GAUSS-WEINGARTEN AND FRENET EQUATIONS IN THE THEORY OF THE HOMOGENEOUS LIFT TO THE 2-OSCULATOR BUNDLE OF A FINSLER METRIC

Alexandru OANĂ ${ }^{1}$
Communicated to:
Finsler Extensions of Relativity Theory, August 18-23, 2014, Braşov, Romania

Abstract

In this article we present a study of the subspaces of the manifold $O s c^{2} M$, the total space of the 2 -osculator bundle of a real manifold M . We obtain the induced connections of the canonical N -linear metric connection determined by the homogeneous prolongation of a Finsler metric to the manifold $O s c^{2} M$. We present the Gauss-Weingarten equations of the associated 2-osculator submanifold. We construct a Frenet frame and we determine the Frenet equations of a curve from the manifold $O s c^{2} M$.

2000 Mathematics Subject Classification: 70S05, 53C07, 53C80.
Key words: nonlinear connection, linear connection, induced linear connection.

1 Indroduction

The Sasaki N-prolongation \mathbb{G} to the 2-osculator bundle without the null section $\widetilde{O s c^{2} M}$ $=O s c^{2} M \backslash\{0\}$ of a Finslerian metric $g_{a b}$ on the real manifold M given by

$$
\mathbb{G}=g_{a b}\left(x, y^{(1)}\right) d x^{a} \otimes d x^{b}+g_{a b}\left(x, y^{(1)}\right) \delta y^{(1) a} \otimes \delta y^{(1) b}+g_{a b}\left(x, y^{(1)}\right) \delta y^{(2) a} \otimes \delta y^{(2) b}\left(^{*}\right)
$$

is a Riemannian structure on $\widetilde{O s c^{2} M}$, which depends only on the metric $g_{a b}$.
The tensor \mathbb{G} is not invariant with respect to the homothetis on the fibres of $\widetilde{O s c^{2} M}$, because \mathbb{G} is not homogeneous with respect to the variable $y^{(1) a}$.

In this paper, we use a new kind of prolongation \mathbb{G} to $\widetilde{O s c^{2} M},([7])$, which depends only on the metric $g_{a b}$. Thus, \dot{G} determines on the manifold $\widetilde{O s c^{2} M}$ a Riemannian structure which is 0 -homogeneous on the fibres of $O s c^{2} M$.

Some geometrical properties of \mathbb{G} are studied: the canonical N-linear metric connection, the induced linear connections, Gauss-Weingarten and Frenet equations.

[^0]
2 Preliminaries

As far we know the general theory of submanifolds (in particular the Finsler submanifolds or the complex Finsler submanifolds) is far from being settled ([9], [3], [10], [11]). In [8] and [9] R.Miron and M. Anastasiei give the theory of subspaces in generalized Lagrange spaces. Also, in [6] and [5] R. Miron presented the theory of subspaces in higher order Finsler and Lagrange spaces respectively.

If \check{M} is an immersed manifold in manifold M, a nonlinear connection on $O s c^{2} M$ induce a nonlinear connection \check{N} on $O s c^{2} \check{M}$.

The d-tensor \mathbb{G} from $\left(^{*}\right)$ is not homogeneous with respect to the variable $y^{(1) a}$. This in an incovenient from the point of view of analytical mechanics. Moreover, the physical dimensions of the terms of \mathbb{G} are not the same. This disavantaj was corected by Gh. Atanasiu. He taked a new kind of prolongation \mathbb{G} to $\widetilde{O s c^{2} M}$ of the fundamental tensor of a Finsler space, [1], which depends only on the metric $g_{a b}$. Thus, \mathbb{G} determines on the manifold $\widetilde{O s c^{2} M}$ a Riemannian structure which is 0 -homogeneous on the fibres of $O s c^{2} M$ and p is a positive constant required by applications in order that the physical dimensions of the terms of $\underset{G}{\mathbb{G}}$ be the same. He proved that there exist metrical N-linear connections with respect to the metric tensor $\underset{\mathbb{G}}{ }$.

We take this canonical N-linear metric connection D on the manifold $O s c^{2} M$ and obtain the induced tangent and normal connections and the relative covariant derivation in the algebra of d-tensor fields .

In this paper we get the Gauss-Weingarten formulae of submanifold $O s c^{2} \check{M}$ for the homogeneos lift \mathbb{G} and we construct a Frenet frame and we determine the Frenet equations of a curve from the manifold $O s c^{2} M$.

Let us consider the Finsler space $F^{n}=(M, F)([9])$ with the fundamental function $F: T M=O s c M \rightarrow \mathbb{R}$ and the fundamental tensor $g_{a b}\left(x, y^{(1)}\right)$ on $\widetilde{O s c M}$, given by

$$
\begin{equation*}
g_{a b}\left(x, y^{(1)}\right)=\frac{1}{2} \frac{\partial^{2} F^{2}}{\partial y^{(1) a} \partial y^{(1) b}}, \tag{2.1}
\end{equation*}
$$

where $g_{a b}\left(x, y^{(1)}\right)$ is positively defined on $\widetilde{O s c M}$.
The canonical 2-spray of F^{n} is given by

$$
\frac{d^{2} x^{a}}{d t^{2}}+2 G^{a}\left(x, \frac{d x}{d t}\right)=0
$$

where

$$
\begin{equation*}
G^{a}=\frac{1}{2} \gamma_{b c}^{a}\left(x, y^{(1)}\right) y^{(1) b} y^{(1) c} \tag{2.2}
\end{equation*}
$$

where $\gamma_{b c}^{a}\left(x, y^{(1)}\right)$ are the Christoffels symbols of the metric tensor $g_{a b}\left(x, y^{(1)}\right)$. The canonical nonlinear connection N of the space F^{n} has the dual coefficients [5]

$$
\begin{equation*}
\underset{(1)}{M^{a}}{ }_{b}=\frac{\partial G^{a}}{\partial y^{(1) b}}, \underset{(2)}{M^{a}}{ }_{b}=\frac{1}{2}\left\{\Gamma \underset{(1)}{\Gamma} M^{a}{ }_{b}+\underset{(1)}{M^{a}}{ }_{c}{\left.\underset{(1)}{ } M^{c}{ }_{b}\right\},},\right. \tag{2.3}
\end{equation*}
$$

where $\Gamma=y^{(1) a} \frac{\partial}{\partial x^{a}}+2 y^{(2) a} \frac{\partial}{\partial y^{(1) a}}$.
We have the next decomposition

$$
\begin{equation*}
T_{w} O s c^{2} M=N_{0}(w) \oplus N_{1}(w) \oplus V_{2}(w), \forall w \in O s c^{2} M \tag{2.4}
\end{equation*}
$$

The adapted basis to (2.4) is given by $\left\{\frac{\delta}{\delta x^{a}}, \frac{\delta}{\delta y^{(1) a}}, \frac{\partial}{\partial y^{(2) a}}\right\},(a=1, . ., n)$ and its dual basis is $\left(d x^{a}, \delta y^{(1) a}, \delta y^{(2) a}\right)$, where

$$
\left\{\begin{array}{l}
\frac{\delta}{\delta x^{a}}=\frac{\partial}{\partial x^{a}}-\underset{(1)}{N^{b}}{ }_{a} \frac{\delta}{\delta y^{(1) b}}-\underset{(2)}{N}{ }^{b}{ }_{a} \frac{\partial}{\partial y^{(2) b}} \tag{2.5}\\
\frac{\delta}{\delta y^{(1) a}}=\frac{\partial}{\partial y^{(1) a}}-\underset{(1)}{N}{ }^{b} \frac{\partial}{\partial y^{(2) b}}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\delta y^{(1) a}=\quad d y^{(1) a}+\underset{(1)}{M^{a}}{ }_{b} d x^{b} \tag{2.6}\\
\delta y^{(2) a}=d y^{(2) a}+\underset{(1)}{M^{a}}{ }_{b} \delta y^{b}+\underset{(2)}{M^{a}}{ }_{b} \delta y^{(2) b}
\end{array}\right.
$$

We use the next notations:

$$
\delta_{a}=\frac{\delta}{\delta x^{a}}, \delta_{1 a}=\frac{\delta}{\delta y^{(1) a}} \quad \dot{\partial}_{2 a}=\frac{\partial}{\partial y^{(2) a}} .
$$

