NONEXISTENCE OF SUBNORMAL SOLUTIONS FOR A CLASS OF HIGHER ORDER COMPLEX DIFFERENTIAL EQUATIONS

Benharrat BELAÏDI ${ }^{1}$ and Mohamed Amine ZEMIRNI ${ }^{2}$

Abstract

In this article, we investigate the existence of subnormal solutions for a class of higher order complex differential equations. We generalize the result of N. Li and L. Z. Yang [14], L. P. Xiao [17] and also result of Z. X. Chen and K. H. Shon [4].

2010 Mathematics Subject Classification: 34M10; 30D35.
Key words: Differential equation, hyper order, e-type order, subnormal solution.

1 Introduction

In this article, we use the standard notations of the Nevanlinna theory, see [11, 12, 18]. We denote the order of growth of a meromorphic function f by $\sigma(f)$. To express the rate of growth of meromorphic of infinite order, we recall the following definitions.

Definition 1 ([18]). The hyper-order of growth of a meromorphic function f is defined by

$$
\sigma_{2}(f)=\varlimsup_{r \rightarrow+\infty} \frac{\log \log T(r, f)}{\log r}
$$

where $T(r, f)$ is the Nevanlinna characteristic function of f.
In [7], Chiang and Gao gave the definition of the e-type order of a meromorphic function as follows.

[^0]Definition 2 ([7]). Let f be a meromorphic function. Define

$$
\sigma_{e}(f)=\varlimsup_{r \rightarrow+\infty} \frac{\log T(r, f)}{r}
$$

to be the e-type order of f.
The following results are obvious.

1. If $0<\sigma_{e}(f)<+\infty$, then $\sigma_{2}(f)=1$.
2. If $\sigma_{2}(f)<1$, then $\sigma_{e}(f)=0$.
3. If $\sigma_{2}(f)=+\infty$, then $\sigma_{e}(f)=+\infty$.

Consider the second-order homogeneous linear periodic differential equation

$$
\begin{equation*}
f^{\prime \prime}+P\left(e^{z}\right) f^{\prime}+Q\left(e^{z}\right) f=0 \tag{1}
\end{equation*}
$$

where $P(w)$ and $Q(w)$ are not constants polynomials in $w=e^{z}(z \in \mathbb{C})$. It's well known that every solution of equation (1) is entire.

Definition $3([8,16])$. If $f \not \equiv 0$ is a solution of equation (1), and satisfies $\sigma_{e}(f)=$ 0 , then we say that f is a nontrivial subnormal solution of (1). For convenience, we also say that $f \equiv 0$ is a subnormal solution of (1).

In [8, 16], subnormal solutions of (1) were investigated. In [16], H. Wittich has given the general forms of all subnormal solutions of (1) that are shown in the following theorem.

Theorem 1. If $f \not \equiv 0$ is a subnormal solution of (1), then f must have the form

$$
f(z)=e^{c z}\left(a_{0}+a_{1} e^{z}+\cdots+a_{m} e^{m z}\right)
$$

where $m \geq 0$ is an integer and $c, a_{0}, a_{1}, \ldots, a_{m}$ are constants with $a_{0} a_{m} \neq 0$.
Based on the comparison of degrees of P and Q, Gundersen and Steinbart [8] refined Theorem 1 and obtained the exact forms of subnormal solutions of (1) as follows.

Theorem 2. Under the assumption of Theorem 1, the following statements hold.
(i) If $\operatorname{deg} P>\operatorname{deg} Q$ and $Q \not \equiv 0$, then any subnormal solution $f \not \equiv 0$ of (1) must have the form

$$
f(z)=a_{0}+a_{1} e^{-z}+\cdots+a_{m} e^{-m z}
$$

where $m \geq 1$ is an integer and $a_{0}, a_{1}, \ldots, a_{m}$ are constants with $a_{0} a_{m} \neq 0$.
(ii) If $Q \equiv 0$ and $\operatorname{deg} P \geq 1$, then any subnormal solution of (1) must be a constant.
(iii) If $\operatorname{deg} P<\operatorname{deg} Q$, then the only subnormal solution of (1) is $f \equiv 0$.

