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HOMOGENOUS STELLAR MODEL HAVING THE
CHEMICAL COMPOSITION: X = 0.725 AND Z = 0.018

Emil TATOMIR1

Abstract

A mathematical model having the mass equal with one solar mass, the
abundance of the hydrogen X = 0.725 the abundance of the helium Y =
0.257 and the abundance of the metals Z = 0.018 is presented. This model
corresponds to the old stars of the Population II or to the stars of sequence
of the subdwarfish stars with the deficiency of the metals.

In this paper the differential equations for the radiativ nucleus, their nu-
merically solution and the numerically results of the model are presented.
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1 Problem formulation

We consider a model of a star with a radiative nucleus and a convective cover.
Solving the problem integration must be performed both from the centre and
from the surface and the solutions thus obtained have to be connected, so that the
continuity of the considered parameters should be ensured. To give a model of the
interior of a star means to determine the variations of pressure, temperature, mass
and luminosity along the ray. The following equations of hydrostatic equilibrium,
mass distributions, luminosity and temperature are valid for the radiative nucleus
(see, e.g., Menzel and others, 1963; Aller and McLaughlin, 1965; Cox and Giuli,
1968):
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where ρ(r) is the density at the r distance from the centre, ε(ρ, T,X, Y ) is the
energy generation per gram per second, κ(ρ, T,X, Y ) is the opacity corresponding
for the mass unity, and X,Y are the proportions of hydrogen and helium. The
system (1) has the following limit conditions in the centre of the star:

M (0) = 0, L (0) = 0, P (0) = Pc =?, T (0) = Tc =? at r = 0 (2)

The law of the gas P (r) = 1
µ
κ
H ρ (r)T (r) is valid for the whole interior.

The hydrostatic equilibrium equation as well as the mass distribution and the
adiabatic equations (Menzel and others, 1963):

dP (r)

dr
=

GM (r)

r2
ρ (r) (3)

dM (r)

dr
= 4πr2ρ (r)

P (r) = Kρ (r)
5
3 or P (r) = K1T (r)2.5

are valid for the whole convective zone.
System (3) has the following boundary conditions at the star surface:

M = M0, L = L0, T = 0, P = 0 at r = R0 (4)

Schwarzschild’s transformations (Schwarzschild,1958) are applied to the sys-
tems (1) and (3):

P (r) =
pGM2

4πR4
(5)

T (r) = t
µH

κ

GM

R
M (r) = q ·M
L (r) = f · L

r = R · x

where henceforth p, t, q, x, f are dimensionless variables. To produce the energy
we consider the following formula :

ε = ε0ρ (r)T 4.5 (r) where ε0 = 2.8 · 10−33X2 (6)

and for opacity :

κ = κ0ρ0.75(r)T
−3.5(r) where κ0 = 6.52 · 1024(Z +

X + Y

59.3
)(1 +X)0.75 (7)

Using Schwarzschild’s transformations and laws (6) and (7) in systems (1) and
(3), they become :
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respectively
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The boundaries becomes as follows :

at the centre : x = 0, f = 0, q = 0, t =?, p =? (11)

and at the surface : x = 1, f = 1, q = 1, t = 0, p = 0.

If we start the integration of system (8), we obtain two infinite assemblies of
solutions for the nucleus, due to the possibility of choosing the values of pressure
and temperature in the centre. We perform another variable transformation,
which will remove an infinite assembly of solutions for the radiative nucleus.

We consider :

x = x0x
∗ and t = t0t

∗, (12)

f = f0f
∗,

p = p0p
∗ and q = q0q

∗

where x0, t0, f0, p0, q0 are indefinite constants. We impose the following form to
the system (8) :

dp∗

dx∗
= − p∗q∗

t∗x∗2
(13)

dq∗

dx∗
=

p∗x∗2

t∗

df∗

dx∗
= p∗2x∗2t∗2.5

dt∗

dx∗
= − p∗1.75f∗

t∗8.25x∗2
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and thus x0, t0, p0, f0, q0, C,D verify system (14) :

q0
t0x0

= 1,
p0x

3
0

t0q0
= 1, C

p1.750 f0
t9.250 x0

= 1, D
p20t

2.5
0 x30 = 1

f0
(14)

If we consider an already known chemical composition, we may calculate the
value of C and D, but beside them system (14) contains five unknown quantities,
so one of them may be chosen. We have chosen t0 = tc, so t∗c = 1.