Proposition 2.1. The Lie brakets of the vector fields $\left\{\frac{\delta}{\delta x^{a}}, \frac{\delta}{\delta y^{(1) a}}, \frac{\partial}{\partial y^{(2) a}}\right\}$ are given by

$$
\begin{align*}
& {\left[\delta_{b}, \delta_{c}\right]=\underset{(01)}{R_{b c}}{ }^{a} \delta_{1 a}+\underset{(02)}{R}{ }_{b c}^{a} \dot{\partial}_{2 a},} \\
& {\left[\delta_{b}, \delta_{1 c}\right]=\underset{(11)^{b c}}{B}{ }^{a} \delta_{1 a}+\underset{(12)^{b c}}{B} \dot{\partial}_{2 a},} \\
& {\left[\delta_{b}, \dot{\partial}_{2 c}\right]=\underset{(21)^{b c}}{B}{ }^{a} \delta_{1 a}+\underset{(22)^{b c}}{B}{ }^{a} \dot{\partial}_{2 a},} \tag{2.7}\\
& {\left[\delta_{1 b}, \delta_{1 c}\right]=\quad \underset{(12)}{R}{ }_{b c}^{a} \dot{\partial}_{2 a},} \\
& {\left[\delta_{1 b}, \dot{\partial}_{2 c}\right]=\quad \underset{(21)}{B}{ }^{a}{ }_{b c} \dot{\partial}_{2 a},}
\end{align*}
$$

where

$$
\begin{align*}
& \underset{(01)^{b c}}{R}=\delta_{c}{ }_{1} N^{a}{ }_{b}-\delta_{b} N_{1}{ }^{a}{ }_{c}, \\
& \underset{(02)^{b c}}{R}=\delta_{c} N_{2}^{a}{ }_{b}-\delta_{b} N_{2}^{a}{ }_{c}+N_{1}{ }^{a}{ }_{f} \underset{(01)}{R}{ }^{f}{ }^{f}, \\
& \underset{(11)^{b c}}{B}=\delta_{1 c} N_{1}^{a}{ }_{b}, \underset{(12)}{B}{ }_{b c}^{a}=\delta_{1 c} N_{2}^{a}{ }_{b}-\delta_{b} N_{1}{ }^{a}{ }_{c}+N_{1} N^{a}{ }_{f} \underset{(11)^{b}}{ }{ }^{f}, \tag{2.8}\\
& \underset{(21)^{b c}}{B}=\dot{\partial}_{2 c}{\underset{1}{N}}^{a}{ }_{b}, \underset{(22)^{b c}}{B}=\dot{\partial}_{2 c}{\underset{2}{a}}^{a}{ }_{b}+{\underset{1}{N}}^{a}{ }_{f} \underset{(21)}{B}{ }^{f}, \\
& \underset{(12)}{R}{ }^{a}{ }^{b c}=\delta_{1 c} N_{1}^{a}{ }_{b}-\delta_{1 b} N_{1}^{a}{ }_{c} .
\end{align*}
$$

The fundamental tensor $g_{a b}$ determines on the manifold $\widetilde{O s c^{2} M}$ the homogeneous tensor field $\stackrel{0}{\mathbb{G}},[1]$,

$$
\begin{align*}
\underset{G}{0}=g_{a b}\left(x, y^{(1)}\right) d x^{a} \otimes d x^{b} & +\underset{(1)}{g_{a b}}\left(x, y^{(1)}\right) \delta y^{(1) a} \otimes \delta y^{(1) b}+ \\
& +\underset{(2)}{g_{a b}}\left(x, y^{(1)}\right) \delta y^{(2) a} \otimes \delta y^{(2) b}, \tag{2.9}
\end{align*}
$$

where

$$
\begin{aligned}
& \underset{(1)}{g_{a b}}\left(x, y^{(1)}\right)=\frac{p^{2}}{\left\|y^{(1)}\right\|^{2}} g_{a b}\left(x, y^{(1)}\right), \\
& \underset{(2)}{g_{a b}}\left(x, y^{(1)}\right)=\frac{p^{4}}{\left\|y^{(1)}\right\|^{4}} g_{a b}\left(x, y^{(1)}\right), \\
& \left\|y^{(1)}\right\|^{2}=g_{a b} y^{(1) a} y^{(1) b} .
\end{aligned}
$$

This is homogeneous tensor field with respect to $y^{(1) a}, y^{(2) a}$ and p is a positive constant required by applications in order that the physical dimensions of the terms of \mathbb{G} be the same.

Let \check{M} be a real, m-dimensional manifold, immersed in M through the immersion $i: \check{M} \rightarrow M$. Localy, i can be given in the form

$$
x^{a}=x^{a}\left(u^{1}, \ldots, u^{m}\right), \quad \operatorname{rank}\left\|\frac{\partial x^{a}}{\partial u^{\alpha}}\right\|=m .
$$

The indices a, b, c, \ldots run over the set $\{1, \ldots, n\}$ and $\alpha, \beta, \gamma, \ldots$ run on the set $\{1, \ldots, m\}$. We assume $1 \leq m<n$. We take the immersed submanifold $O s c^{2} \check{M}$ of the manifold $O s c^{2} M$, by the immersion $O s c^{2} i: O s c^{2} \check{M} \rightarrow O s c^{2} M$. The parametric equations of the submanifold $O s c^{2} \check{M}$ are

$$
\left\{\begin{array}{l}
x^{a}=x^{a}\left(u^{1}, \ldots, u^{m}\right), \operatorname{rank}\left\|\frac{\partial x^{a}}{\partial u^{\alpha}}\right\|=m \tag{2.10}\\
y^{(1) a}=\frac{\partial x^{a}}{\partial u^{\alpha}} v^{(1) \alpha} \\
2 y^{(2) a}=\frac{\partial y^{(1) a}}{\partial u^{\alpha}} v^{(1) \alpha}+2 \frac{\partial y^{(1) a}}{\partial v^{(1) \alpha}} v^{(2) \alpha},
\end{array}\right.
$$

where

$$
\left\{\begin{array}{c}
\frac{\partial x^{a}}{\partial u^{\alpha}}=\frac{\partial y^{(1) a}}{\partial v^{(1) \alpha}}=\frac{\partial y^{(2) a}}{\partial v^{(2) \alpha}} \\
\frac{\partial y^{(1) a}}{\partial u^{\alpha}}=\frac{\partial y^{(2) a}}{\partial v^{(1) \alpha}} .
\end{array}\right.
$$

The restriction of the fundamental function F to the submanifold $\widetilde{O s c \bar{M}}$ is

$$
\check{F}\left(u, v^{(1)}\right)=F\left(x(u), y\left(u, v^{(1)}, v^{(2)}\right)\right)
$$

and we call $\check{F}^{m}=(\check{M}, \check{F})$ the induced Finsler subspaces of F^{n} and \check{F} the induced fundamental function.

Let $B_{\alpha}^{a}(u)=\frac{\partial x^{a}}{\partial u^{\alpha}}$ and $g_{\alpha \beta}$ the induced fundamental tensor,

$$
\begin{equation*}
g_{\alpha \beta}\left(u, v^{(1)}\right)=g_{a b}\left(x(u), y\left(u, v^{(1)}\right)\right) B_{\alpha}^{a} B_{\beta}^{b} . \tag{2.11}
\end{equation*}
$$

We obtain a system of d-vectors $\left\{B_{\alpha}^{a}, B_{\bar{\alpha}}^{a}\right\}$ wich determines a moving frame $\mathcal{R}=\left\{\left(u, v^{(1)}, v^{(2)}\right) ; B_{\alpha}^{a}(u), B_{\bar{\alpha}}^{a}\left(u, v^{(1)}, v^{(2)}\right)\right\}$ in $O s c^{2} M$ along to the submanifold $O s c^{2} \check{M}$.

Its dual frame will be denoted by $\mathcal{R}^{*}=\left\{B_{a}^{\alpha}\left(u, v^{(1)}, v^{(2)}\right), B_{a}^{\bar{\alpha}}\left(u, v^{(1)}, v^{(2)}\right)\right\}$. This is also defined on an open set $\check{\pi}^{-1}(\check{U}) \subset O s^{2} \check{M}, \check{U}$ being a domain of a local chart on the submanifold \mathscr{M}.

The conditions of duality are given by:

$$
\begin{gathered}
B_{\beta}^{a} B_{a}^{\alpha}=\delta_{\beta}^{\alpha}, \quad B_{\beta}^{a} B_{a}^{\bar{\alpha}}=0, \quad B_{a}^{\alpha} B_{\bar{\beta}}^{a}=0, \quad B_{a}^{\bar{\alpha}} B_{\bar{\beta}}^{a}=\delta_{\bar{\alpha}}^{\bar{\alpha}} \\
B_{\alpha}^{a} B_{b}^{\alpha}+B_{\bar{\alpha}}^{a} B_{b}^{\bar{\alpha}}=\delta_{b}^{a} .
\end{gathered}
$$

The restriction of the of the nonlinear connection N to $\widetilde{{O s c^{2}}^{M}}$ uniquely determines an induced nonlinear connection \check{N} on $\widetilde{O s c^{2} \check{M}}$ with the dual coeficients ([2],[13])

$$
\begin{align*}
& \check{M}^{\alpha}{ }_{\beta}=B_{a}^{\alpha}\left(B_{0 \beta}^{a}+\underset{1}{M^{a}}{ }_{b} B_{\beta}^{b}\right), \\
& \check{M}_{2}^{\alpha}{ }_{\beta}=B_{a}^{\alpha}\left(\frac{1}{2} \frac{\partial B_{\delta \gamma}^{a}}{\partial u^{\beta}} v^{(1) \delta} v^{(1) \gamma}+B_{\delta \beta}^{a} v^{(2) \delta}+{\underset{1}{M}}^{a}{ }_{b} B_{0 \beta}^{b}+{\underset{2}{M}}^{a}{ }_{b} B_{\beta}^{b}\right), \tag{2.12}
\end{align*}
$$

where $M_{1}^{M^{a}}{ }_{b},{\underset{2}{M}}^{a}{ }_{b}$ are the dual coeficients of the N.

