan 46(3)
(2003), 243-250.

[6] Kumar, S. and Gupta, P., An incremental algorithm for the maximum flow
problem, Journal of Mathematical Modelling and Algorithms 2(1) (2003), 1-
16.

[7] Schrijver, A., On the history of the transportation and maximum flow problems,
Mathematical Programming 91(3) (2002), 437-445.