Both the system (9) and the system (13) present singularities in the points
where the boundary conditions are given. A difficult problem, the one of con-
necting the solutions should be elucidated. We have to ensure the continuity of
the parameters P (r), T (r),M(r) and L(r). The relations introduce three new
parameters :

U =
d logM (r)

d log r
(15)

V =
d logP (r)

d log r

(n+ 1) =
d logP (r)

d log T (r)

We perform the calculations in (15) and we obtain:

U = 4πr3
ρ (r)

M (r)
=
px3

qt
=
p∗x∗3

q∗t∗
(16)

V =
ρ (r)

P (r)

GM (r)

r
=

q

tx
=

q∗

t∗x∗

and (n+ 1) corresponding to the radiative nucleus from will become:

(n+ 1)rad =
16πac

3

GM (r)T 4 (r)

P (r)κ (r)L (r)
=

1

C

qt8.25

fp1.75
=
q∗t∗8.25

f∗p∗1.75
(17)

We obtain (n+ 1) corresponding to the convective zone and we get :

(n+ 1)conv = 2.5 (18)

Pressure and temperature being continuous functions, (n + 1) should be a
continuous function. The convective zone begins in the point x∗ where (n+ 1) =
2.5. Starting with a certain value for p∗c , within the plan (U, V ) we obtain a
corresponding curve with a final corresponding value (Ui, Vi) where the radiative
zone ceases to exist. Starting with a certain E we can integrate system (9) and
set out plot a corresponding curve in the plan (U, V ). But the continuity of the
functions corresponding to mass and pressure asks a continuous curve in the plan
(U, V ). Thus, if we choose a certain E, then we may choose a value for p∗c so
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that continuity within the plan (U, V ) should be obtained, but we may consider
the problem the other way as well, that is to start by choosing p∗c and then to
interpolate as against E.

We suppose that a connection for a certain E and for a p∗c has been achieved,
then we to determinate the constants x0, p0, f0, q0, t0, C and D. The assumption
that a connection has been achieved gives us the value of the parameters q, p, f, t at
the overlapping both from surface and from centre, thus we know: xis, qis, tis, pis
and xic, pic, tic, fic, qic and, as there is no energy produced within the convective
zone, it follows that fis = 1, where “is” shows that there is a value at the inference
considered from surface, and “ic” shows that there is a value of a parameter,
considered from centre. Using (12), we have:

xis = x0x
∗
ic, pis = p0p

∗
ic, fis = 1 = f0f

∗
ic, qis = q0q

∗
ic, tis = t0t

∗
ic (19)

which give us the values x0, f0, t0, q0. The system (14) gives us the values of C
and D. We suppose that the values of C and D are calculated for a certain E
and p∗c for which a connection of the solutions has been achieved. Using the
formulae of C and D given by (10), where M,R,L which stand for mass, ray,
luminosity corresponding to Sun at the present time, are considered as known
data and testing with different chemical compositions we try to obtain values for
C and D, equal to those resulting from the calculation. Thus, once the calculus
achieved, that is a chemical composition which has been determinated, it should
be reconsidered until there is obtained a chemical composition as close as possible
to the one determined in spectroscopy.

The formulas (1) – (19) are given in (Menzel, 1963).