The cobasis $\left(d x^{i}, \delta y^{(1) a}, \delta y^{(2) a}\right)$ restricted to $O s c^{2} \check{M}$ is uniquely represented in the moving frame \mathcal{R} in the following form ([2], [12]):

$$
\left\{\begin{array}{l}
d x^{a}=B_{\beta}^{a} d u^{\beta} \tag{2.13}\\
\delta y^{(1) a}=B_{\alpha}^{a} \delta v^{(1) \alpha}+B_{\bar{\alpha}}^{a} K_{(1)}^{\beta} d u^{\beta} \\
\delta y^{(2) a}=B_{\alpha}^{a} \delta v^{(2) \alpha}+B_{\bar{\beta}}^{a} K_{(1)}^{\bar{\beta}} \delta v^{(1) \alpha}+B_{\bar{\beta}}^{a} K_{\alpha)}^{\bar{\beta}} d u^{\alpha}
\end{array}\right.
$$

where

$$
\begin{align*}
& \underset{(1)}{K}{ }_{\beta}^{\bar{\alpha}}=B_{a}^{\bar{\alpha}}\left(B_{0 \beta}^{a}+\underset{(1)}{M_{b}^{a}} B_{\beta}^{b}\right) \\
& \underset{(2)^{\beta}}{K_{\bar{\alpha}}^{\bar{\alpha}}}=B_{a}^{\bar{\alpha}}\left(\frac{1}{2} \frac{\partial B_{\delta \gamma}^{a}}{\partial u^{\beta}} v^{(1) \delta} v^{(1) \gamma}+B_{\delta \beta}^{b} v^{(2) \delta}+\underset{(1)}{M_{b}^{a}} B_{0 \beta}^{b}+\underset{(2)}{M_{b}^{a}} B_{\beta}^{b}-\right. \tag{2.14}\\
& -B_{f}^{\bar{\alpha}} B_{d}^{\gamma}\left(B_{\gamma}^{f}+\underset{(1)}{M_{b}^{f}} B_{\gamma}^{b}\right)\left(B_{0 \beta}^{d}+\underset{(1)}{M} g^{d} B_{\beta}^{g}\right)
\end{align*}
$$

are mixed d-tensor fields.
A linear connection D on the manifold $O s c^{2} M$ is called metrical \mathbf{N}-linear connection with respect to \mathscr{G}, if $D \mathscr{G}=0$ and D preserves by parallelism the distributions N_{0}, N_{1} and V_{2}. The coefficients of the N-linear connections $D \Gamma(N)$ will be denoted with $\left(\begin{array}{c}V_{i} \\ L_{i 0} \\ b c\end{array}, \stackrel{V_{i}}{C}{ }_{(i 1)}{ }_{b c}, \stackrel{V_{i}}{C}, ~ a{ }_{(i 2)}^{b c}\right),(i=0,1,2)$.

Theorem 2.2. ([1]) There exist metrical N-linear connections $D \Gamma(N)$ on $\widetilde{O s c^{2} M}$, with respect to the homogeneous prolongation \mathbb{G}, wich depend only on the metric $g_{a b}\left(x, y^{(1)}\right)$. One of these connections has the "horizontal" coefficients

$$
\begin{align*}
& \stackrel{H}{\underset{(00)}{L}} \underset{b c}{a}=\frac{1}{2} g^{a d}\left(\delta_{b} g_{c d}+\delta_{c} g_{b d}-\delta_{d} g_{b c}\right) \\
& \underset{(10)^{b}}{V_{1}} \underset{(1)}{a}=\frac{1}{2} \underset{(1)}{g} a d\left(\delta_{b} \underset{(1)}{g} c d+\delta_{c} \underset{(1)}{g} b d-\delta_{d} \underset{(1)}{g} b c\right) \tag{2.15}\\
& \underset{(20)}{\stackrel{V_{2}}{L}} \underset{b c}{a}=\frac{1}{2} \underset{(2)}{g}{ }^{a d}\left(\underset{(2)}{\delta_{b}} \underset{(2)}{g_{2}} c d+\delta_{c} \underset{(2)}{g} b d-\delta_{d} \underset{(2)}{g^{b}}\right)
\end{align*}
$$

Gauss-Weingarten and Frenet equations in the theory of the homogeneous lift..
the "1-vertical" coefficients

$$
\begin{align*}
& \underset{(01)}{\stackrel{H}{C}}{ }_{b c}^{a}=\frac{1}{2} g^{a d}\left(\delta_{1 b} g_{d c}+\delta_{1 c} g_{b d}-\delta_{1 d} g_{b c}\right) \\
& \underset{(11)^{-}}{V_{1}} \underset{b c}{a}=\frac{1}{2} \underset{(1)}{a d}\left(\underset{(1)}{\delta_{1 b}}{\underset{(1)}{ }}_{c d}+\delta_{1 c} \underset{(1)}{g_{b d}}-\delta_{1 d} \underset{(1)}{g_{b c}}\right) \tag{2.16}
\end{align*}
$$

and the "2-vertical" coefficients

It is called the canonical N-linear metric connection.
This linear connection will be used throughout this paper.
For this N-linear connection, we have the operators $\stackrel{V_{i}}{D},\left(i=0,1,2 ; V_{0}=H\right)$ which are given by the following relations

$$
\begin{equation*}
\stackrel{V_{i}}{D} X^{a}=d X^{a}+\stackrel{V_{\omega_{i}}}{b} X^{b}, \forall X \in \mathcal{F}\left(\widetilde{O s c^{2}} M\right), \tag{2.18}
\end{equation*}
$$

where

We call these operators the horizontal, 1- and 2-vertical covariant differentials. The 1-forms $\stackrel{H_{a}^{a}}{\omega}, \omega_{b}^{a}, \omega_{b}^{a}$ will be called the horizontal, 1- and 2-vertical 1-form. From (2.17) we get that the horizontal, 1- and 2- vertical 1-form are

$$
\begin{aligned}
& { }_{\omega}^{H_{b}^{a}}=\underset{(00)^{b}}{\stackrel{H}{L}}{ }^{a} d x^{c}+\underset{(01)}{\stackrel{H}{C}}{ }^{a} \delta c y^{(1) c}+\underset{(02)^{C}}{\stackrel{H}{C}} \delta y^{(2) c} \\
& \stackrel{V_{1}}{\omega_{b}^{a}}=\underset{(10)^{2}}{V_{1}} \underset{b c}{a} d x^{c}+\underset{(11)}{\stackrel{V_{1}}{C}}{ }^{a} \delta c y^{(1) c}+\underset{(12)}{\stackrel{V_{1}}{C}} \underset{ }{a} \delta y^{(2) c}
\end{aligned}
$$

3 The relative covariant derivatives

Let $D \Gamma(N)$, the canonical N-linear metric connection of the manifold $O s c^{2} M$. A classical method to determine the laws of derivation on a Finsler submanifold is the type of the coupling([5],[6],[8], [9]).

Definition 3.1. We call a coupling of the canonical N-linear metric connection D to the induced nonlinear connection \check{N} along $O s c^{2} \check{M}$ the operators $\check{\check{D}},(i=0,1,2$; $\left.V_{0}=H\right)$ defined by the operators $\stackrel{V_{i}}{D},\left(i=0,1,2 ; V_{0}=H\right)$ (2.18) with the property

$$
\begin{equation*}
\stackrel{V_{i}}{\tilde{D}} X^{a}=\stackrel{V_{i}}{D} X^{a},\left(i=0,1,2 ; V_{0}=H\right)(\text { modulo 2.13 }) \tag{3.1}
\end{equation*}
$$

Here

$$
\begin{align*}
& V_{i} \tag{3.2}\\
& \tilde{D} X^{a}=d X^{a}+\stackrel{V_{i}}{\stackrel{\omega}{\omega}}{ }_{b}^{a} X^{b}, \forall X \in \mathcal{F}\left(\widetilde{O s c^{2}} M\right) .
\end{align*}
$$

The 1-forms $\underset{(i)}{\breve{\omega}^{a}},(i=0,1,2)$ are the connection 1-forms of the coupling D.
Theorem 3.2. The coupling of the N-linear connection D to the induced nonlinear connec-
 ($i=0,1,2 ; V_{0}=H$) where

$$
\begin{aligned}
& \stackrel{\stackrel{V_{i}}{C}}{\stackrel{(i 2)}{ }{ }^{b}}=0,\left(i=0,1,2 ; V_{0}=H\right) .
\end{aligned}
$$

Proof. From (3.1), (3.2), (2.18), and (2.13) we obtain

$$
\begin{aligned}
& \underset{(i 2)}{\stackrel{V_{i}}{C}}{ }^{b \delta}=\underset{(i 2)}{V_{i}}{ }^{V_{d}} B_{\delta}^{d},\left(i=0,1,2 ; V_{0}=H\right) .
\end{aligned}
$$

and from (2.17) we get (3.3).

Definition 3.3. We call the induced tangent connection on $\widetilde{O s c^{2} M}$ by the canonical N-linear metric connection D, the couple of the operators ${\stackrel{V}{V_{i}}}^{\top},\left(i=0,1,2 ; V_{0}=H\right)$ which are defined by

$$
\begin{equation*}
\stackrel{V_{i}}{D^{\top}} X^{\alpha}=B_{b}^{\alpha} \stackrel{V_{i}}{\tilde{D}} X^{b}, \quad \text { for } X^{a}=B_{\gamma}^{a} X^{\gamma} \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\stackrel{V_{i}}{D^{\top}} X^{\alpha}=d X^{\alpha}+X^{\beta}{ }_{\omega}^{V_{i \alpha}} \tag{3.5}
\end{equation*}
$$

and $\stackrel{V_{\omega}^{i}}{\omega}{ }_{\beta},\left(i=0,1,2 ; V_{0}=H\right)$ are called the tangent connection 1-forms.
We have
Theorem 3.4. The tangent connections 1-forms are as follows:
where

$$
\begin{align*}
& \underset{(i 0)^{V_{i}}}{\underset{L}{\alpha}}=B_{d}^{\alpha}\left(B_{\beta \delta}^{d}+B_{\beta}^{f} \stackrel{V_{i}}{\stackrel{V}{L}} \underset{(i 0)}{f \delta}\right), \\
& \underset{(i 1)^{\beta \delta}}{V_{i}} \underset{\sim}{\alpha}=B_{d}^{\alpha} B_{\beta}^{f} \underset{(i 1)}{\stackrel{V_{i}}{\underset{C}{i}}{ }_{f \delta}^{d},} \tag{3.7}\\
& \underset{(i 2)^{\beta \delta}}{\stackrel{V_{i}}{C}} \underset{\sim}{\alpha}=0,\left(i=0,1,2 ; V_{0}=H\right) .
\end{align*}
$$

Proof. From (3.2),(3.5) and (3.4) we have

$$
\begin{aligned}
& \underset{(i 2)^{V_{i}}}{\stackrel{V_{i}}{\alpha}}=B_{d}^{\alpha} B_{\beta}^{f} \stackrel{{ }_{(i 2)}^{(\underset{i}{i}}{ }_{f \delta}^{d}}{V_{i}},\left(i=0,1,2 ; V_{0}=H\right) .
\end{aligned}
$$

and from (2.17) we get (3.7).
Definition 3.5. We call the induced normal connection on $\widetilde{O s c^{2} M}$ by the canonical N-linear metric connection D, the couple of the operators $\stackrel{V_{i}}{D^{\perp}},\left(i=0,1,2 ; V_{0}=H\right)$ which are defined by

$$
\begin{equation*}
\stackrel{V_{i}}{D^{\perp}} X^{\bar{\alpha}}=B_{b}^{\alpha} \stackrel{V_{i}}{D} X^{b} \quad \text { for } X^{a}=B_{\bar{\gamma}}^{a} X^{\bar{\gamma}} \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\stackrel{V_{i}}{D^{\perp}} X^{\bar{\alpha}}=d X^{\bar{\alpha}}+X^{\bar{\beta}} \omega_{i} V_{\bar{\alpha}} \tag{3.9}
\end{equation*}
$$

and $\stackrel{V_{i} \bar{\alpha}}{\omega},\left(i=0,1,2 ; V_{0}=H\right)$ are called the normal connection 1-forms.
We have
Theorem 3.6. The normal connections 1 -forms are as follows:
where

$$
\begin{align*}
& \underset{(i 1)^{\bar{\beta} \delta}}{V_{i}^{C}} \stackrel{\bar{\alpha}}{\bar{\beta} \delta}=B_{d}^{\bar{\alpha}}\left(\frac{\partial B_{\beta}^{d}}{\partial u^{\delta}}+B_{\bar{\beta}}^{{ }_{(i 11}} \stackrel{\left.\stackrel{V_{i}}{\stackrel{(}{i}}{ }_{f}^{d}\right)}{d}\right) \tag{3.11}\\
& \underset{(i 2)^{\bar{\beta} \delta}}{V_{i}}{ }^{V^{\prime}}=0,\left(i=0,1,2 ; V_{0}=H\right)
\end{align*}
$$

Proof. From (3.2),(3.8),(3.9) and (2.13) we obtain

$$
\begin{aligned}
& \stackrel{V_{i}}{L_{(i 0)}}{ }^{\bar{\alpha}}=B_{d}^{\bar{\beta} \delta}\left(\frac{\delta B_{\bar{\beta}}^{d}}{\delta u^{\delta}}+B_{\bar{\beta}}^{f} \stackrel{\left.V_{i}\right)^{i}}{\stackrel{V^{\prime}}{L}}{ }^{f \delta}\right) \\
& {\underset{(i 11}{V_{i}}}_{V_{i}}^{\bar{\alpha} \delta}=B_{d}^{\bar{\alpha}}\left(\frac{\delta B_{\beta}^{d}}{\delta v^{(1) \delta}}+B_{\bar{\beta}}^{f} \stackrel{V_{i 1}}{\stackrel{V_{i}}{C}} \underset{(i d \delta}{d}\right) \\
& \underset{(i 2)^{\bar{\beta}}}{V_{i}} \stackrel{\bar{\alpha}}{\bar{\alpha}}=B_{d}^{\bar{\alpha}}\left(\frac{\partial B_{\beta}^{d}}{\partial v^{(2) \delta}}+B_{\bar{\beta}}^{f} \underset{(i 2)^{f}}{\left.\stackrel{V_{i}}{\underset{i}{d}}{ }_{f \delta}^{d}\right),}\right.
\end{aligned}
$$

$\left(i=0,1,2 ; V_{0}=H\right)$ and from (3.3) and $\frac{\partial B_{\beta}^{d}}{\partial v^{(1) \delta}}=\frac{\partial B_{\beta}^{d}}{\partial v^{(2) \delta}}=0$ we have (3.11).
Now, we can define the relative (or mixed) covariant derivatives ${ }^{V_{i}},(i=0,1,2$; $\left.V_{0}=H\right)$.
Theorem 3.7. The relative covariant (mixed) derivatives in the algebra of mixed d-tensor fields are the operators $\stackrel{V_{i}}{\nabla},\left(i=0,1,2 ; V_{0}=H\right)$ for which the following properties hold:

$$
\begin{gathered}
\stackrel{V_{i}}{\nabla f=d f, \quad \forall f \in \mathcal{F}\left(O s c^{2} \check{M}\right)} \\
V_{i} X^{a}=\stackrel{V_{i}}{\tilde{D}} X^{a}, \quad V_{i} X^{\alpha}=\stackrel{V_{i}}{D^{\top}} X^{\alpha}, \quad V_{i} X^{\bar{\alpha}}=\stackrel{V_{i}}{D^{\perp}} X^{\bar{\alpha}}, \quad\left(i=0,1,2 ; V_{0}=H\right)
\end{gathered}
$$

$\stackrel{V_{i}}{V_{b}^{a}}, V_{\omega}^{V_{i} \alpha}, V_{i} \overline{V_{j}}$ are called the connection 1-forms of $\stackrel{V_{i}}{\nabla},\left(i=0,1,2 ; V_{0}=H\right)$.

4 The Gauss-Weingarten formulae

In the theory of the submanifolds we are interesed in finding the moving equations of the moving frame \mathcal{R} along $O s c^{2} \check{M}$.

These equations, called also Gauss-Weingarten formulae, are obtained when the relative covariant derivatives of the vector fields from \mathcal{R} are expressed again in the frame \mathcal{R}.

Thus we have

Theorem 4.1. The following Gauss-Weingarten formulae hold:

$$
\begin{gather*}
V_{i} B_{\alpha}^{a}=B_{\bar{\delta}}^{a} \frac{V_{\bar{i}}^{\bar{\delta}}}{\Pi_{\alpha}}, \tag{4.1}\\
\stackrel{V_{i}}{\nabla} B_{\bar{\alpha}}^{a}=-B_{\bar{\delta}}^{a}{ }^{\frac{V_{i}}{\Pi_{\bar{\alpha}}},} \tag{4.2}
\end{gather*}
$$

where

$$
\begin{align*}
& { }^{V_{i}^{\alpha}}{ }_{\bar{\delta}}=g^{\alpha \sigma}{ }_{\delta_{\bar{\delta} \bar{\sigma}}} \frac{V_{i}}{\bar{\sigma}}, \tag{4.3}
\end{align*}
$$

and the d-tensors

$$
\begin{aligned}
& \underset{(2)}{V_{i}}{ }_{\alpha}^{\bar{\delta}}{ }_{\beta}=B_{d}^{\bar{\delta}} B_{\alpha}^{f} \underset{(i 2)}{V_{i}} \stackrel{V_{i}}{f}
\end{aligned}
$$

are the fundamental d-tensors of the second order of manifold $\widetilde{O s c^{2}} M,(i=0,1,2$, $\left.V_{0}=H\right)$.