2 The problem solved numerically

The system (13) has the following limit conditions:

x∗ = 0, f∗ = 0, q∗ = 0, t∗ = 1 and p∗ chosen (20)

This system has a singularity in x∗ = 0, but the system (13) admits solutions
in analytic form for each and every neighbourhood of this singularity point. These
analytic solutions are prolonged by continuity in the point x∗ = 0 as well. We
note p∗c = p0, considering the Σanx

n solutions and imposing the condition that
these series should verify (13), we obtain:

p (x) = p0 −
1

6
p20x

2 +
1

45

(
p30 − p5.750

)4
+ 0x5 +A6x

6 + ... (21)

q (x) =
1

3
p0x

3 +
1

30

(
p4.750 − p20

)
x5 + 0x6 +B7x

7 + ...

f (x) =
1

3
p20x

3 −
(

1

15
p30 +

1

12
p5.750

)
x5 + 0x6 + C7x

7 + ...

t (x) = 1 − 1

6
p3.750 x2 +

(
59

1440
p7.750 − 3

32
p7.50

)
x4 + 0x5 +D6x

6 + ...
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The series (21) will help us in calculating the values of the solutions in four
points contiguous to the origin and to the integration pass h = 0.01. In order to
obtain the value of the solutions for the following point, we use Adams-Bashforth’s
extrapolation formula of the forth order (Mozynski, 1973):

Vk+1 = Vk + h

(
55

24
fk −

59

24
fk−1 +

37

24
fk−2 −

9

24
fk−3

)
(22)

which allows us to calculate the solution in a certain point, if we know the values
in four previous points.

Adams-Moulton’s interpolation formula :

Vk+1 = Vk + h [b−1fk+1 + ...+ b3fk−3] (23)

contains the solution Vk+1 within the right term in the item fk+1. From (22) we
obtain a Vk+1

(0) which substituted in (23) gives the possibility of obtaining a
Vk+1

(1). We apply the successive approximations method and we obtain:

V
(n+1)
k+1 = Vk +

251

720
hf

(
xk+1, V

(n)
k+1

)
+ (24)

+
h

720
(646fk − 264fk−1 + 106fk−2 − 19fk−3)

The process of approximation continues until
∣∣Vk+1

(n+1) − Vk+1
(n) < 10−11

∣∣.
System (9) will be intd under the following condition: for x = 1, p = t = 0, q = 1,
E chosen. We perform the variable y = 1−x, we denote the variable by x as well,
and thus system (9) becomes:

dp

dx
=

pq

t (1 − x)2
(25)

dq

dx
= −p (1 − x)2

t
dt

dx
=

1

2.5E

pq

t2.5 (1 − x)2

It has a singularity in the point x = 0 because of t.

For the system (25) we propose Taylor’s series:

p (x) = a1x+ a2x
2 + a3x

3 + ... (26)

q (x) = 1 + b1x+ b2x
2 + b3x

3 + ...

t (x) = c1x+ c2x
2 + c3x

3 + ...

Returning to the old variable in the neighbourhood of x = 1, we have for the
system (9):
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p (x) =
E

2.52.5
(1 − x)2.5 + ... (27)

q (x) = 1 − E

2.52.5
(1 − x)2.5 + ...

t (x) =
1

2.5
(1 − x) +

14E

4 + 25E
(1 − x)2 + ...

We use (26) in calculating the value of the solutions in one single point con-
tiguous to 1. In order to calculate the values of the solutions in the following three
points, we use Runge-Kutta’s method for non-autonomous systems :

Vk+1 = Vk + h(
1

6
l1 +

1

3
l2 +

1

3
l3 +

1

6
l4) (28)

l1 = f (tk, Vk) and l2 = f

(
xk +

h

2
, Vk +

h

2
l1

)
l3 = f

(
tk +

h

2

)
, Vk +

h

2
l2

l4 = f (tk + h, Vk + hl3)

h = xk+1 − xk = 10−3

Thus, we obtain the values of the solutions in for points, which allow us to
continue with the predictor-corrector method.