Proof. From (2.15),(2.16) and (2.17) we have

$$
\begin{aligned}
& \stackrel{H}{\nabla} B_{\alpha}^{a}=B_{\alpha \mid 0 \beta}^{a} d u^{\beta}+B_{\alpha}^{a} \stackrel{(1)}{\mid}_{0 \beta} \delta v^{(1) \delta}+B_{\alpha}^{a} \stackrel{(2)}{\mid}_{0 \beta} \delta v^{(2) \delta} \\
& =\left(\frac{\delta B_{\alpha}^{a}}{\delta u^{\beta}}+\stackrel{\stackrel{H}{\underset{L}{L}}}{\stackrel{(00)^{b \beta}}{ }{ }^{b} B_{\alpha}^{b}-\stackrel{\stackrel{H}{L}}{\underset{(00)}{\alpha}}{ }^{\alpha \beta} B_{\delta}^{a}}\right) d u^{\beta}+ \\
& +\left(\frac{\delta B_{\alpha}^{a}}{\delta v^{(1) \beta}}+\underset{(p 1)^{b \beta}}{\check{C}} B_{\alpha}^{b}-\underset{(p 1)^{\alpha \beta}}{C} B_{\delta}^{\delta}\right) \delta v^{(1) \beta}+ \\
& +\left(\frac{\partial B^{a}}{\partial v^{(2) \beta}}+\underset{(02)^{b}}{\check{C}}{ }^{a} B_{\alpha}^{b}-\underset{(02)^{\alpha \beta}}{C^{\delta}} B_{\delta}^{a}\right) \delta v^{(2) \beta}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+B_{d}^{\delta} B_{\alpha}^{f} \underset{(02)^{f \beta}}{\stackrel{H}{C}{ }_{f \beta} \delta v^{(2) \beta}}\right] .
\end{aligned}
$$

Using (4.3) we get the relation (4.1) for $V_{0}=H$.
Now, by applying $\stackrel{H}{\nabla}$ to the both sides of the equations $g_{a b} B_{\alpha}^{a} B_{\bar{\beta}}^{b}=0$ one get

$$
g_{a b} B_{\bar{\delta}}^{a} \stackrel{H}{\Pi}{ }_{\alpha}^{\bar{\delta}} B_{\bar{\beta}}^{b}+g_{a b} B_{\alpha}^{a} \stackrel{H}{\Pi} B_{\bar{\beta}}^{b}=0 .
$$

Multiplying these relation with B_{d}^{α} we obtain

$$
g_{b d} \stackrel{H}{\nabla} B_{\bar{\beta}}^{b}-B_{\bar{\delta}}^{a} B_{d}^{\bar{\delta}} g_{a b} \stackrel{H}{\nabla} B_{\bar{\beta}}^{b}=-B_{d}^{\alpha} \delta_{\bar{\beta} \bar{\gamma}} \stackrel{H}{\alpha}_{\bar{\gamma}} .
$$

But $B_{\bar{\delta}}^{a} B_{d}^{\bar{\delta}} g_{a b} \stackrel{H}{\nabla} B_{\bar{\beta}}^{b}=0$. Consequently, we obtain the relations (4.2) for $V_{0}=H$.
Analogously, for the operators $\nabla_{i},(i=1,2)$ one gets the other relations.

5 Curves in the manifold $\operatorname{Osc}^{2} M$

In this section we construct a Frenet frame and determine the Frenet equations for a curve in the manifold $O s c^{2} M$.

The start point of these researchs is the Bejancu and Farran results in case of vertical bundle of $T M([3])$. We construct a Frenet frame and derive all the Frenet equations for a
curve in the manifold $\widetilde{O s c^{2}} M$. This enables us to state a fundamental theorem for curves in manifold $O s c^{2} M$.

Let $c: t \rightarrow\left(x^{a}(t)\right)$ a smooth curve in M, t a real parameter and $s(t)$ a parameter change. On the manifold $O s c^{2} M$ with the local coordinates $\left(x^{a}, y^{(1) a}, y^{(2) a}\right)$, the curve c induce a curve \mathcal{C} with the property
$\left(x^{a}(t), y^{(1) a}(t)=\frac{d x^{a}}{d t}, y^{(2) a}(t)=\frac{1}{2} \frac{d^{2} x^{a}}{d t^{2}}\right)$.
If we change the parameter on \mathcal{C} we have

$$
\begin{align*}
& y^{(1) a}(s)=\frac{d s}{d t} \frac{d x^{a}}{d s}=v^{(1)} \frac{d x^{a}}{d s}, \\
& y^{(2) a}(s)=\frac{1}{2} \frac{d}{d t}\left(v^{(1)} \frac{d x^{a}}{d s}\right)=\frac{1}{2}\left(\frac{d^{2} s}{d t^{2}} \frac{d x^{a}}{d s}+\left(v^{(1)}\right)^{2} \frac{d^{2} x^{a}}{d s^{2}}\right) \tag{5.1}\\
& \quad=\frac{1}{2}\left(v^{(2)} \frac{d x^{a}}{d s}+\left(v^{(1)}\right)^{2} \frac{d^{2} x^{a}}{d s^{2}}\right),
\end{align*}
$$

where we noted

$$
v^{(1)}=\frac{d s}{d t}, \quad v^{(2)}=\frac{d^{2} s}{d t^{2}} .
$$

Thus, on \mathcal{C}, we may consider the parameters $\left(s, v^{(1)}, v^{(2)}\right)$, and from the above calcul we get the parametric equations in s :

$$
\left\{\begin{array}{l}
x^{a}=x^{a}(s) \\
y^{(1) a}=v^{(1)} \frac{d x^{a}}{d s} \\
2 y^{(2) a}=v^{(2)} \frac{d x^{a}}{d s}+\left(v^{(1)}\right)^{2} \frac{d^{2} x^{a}}{d s^{2}}
\end{array}\right.
$$

We use notation $x^{\prime a}=\frac{d x^{a}}{d s}$ and $x^{\prime \prime a}=\frac{d^{2} x^{a}}{d s^{2}}$, thus the above equations become:

$$
\left\{\begin{array}{l}
x^{a}=x^{a}(s) \\
y^{(1) a}=v^{(1)} x^{\prime a} \\
2 y^{(2) a}=v^{(2)} x^{\prime a}+\left(v^{(1)}\right)^{2} x^{\prime \prime a}
\end{array}\right.
$$

The tangent vectors along \mathcal{C} are $\left\{\frac{\partial}{\partial s}, \frac{\partial}{\partial v^{(1)}}, \frac{\partial}{\partial v^{(2)}}\right\}$, and their connection with the tangent vectors $\left\{\frac{\partial}{\partial x^{a}}, \frac{\partial}{\partial y^{(1) a}}, \frac{\partial}{\partial y^{(2) a}}\right\}$ is obtained by using the Jacobi matrix of these transformations

$$
\begin{aligned}
& \frac{\partial}{\partial s}=x^{\prime a} \frac{\partial}{\partial x^{a}}+v^{(1)} x^{\prime \prime a} \frac{\partial}{\partial y^{(1) a}}+\left(v^{(1) 2} x^{\prime \prime \prime a}+v^{(2)} x^{\prime \prime a}\right) \frac{\partial}{\partial y^{(2) a}}, \\
& \frac{\partial}{\partial v^{(1)}}=x^{\prime a} \frac{\partial}{\partial y^{(1) a}}+v^{(1)} x^{\prime \prime a} \frac{\partial}{\partial y^{(2) a}}, \\
& \frac{\partial}{\partial v^{(2)}}=x^{\prime a} \frac{\partial}{\partial y^{(2) a}} .
\end{aligned}
$$

Let (M, F) a Finsler space and $g_{a b}\left(x, y^{(1)}\right)=\frac{1}{2} \frac{\partial^{2} F^{2}}{\partial y^{(1) a} \partial y^{(1) b}}$ the fundamental tensor and $s(t)=\int_{0}^{t} F\left(x(t), y^{(1)}(t)\right) d t$ the arc length parameter on \mathcal{C}. We have $\frac{d s}{d t}=F\left(x(t), y^{(1)}(t)\right)$ along of curve \mathcal{C}. A a consequence of homogeneity of F it fallows that $v^{(1)}=\frac{d s}{d t}=$ $F\left(x(t), y^{(1)}(t)\right)=F\left(x(s), v^{(1)} y^{(1)}(s)\right)=v^{(1)} F\left(x(s), y^{(1)}(s)\right)$. We deduce that $F\left(x(s), y^{(1)}(s)\right)=1$, which is true on \mathcal{C} restrictioned to the manifold $O s c^{1} M \equiv T M$.

Let \mathbb{G} the Sasaki prolongation of the fundamental tensor $g_{a b}$ to the manifold $\widetilde{O s c^{2}} M$, (*),

$$
\begin{aligned}
\mathbb{G}=g_{a b}\left(x, y^{(1)}\right) d x^{a} \otimes d x^{b}+ & g_{a b}\left(x, y^{(1)}\right) \delta y^{(1) a} \otimes \delta y^{(1) b}+ \\
& +g_{a b}\left(x, y^{(1)}\right) \delta y^{(2) a} \otimes \delta y^{(2) b}
\end{aligned}
$$

and $\mathrm{D} \Gamma(N)$, the canonical N -linear metric connection on the manifold $O s c^{2} M$, with the coefficients

$$
\begin{align*}
& \underset{(i 0)^{c c}}{L^{a}}=\frac{1}{2} g^{a d}\left(\delta_{b} g_{c d}+\delta_{c} g_{b d}-\delta_{d} g_{b c}\right) \\
& \underset{(i 1)^{b c}}{C}=\frac{1}{2} g^{a d}\left(\delta_{1 b} g_{c d}+\delta_{1 c} g_{b d}-\delta_{1 d} g_{b c}\right) \quad(i=0,1,2) \tag{5.2}\\
& \underset{(i 2)^{b c}}{C}=0
\end{align*}
$$

and $\underset{(i)}{\nabla},(i=0,1,2)$ the covariant derivatives operators.
Let

$$
\begin{equation*}
g_{b}{ }^{a}{ }_{c}=\frac{1}{2} g^{a d} \frac{\partial g_{b d}}{\partial y^{(1) c}} \tag{5.3}
\end{equation*}
$$

and $B \Gamma(N)$, the N-linear connection of Berwald type with the coefficients
where

$$
\begin{align*}
& \underset{(00)^{b c}}{\stackrel{b}{L}}=\underset{(00)^{b c}}{L} \quad \stackrel{a}{\underset{(10)}{b}}{ }^{b c}=\underset{(11)^{c b}}{B} \quad \stackrel{b}{L} \quad \underset{(20)^{b c}}{a}=\underset{(22)^{c b}}{B}, \tag{5.5}
\end{align*}
$$

$$
\begin{aligned}
& \underset{(02)^{b c}}{\stackrel{b}{b}}=0, \quad \underset{(12)^{b}}{\underset{b}{b}}=0, \quad \underset{(22)^{b c}}{\stackrel{b}{b}}=\underset{(22)^{b c}}{C}=0,
\end{aligned}
$$

Gauss-Weingarten and Frenet equations in the theory of the homogeneous lift..

$$
\begin{aligned}
\underset{(11)^{b}}{B} & =\delta_{1 c} N_{1}^{a}{ }_{b}, \underset{(12)^{b}}{B}{ }_{a}^{a}=\delta_{1 c} N_{2}^{a}{ }_{b}-\delta_{b} N_{1}{ }^{a}{ }_{c}+N_{1}^{N a}{ }_{f} \underset{(11)}{B}{ }^{f}, \\
\underset{(12)^{b c}}{R} & =\delta_{1 c} N_{1}^{a}{ }_{b}-\delta_{1 b} N_{1}^{a}{ }_{c} .
\end{aligned}
$$

Then, we have

$$
\begin{equation*}
\mathbb{G}\left(\frac{\partial}{\partial v^{(2)}}, \frac{\partial}{\partial v^{(2)}}\right)=g_{a b}(x(t), \dot{x}(t)) \frac{d x^{a}}{d t} \frac{d x^{b}}{d t} . \tag{5.6}
\end{equation*}
$$

If we take the paramater s, it fallows that

$$
\begin{equation*}
\mathbb{G}\left(\frac{\partial}{\partial v^{(2)}}, \frac{\partial}{\partial v^{(2)}}\right)=g_{a b} x^{\prime a} x^{\prime b}=F^{2}\left(x(s), y^{(1)}(s)\right)=1 . \tag{5.7}
\end{equation*}
$$

We study geometric objects along curve \mathcal{C} in points $\left(x^{a}(s), y^{(1) a}(s), y^{(2) a}(s)\right)$ where $v^{(1)} \neq 0$.

An other consequence of homogeneity of F is that $g_{a b}, g^{a b}$ and $\underset{(00)^{b c}}{\stackrel{H}{b}}(2.15)\left(\right.$ or $\underset{(i 0))^{b c}}{L^{a}},(i=$ $0,1,2)$ from (5.2)) are positive homogeneous of degree zero, while G^{a}, G_{b}^{a} and $g_{b}{ }^{a}{ }_{c},(5.3)$, are positive homogeneous of degrees 2,1 and -1 . The functions $G^{a}(2.2)$ are

$$
G^{a}\left(x, y^{(1)}\right)=\frac{1}{4} g^{a b}\left(x, y^{(1)}\right)\left(\frac{\partial^{2} F^{*}}{\partial y^{(1) b} \partial x^{c}} y^{(1) c}-\frac{\partial F^{*}}{\partial x^{b}}\right)\left(x, y^{(1)}\right), F^{*}=F^{2} .
$$

We deduce:

$$
\begin{gather*}
g_{a b}\left(x(s), v^{(1)} x^{\prime}(s)\right)=g_{a b}\left(x(s), x^{\prime}(s)\right), \tag{5.8}\\
g^{a b}\left(x(s), v^{(1)} x^{\prime}(s)\right)=g^{a b}\left(x(s), x^{\prime}(s)\right), \\
x^{\prime b}(s) \underset{(00)}{L^{b} c}\left(x(s), v^{(1)} x^{\prime}(s)\right)=x^{\prime b}(s) \underset{(00)^{b c}}{b_{c}}\left(x(s), x^{\prime}(s)\right)=G_{c}^{a}\left(x(s), x^{\prime}(s)\right), \tag{5.9}\\
x^{\prime b}(s) G_{b}^{a}\left(x(s), v^{(1)} x^{\prime}(s)\right)=v^{(1)} x^{\prime b}(s) G_{b}^{a}\left(x(s), x^{\prime}(s)\right)=2 v^{(1)} G^{a}\left(x(s), x^{\prime}(s)\right), \\
x^{\prime b}(s) g_{b}{ }^{a}{ }_{c}\left(x(s), x^{\prime}(s)\right)=0, \tag{5.10}\\
g_{b}{ }^{a} c^{c}\left(x(s), v^{(1)} x^{\prime}(s)\right)=\frac{1}{v^{(1)} g_{b}{ }^{a}{ }_{c}\left(x(s), x^{\prime}(s)\right) .} \tag{5.11}
\end{gather*}
$$

Remark 5.1. Here and in the sequel we use the vector notations $x(s)$ and $x^{\prime}(s)$ to represent the vectors $\left(x^{0}(s), \ldots, x^{m}(s)\right)$ and $\left(x^{00}(s), \ldots, x^{\prime m}(s)\right)$, respectively. Also, the components of a geometric object $T_{\text {def... }}^{\text {abc... }}$ at the point $\left(x(s), x^{\prime}(s)\right)$ we denote them by $T_{d e f \ldots}^{a b c . . .}(s)$.

We say that a vector field $X \in \mathcal{X}\left(\widetilde{O s c^{2}} M\right)$ along $O s c^{2} \mathcal{C}$ is projectable on \mathcal{C} if locally at any point $\left(x(s), v^{(1)} x^{\prime}(s), y^{(2) a}(s)\right) \in \widetilde{O s c^{2} \mathcal{C}}$ we have

$$
\begin{gather*}
X\left(x(s), v^{(1)} x^{\prime}(s), y^{(2) a}(s)\right)=X^{(0) a}(s) \frac{\delta}{\delta x^{a}}\left(x(s), v^{(1)} x^{\prime}(s), y^{(2) a}(s)\right) \tag{5.12}\\
+X^{(1) a}(s) \frac{\delta}{\delta y^{(1) a}}\left(x(s), v^{(1)} x^{\prime}(s), y^{(2) a}(s)\right)+X^{(2) a}(s) \frac{\partial}{\partial y^{(2) a}}\left(x(s), v^{(1)} x^{\prime}(s), y^{(2) a}(s)\right),
\end{gather*}
$$

or, equivalently, the local components of X at any point of \mathcal{C} depend only on the arc length parameter s of \mathcal{C}. The above name is justified because X given by (5) on $O s c^{2} \mathcal{C}$ defines a vector field X^{*} on \mathcal{C} by the formula

$$
X^{*}(x(s))=X^{(2) a}(s) \frac{\partial}{\partial x^{a}}(x(s)) .
$$

Thus $X^{*}(x(s))$ can be considered as the projection of the vector field $X\left(x(s), v^{(1)} x^{\prime}(s), y^{(2) a}(s)\right)$ on the tangent space $T M$ at $x(s) \in \mathcal{C}$. As an example, $\frac{\partial}{\partial y^{(2) a}}$ is a projectable vector field. Also we shall see later that a Frenet frame for a curve on the manifold $\widetilde{O s c^{2}} M$ contains only projectable vector fields.

Let $\mathrm{D} \Gamma(N)$, the canonical N-linear metric connection (5.2) and $\mathrm{B} \Gamma(N)$, the N-liniar connection on Berwald type from (5.4), and $\underset{(i)}{\stackrel{c}{\nabla}, \stackrel{b}{\gtrless},(i=0,1,2)}$ are the covarant derivatives of these N -linear connections.

Proposition 5.2. The covariant derivatives of any projectable vector field X in the direction of $\frac{\delta}{\delta v^{(1)}}$ or $\frac{\partial}{\partial v^{(2)}}$ with respect to $D \Gamma(N)$ and $B \Gamma(N)$ vanish identically on $\widetilde{O s c^{2} \mathcal{C}}$, that is we have

$$
\begin{aligned}
& \left(\nabla_{\frac{\delta}{\delta v^{(1)}}} X\right)\left(x(s), v^{(1)} x^{\prime}(s), y^{(2) a}(s)\right)=0 \\
& \left(\nabla_{\frac{\partial}{\partial v^{(2)}}} X\right)\left(x(s), v^{(1)} x^{\prime}(s), y^{(2) a}(s)\right)=0, \forall s \in(-\varepsilon, \varepsilon)
\end{aligned}
$$

where $\underset{(i)}{\nabla}$ are $\underset{(i)}{\stackrel{c}{\underset{(i)}{\prime}} \text { or } \underset{(i)}{\stackrel{b}{\nabla}},(i=0,1,2) .}$

Proof. We have

$$
\begin{gathered}
\left(\underset{(i) \frac{\delta}{\delta v(j)}}{\nabla} X\right)\left(x(s), v^{(1)} x^{\prime}(s), y^{(2) a}(s)\right)= \\
X^{(0) a}(s) \stackrel{(j)}{\mid} 0_{0} \frac{\delta}{\delta x^{a}}+X^{(1) a}(s) \stackrel{(j)}{\left.\right|_{1}} \frac{\delta}{\delta y^{(1) a}}+X^{(2) a}(s) \stackrel{(j)}{\mid} 2_{2} \frac{\partial}{\partial y^{(2) a}},
\end{gathered}
$$

Gauss-Weingarten and Frenet equations in the theory of the homogeneous lift..
where

$$
X^{(i) a}(s) \stackrel{(j)}{\left.\right|_{-}}=X^{(i) b}(s) x_{(i j)}^{C^{c}} C^{a}=0,
$$

since for the above N -linear connections we have either

$$
\underset{(i j)}{C}{ }_{(i j}^{a}=g_{b}{ }^{a}{ }_{c} \text { or } \underset{(i j)}{C}{ }^{a}{ }^{a}=0,
$$

where $i \in\{0,1,2\}, j \in\{1,2\}, \frac{\delta}{\delta v^{(2)}}=\frac{\partial}{\partial v^{(2) a}}$.
Hence, in particular, we have

$$
\underset{(i) \frac{\delta}{\delta v^{(1)}}}{\nabla} \frac{\partial}{\partial y^{(2) a}}=0, \underset{(i) \frac{\partial}{\partial v^{(2) a}}}{\nabla} \frac{\partial}{\partial y^{(2) a}}=0
$$

wich enables us to state that the "vertical" covariant derivatives along \mathcal{C} with respect to the canonical N-linear metric connection and of the Berwald type (5.4) do not provide any Frenet frame for \mathcal{C}. Hence we have to proceed with the horizontal covariant derivatives along \mathcal{C}.