3 Results and conclusion

As we have already stated in the first chapter, we choose a p∗c and perform
the interpolation considering different values of E until we obtain a connection
within the plan (U, V ), and with the help of the values C and D resulting from the
calculus, we determine a chemical composition. The whole calculus is repeated by
choosing another p∗c and obtaining a new model until the corresponding chemical
composition is as close as possible to the one obtained spectroscopically. The
obtained results are presented in Table 1.
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x P q f T ρ

0.000 0.1776 0.000 0.000 13.9324 93.5830

0.0058 0.1774 0.1292E-4 0.127E-3 13.9269 93.0137

0.0231 0.1744 0.8223E-3 0.789E-2 13.8451 92.4796

0.0432 0.1666 0.5391E-2 0.486E-1 13.6279 89.7443

0.0807 0.1423 0.3253E-1 0.2423 12.9268 80.8586

0.1038 0.1234 0.6541E-1 0.4132 12.3288 73.4402

0.1528 0.0817 0.1773 0.7443 10.8656 55.1969

0.2019 0.0474 0.3293 0.9205 9.3152 37.3972

0.2509 0.0249 0.4898 0.9805 7.8750 23.2424

0.3058 0.0112 0.6482 0.9966 6.4936 12.7136

0.3548 0.5071E-2 0.7642 0.9994 5.4030 6.8908

0.4067 0.2350E-2 0.8437 0.9998 4.5980 3.7922

0.4558 0.1079E-2 0.8992 0.9999 3.8336 2.0664

0.5048 0.4940E-3 0.9386 0.9999 3.2362 1.1204

0.5481 0.2475E-3 0.9588 0.9999 2.7856 0.6511

0.6087 0.9189E-4 0.9784 0.9999 2.2562 0.2988

0.6548 0.4250E-4 0.9872 0.9999 1.9143 0.1629

0.7039 0.1819E-4 0.9931 0.9999 1.5982 0.0835

0.7530 0.7473E-5 0.9965 0.9999 1.3234 0.0414

0.8049 0.2722E-5 0.9983 0.9999 1.0688 0.0285

0.8563 0.8999E-6 0.9994 0.9999 0.8535 0.0076

0.8944 0.3752E-6 0.9997 0.9999 0.7344 0.0037
Table 1

In this table the pressure (P) is expressed in units of 1018 dyne/cm2,
the temperature (T) in units of 106K, the density ρ in gr/cm3, q is the reduced
mass and f is the reduced luminosity. After the connection of the solution of the
radiative nucleus to the one of the convective zone the values are obtained:

p∗c = 0.68051331818
E = 0.81
X = 0.725
Y = 0.257
Z = 0.018

Solving system (13), using the boundary conditions in the centre of the
star (20) indeterminacy appears under the form of 0/0. I have proposed the
Taylor’s series Σanx

n for the integration of this system:

p(x) = p0 +A1x+A2x2 +A3x
3 + ... (29)

q(x) = B1x+B2x
2 +B3x

3 + ...

f(x) = C1x+ C2x
2 + C3x

3 + ...

t(x) = 1 +D1x+D2x
2 +D3x

3 + ...
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where p0 = p∗c , and I take x instead of x∗ for an easier use. I have assumed that
the pressure p(x), the temperature t(x), the luminosity f(x) and the mass q(x) are
continuous functions and using the series (28) in (13) I obtained their expressions
give by (21).

Then I have showed the classical methods of numeric integration used to
solve such a system (formulae 22-24) using the successive approximations until∣∣Vk+1

(n+1) − Vk+1
(n)

∣∣ < 10−11.
When the boundary conditions at the surface of the star are used:

x = 1, f = 1, q = 1, t = 0, p = 0 (30)

the system (9), which corresponds to the convective cover, has also the indeter-
minacy under the form of 0/0. Using the series of powers, we obtained for the
convective cover the expression (27) and we have shown how the formulae (28) are
used to continue the integration of system (25). In conclusion this way of math-
ematical and numerical approaches permits obtaining any homogeneous stellar
model which has a radiative nucleus and a convective cover. The papers quoted
in the text were consulted at the writing of this paper. The other papers quoted
in the References are recommended to be read for a better understanding of the
studied theme.

The values of the constants which appear in the paper are
G = 6.672 · 10−8cm3g−1s−1

R = 6.96 · 1010cm
H = 1.6725 · 10−24g
M = 1.9891 · 1033g
k = 1.3805 · 10−16erg/K
µ = 4

3+5X−Z
a = 7.564 erg · cm−2deg−4

c = 2.99792458cm · s−1

L = 3.12 · 1033erg · s−1
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