From (2.5), we get

$$
\begin{equation*}
\frac{\partial}{\partial s}=\frac{d x^{a}}{d s} \frac{\delta}{\delta x^{a}}+v^{(1)}\left[\frac{d^{2} x^{a}}{d s^{2}}+2 G^{a}(s)\right] \frac{\delta}{\delta y^{(1) a}}+v^{(2)}\left[\frac{d^{2} x^{a}}{d s^{2}}+2 \widetilde{G}^{a}\left(s, v^{(1)}\right)\right] \frac{\partial}{\partial y^{(2) a}} \tag{5.13}
\end{equation*}
$$

where $\widetilde{G}^{a}\left(s, v^{(1)}\right)=\frac{1}{2 v^{(2)}}\left(\frac{d x^{b}}{d s}{\underset{2}{b}}_{a}^{a}+\frac{d^{2} x^{b}}{d s^{2}} G_{b}^{a}(s) v^{(1)}+\frac{d^{3} x^{a}}{d s^{3}}\left(v^{(1)}\right)^{2}\right)$.
The canonical N-linear metric connection is the best choice for studying the geometry of curves in the manifold $\widetilde{O s c^{2}} M$. First, by direct calculation we get

$$
\begin{equation*}
\underset{(i) \frac{\partial}{\partial s}}{\nabla} \frac{\partial}{\partial v^{(2)}}=\left(\frac{d^{2} x^{a}}{d s^{2}}+2 G^{a}(s)\right) \frac{\partial}{\partial y^{(2) a}}, \tag{5.14}
\end{equation*}
$$

On the other hand, using (5.7) and taking into account that $\mathrm{D} \Gamma(N)$ is a metric N -linear connection we obtain

$$
\begin{equation*}
\mathbb{G}\left(\nabla_{(i) \frac{\partial}{\partial s}} \frac{\partial}{\partial v^{(2)}}, \frac{\partial}{\partial v^{(2)}}\right)=0,(i=0,1,2) . \tag{5.15}
\end{equation*}
$$

As a consequence of (5.15) we may set

$$
\begin{equation*}
\underset{(i) \frac{\partial}{\partial s}}{ } \frac{\partial}{\partial v^{(2)}}=k_{1} N_{1} \tag{5.16}
\end{equation*}
$$

where $N_{1} \in V_{2} T\left(O s c^{2} \mathcal{C}\right)^{\perp}$, and

$$
\begin{equation*}
k_{1}=\left\|\nabla_{(i) \frac{\partial}{\partial s}} \frac{\partial}{\partial v^{(2)}}\right\|, \tag{5.17}
\end{equation*}
$$

for $i=0,1,2$ and $\|X\|=\mathbb{G}(X, X), \forall X \in \mathcal{X}\left(\widetilde{O s c^{2}} M\right)$. By (5.14) we infer that

$$
\begin{equation*}
k_{1}=\left\{g_{a b}(s)\left(x^{\prime \prime a}+2 G^{a}(s)\right)\left(x^{\prime \prime}+2 G^{b}(s)\right)\right\}^{1 / 2} \tag{5.18}
\end{equation*}
$$

and it call the geodesic curvature (first curvature) function of \mathcal{C}. If $k_{1}(s) \neq 0, \forall s \in$ $(-\varepsilon, \varepsilon)$ we call

$$
\begin{equation*}
N_{1}=\frac{1}{k_{1}(s)}\left(x^{\prime a}+2 G^{a}(s)\right) \frac{\partial}{\partial y^{(2) a}}=N_{1}(s) \frac{\partial}{\partial y^{(2) a}}, \tag{5.19}
\end{equation*}
$$

the principal (first) normal of \mathcal{C}. Clearly, N_{1} is a projectable vector field along \mathcal{C}. Actually, this is a consequence of the following general result.

Proposition 5.3. The covariant derivatives of a projectable vector field X along \mathcal{C} with respect to the canonical N-linear metric connection in the direction of $\frac{\partial}{\partial s}$ is a projectable vector field too, given by

$$
\begin{align*}
\underset{(i) \frac{\partial}{\partial s}}{\nabla} X= & {\left[\frac{d X^{(0) a}}{d s}+X^{(0) b} S_{b}^{a}(s)\right] \frac{\delta}{\delta x^{a}}+} \\
& +\left[\frac{d X^{(1) a}}{d s}+X^{(1) b} S_{b}^{a}(s)\right] \frac{\delta}{\delta y^{(1) a}}+ \tag{5.20}\\
& +\left[\frac{d X^{(2) a}}{d s}+X^{(2) b} S_{b}^{a}(s)\right] \frac{\partial}{\partial y^{(2) a}},(i=0,1,2)
\end{align*}
$$

where

$$
\begin{equation*}
S_{b}^{a}(s)=G_{b}^{a}(s)+\left(x^{\prime \prime}{ }^{c}+2 G^{c}(s)\right) g_{b}{ }^{a}{ }_{c}(s) . \tag{5.21}
\end{equation*}
$$

Proof. The assertion fallows by direct calculation using (5.13), (5.9) and (5.11).
Next, suppose that $n+1>2$. Since $\mathrm{D} \Gamma(N)$ is the canonical N-linear metric connection, from $\mathbb{G}\left(N_{1}, N_{1}\right)=1$ and $\mathbb{G}\left(\frac{\partial}{\partial v^{(1)}}, N_{1}\right)=0$ using (5.16) we deduce that

$$
\mathbb{G}\left(\underset{(i) \frac{\partial}{\partial s}}{ } N_{1}, N_{1}\right)=0, \mathbb{G}\left(\underset{(i) \frac{\partial}{\partial s}}{\nabla_{1}} N_{1}, \frac{\partial}{\partial v^{(2)}}\right)=-k_{1},(i=0,1,2) .
$$

Hence we may set

$$
\begin{equation*}
\underset{(i) \frac{\partial}{\partial s}}{\nabla} N_{1}=-k_{1} \frac{\partial}{\partial v^{(2)}}+N \tag{5.22}
\end{equation*}
$$

where $N \in V_{2} O s c^{2} \mathcal{C}^{\perp}$.
Thus we may define the next function

$$
k_{2}=\left\|k_{1}(s) \frac{\partial}{\partial v^{(2)}}+\underset{(i) \frac{\partial}{\partial s}}{\nabla} N_{1}\right\|
$$

Gauss-Weingarten and Frenet equations in the theory of the homogeneous lift..

Then by straightforward calculation using (5.19) and (5.20) we infer that

$$
\begin{equation*}
k_{2}=\left\{g_{a b}(s)\left(k_{1} x^{\prime a}+N_{1}^{\prime a}+N_{1}^{c} S_{c}^{a}\right)\left(k_{1} x^{\prime b}+N_{1}^{\prime b}+N_{1}^{d} S_{d}^{a}\right)\right\}^{1 / 2} \tag{5.23}
\end{equation*}
$$

The function k_{2} is called the second curvature function of \mathcal{C}.
If $k_{2}(s) \neq 0, \forall(-\varepsilon, \varepsilon)$ we define the vector field

$$
N_{2}=\frac{1}{k_{2}(s)}\left(k_{1}(s) \frac{\partial}{\partial v^{(2)}}+\underset{(i) \frac{\partial}{\partial s}}{\nabla} N_{1}\right) .
$$

Hence, (5.22) becomes

$$
\underset{(i)}{\nabla} N_{1}=-k_{1} \frac{\partial}{\partial v^{(2)}}+k_{2}(s) N_{2}(s),(i=0,1,2) .
$$

We suppose inductively that there exist orthonormal projectable vector fields $\left\{N_{0}=\frac{\partial}{\partial v^{(2)}}, N_{1}, . ., N_{j}\right\}$ and nowhere zero curvature functions $\left\{k_{1}, k_{2}, . ., k_{j}\right\}, 1 \leq j \leq n$, such that the following equations hold

$$
\begin{align*}
& \left(F_{1}\right) \underset{(i) \frac{\partial}{\partial s}}{\nabla} N_{0}=k_{1} N_{1}, \\
& \left(F_{2}\right) \underset{(i) \frac{\partial}{\partial s}}{\nabla} N_{1}=-k_{1} N_{0}+k_{2} N_{2}, \tag{5.24}\\
& \cdots \cdots \cdots \cdots \cdots \cdots \\
& \left(F_{j}\right) \underset{(i) \frac{\partial}{\partial s}}{\nabla_{j-1}} N_{j-1}=-k_{j-1} N_{j-2}+k_{j} N_{j},(i=0,1,2) .
\end{align*}
$$

Then by using the Proposition 5.3 and following a proof similar to that of the Finsler case (cf. Bejancu, Farran [3], p.156), for any $j<n$ we obtain

$$
\left(F_{j+1}\right) \underset{(i) \frac{\partial}{\partial s}}{\nabla} N_{j}=-k_{j} N_{j-1}+k_{j+1} N_{j+1},
$$

where

$$
\begin{equation*}
k_{j+1}=\left\{g_{a b}(s)\left(k_{j} N_{j-1}^{a}+N_{j}^{\prime a}+N_{j}^{c} S_{c}^{a}\right)\left(k_{j} N_{j-1}^{b}+N_{j}^{\prime b}+N_{j}^{d} S_{d}^{b}\right)\right\}^{1 / 2} \tag{5.25}
\end{equation*}
$$

Moreover, the system of vector fields $\left\{N_{0}, N_{1}, . ., N_{j}\right\}$ is an orthonormal set of projectable vector fields along \mathcal{C}.

If $j=n$, then $\left\{N_{0}, N_{1}, \ldots, N_{j}\right\}$ is an orthonormal basis of $\mathcal{X} V_{2} T\left(O s c^{2} \mathcal{C}\right)^{\perp}$. As $\underset{(i) \frac{\partial}{\partial s}}{\nabla} N_{n}$ is orthogonal to N_{n}, the equation $\left(F_{j+1}\right)$ becomes

$$
\left(F_{n+1}\right): \underset{(i) \frac{\partial}{\partial s}}{\nabla} N_{n}=-k_{n} N_{n-1},(i=0,1,2) .
$$

We call the system of vector fields $\left\{N_{0}, N_{1}, . ., N_{n}\right\}$ and the equations $\left\{\left(F_{1}\right), \ldots,\left(F_{n+1}\right)\right\}$ the Frenet frame and the Frenet equations along \mathcal{C} respectively. If $k_{j}=0$ on $(-\varepsilon, \varepsilon)$, for some $j<n$, then we can not define N_{j}. Thus the equation $\left(F_{j}\right)$ becomes

$$
\left(F_{j}\right)^{\prime}: \nabla_{(i) \frac{\partial}{\partial s}} N_{j-1}=-k_{j-1} N_{j-2},(i=0,1,2)
$$

Thus, in the case in wich there exist nowhere zero curvature functions $\left\{k_{1}, k_{2}, . ., k_{j-1}\right\}$ on $(-\varepsilon, \varepsilon)$ and k_{j} is everywhere zero on $(-\varepsilon, \varepsilon)$, then we have constructed the Frenet frame $\left\{N_{0}, N_{1}, \ldots, N_{j-1}\right\}$ satisfying the Frenet equations $\left\{\left(F_{1}\right), \ldots,\left(F_{j-1}\right),\left(F_{j}\right)^{\prime}\right\}$. We obtain the following fundamental theorem for curves in the manifold $\widetilde{O s c^{2}} M$.

Theorem 5.4. Let $\left(x_{0}, y_{0}^{(1)}, y_{0}^{(2)}\right)=\left(x_{0}^{a}, y_{0}^{(1) a}, y_{0}^{(2) a}\right)$ be a fixed point of the manifold $\widetilde{O s c^{2}} M, \quad\left\{V_{0}, V_{1}, . ., V_{n}\right\} \quad$ an orthonormal basis of $\quad V_{2} T\left(\widetilde{O s c^{2}} M\right)$ and $k_{1}, k_{2}, . ., k_{n}:(-\varepsilon, \varepsilon) \rightarrow R$ be everywhere positive smooth functions. Then exists a unique curve \mathcal{C} on given by equations $x^{a}=x^{a}(s)$, $y^{(1) a}=y^{(1) a}(s), y^{(2) a}=y^{(2) a}(s), s \in$ $(-\varepsilon, \varepsilon)$, where s is the arc length parameter of \mathcal{C}, such that $\left(x^{a}(0), y^{(1) a}(0), y^{(2) a}(0)\right)=\left(x_{0}^{a}, y_{0}^{(1) a}, y_{0}^{(2) a}\right)$ and $k_{1}, k_{2}, . ., k_{n}$ are the curvature functions of \mathcal{C} with respect to the Frenet frame $\left\{N_{0}, N_{1}, . ., N_{n}\right\}$ wich satisfies $N_{h}(0)=V_{h}$, $h \in\{0, \ldots, n\}$.

Proof. We can use the Theorem 2.1,[3], p. 158
Remark 5.5. 1. If we consider the homogenneous lift $\underset{\mathbb{G}}{0}$, (2.9), we obtain

$$
\underset{\mathbb{G}}{0}\left(\frac{\partial}{\partial v^{(2)}}, \frac{\partial}{\partial v^{(2)}}\right)=p^{4}
$$

and (5.15) becomes

$$
\mathbb{G}\left(\nabla_{\frac{\partial}{\partial s}} \frac{\partial}{\partial v^{(2)}}, \frac{\partial}{\partial v^{(2)}}\right)=0 .
$$

2. The curvature geodesic functions become

$$
\begin{aligned}
\stackrel{0}{k}_{j+1} & =\left\{\underset{(2)}{g_{a b}}(s)\left(k_{j} N_{j-1}^{a}+N_{j}^{\prime a}+N_{j}^{c} S_{c}^{a}\right)\left(k_{j} N_{j-1}^{b}+N_{j}^{\prime b}+N_{j}^{d} S_{d}^{b}\right)\right\}^{1 / 2} \\
& =p^{2} k_{j+1,},(j=0,1, \ldots, n-1)
\end{aligned}
$$

Acknowledgement 5.6. The present work was developed under the auspices of Grant 2565/2014 - BRFFR - RA No. F14RA-006, within the cooperation framework between Romanian Academy and Belarusian Republican Foundation for Fundamental Research. A version of this paper was presented at X-th International Conference "Finsler Extensions of Relativity Theory", August 18-24, 2014, Brasov, Romania.

Gauss-Weingarten and Frenet equations in the theory of the homogeneous lift..

References

[1] Atanasiu, Gh., The homogeneous prolongation to the second order tangent bundle $T^{2} M$ of a Finsler metric, Proc. of The Modern Trends in Geometry and Topology, 5-11 September, 2005, Deva, 63-78
[2] Atanasiu, Gh., Oana, A., The Gauss Weingarten formulae of second order, BSG Proceedings 15, Geometry Balkan Press, Bucharest 2007, 19-33
[3] Bejancu A., Farran H.R., The Geometry of Pseudo-Finsler Submanifolds, Kluwer Acad. Publ., 2000
[4] Matsumoto, M., The induced and intrinsic Finsler connections of a hypersurface and Finslerian projective geometry, Journ. of Math. of Kyoto Univ., 25 (1985), 107-144
[5] Miron R., The Geometry of Higher Order Lagrange Spaces. Applications to Mechanics and Physics, Kluwer Acd. Publ., FTPH no. 82,1997
[6] R. Miron, The Geometry of Higher Order Finsler Spaces, Hadronic Press, USA, 1998
[7] Miron R., Shimada, H., Sabău, V.S., New lifts of generalized Lagrange metrics, Geom. At Hakodate, 1999
[8] Miron R., Anastasiei M., The Geometry of Lagrange Spaces: Theory and Applications, Kluwer Acd. Publ., FTPH, no. 59, 1994
[9] Miron R., Anastasiei M., Vector Bundles. Lagrange Spaces. Applications to Relativity, Ed. Academiei Romane, 1987
[10] Munteanu, Gh., The equations of a holomorphic subspace in a complex Finsler space, Per. Math. Hungarica, Vol. 55(1), 2007, 97-112
[11] Munteanu, Gh., Totally geodesics holomorphic subspaces, Nonlinear Analysis: Real World Appl. 8 (2007), 1132-1143
[12] Oana, A., Submanifolds in the osculator bundle for the homogeneous prolongation, Bull. Transilvania Univ., Braşov, Vol. 1(50), Series III: Math. Info. Phys., 2008, 263-268
[13] Oana, A., The relative covariant derivate and induced connections in the theory of embeddings in the 2-osculator bundle, Bull. Transilvania Univ., Brasov, No. 14(49)s./2007, 211-226
[14] Oana, A., On Ricci identities for submanifolds in the 2-osculator bundle, Iran. J. of Math. Sci. and Inf., Vol 8, No. 2/2013, 1-21
[15] Oana, A., About intrinsic Finsler connections for the homogeneous lift to the osculator bundle of a Finsler metric, Bull. Transilvania Univ., Braşov, Vol 6(55), No. 1/ 2013, Series III: Math. Info. Phys., 37-54
[16] Oana, A., The Gauss-Weingarten formulae for the homogeneous lift to the osculator bundle of a Finsler metric, (Comunicate to the International Conference MACOS 2014, Brasov, Romania)

[^0]: ${ }^{1}$ Department of Mathematics and Informatics, Transilvania Univ. of Braşov, ROMANIA, e-mail : alexandru.oana@unitbv.ro