For second order differential equations, Chen and Shon [4] studied the existence of subnormal solutions of the equation

$$
\begin{equation*}
f^{\prime \prime}+\left[P_{1}\left(e^{z}\right)+P_{2}\left(e^{-z}\right)\right] f^{\prime}+\left[Q_{1}\left(e^{z}\right)+Q_{2}\left(e^{-z}\right)\right] f=0, \tag{2}
\end{equation*}
$$

where $P_{1}(z), P_{2}(z), Q_{1}(z)$ and $Q_{2}(z)$ are polynomials in z, and obtained the following results.

Theorem 3. Let $P_{j}(z), Q_{j}(z)(j=1,2)$ be polynomials in z. If

$$
\operatorname{deg} Q_{1}>\operatorname{deg} P_{1} \text { or } \operatorname{deg} Q_{2}>\operatorname{deg} P_{2},
$$

then the equation (2) has no nontrivial subnormal solution, and every solution of (2) satisfies $\sigma_{2}(f)=1$.

Theorem 4. Let $P_{j}(z), Q_{j}(z)(j=1,2)$ be polynomials in z. If

$$
\operatorname{deg} Q_{1}<\operatorname{deg} P_{1} \text { and } \operatorname{deg} Q_{2}<\operatorname{deg} P_{2}
$$

and $Q_{1}+Q_{2} \not \equiv 0$, then the equation (2) has no nontrivial subnormal solution, and every solution of (2) satisfies $\sigma_{2}(f)=1$.

Li-Yang [14] considered the case when $\operatorname{deg} Q_{1}=\operatorname{deg} P_{1}$ and $\operatorname{deg} Q_{2}=\operatorname{deg} P_{2}$ in the equation (2), and they proved it.

Theorem 5. Let

$$
\begin{aligned}
P_{1}(z) & =a_{n} z^{n}+\cdots+a_{1}+a_{0} \\
Q_{1}(z) & =b_{n} z^{n}+\cdots+b_{1}+b_{0} \\
P_{2}(z) & =c_{m} z^{m}+\cdots+c_{1}+c_{0} \\
Q_{2}(z) & =d_{m} z^{m}+\cdots+d_{1}+d_{0}
\end{aligned}
$$

where $a_{i}, b_{i}(i=0, \ldots, n), c_{j}, d_{j}(j=0, \ldots, m)$ are constants, $a_{n} b_{n} c_{m} d_{m} \neq 0$. Suppose that $a_{n} d_{m}=b_{n} c_{m}$ and any one of the following three hypothesis hold:

1. There exists i satisfying $\left(-\frac{b_{n}}{a_{n}}\right) a_{i}+b_{i} \neq 0,0<i<n$.
2. There exists j satisfying $\left(-\frac{b_{n}}{a_{n}}\right) c_{j}+d_{j} \neq 0,0<j<m$.
3. $\left(-\frac{b_{n}}{a_{n}}\right)^{2}+\left(-\frac{b_{n}}{a_{n}}\right)\left(a_{0}+c_{0}\right)+b_{0}+d_{0} \neq 0$.

Then (2) has no nontrivial subnormal solution, and every nontrivial solution f satisfies $\sigma_{2}(f)=1$.

In the same article [14], Li-Yang investigated the existence of subnormal solutions of the general form

$$
\begin{equation*}
f^{\prime \prime}+\left[P_{1}\left(e^{\alpha z}\right)+P_{2}\left(e^{-\alpha z}\right)\right] f^{\prime}+\left[Q_{1}\left(e^{\beta z}\right)+Q_{2}\left(e^{-\beta z}\right)\right] f=0 \tag{3}
\end{equation*}
$$

where $P_{1}(z), P_{2}(z), Q_{1}(z)$ and $Q_{2}(z)$ are polynomials in $z . \alpha, \beta$ are complex constants, and they proved the following results.

Theorem 6. Let

$$
\begin{aligned}
P_{1}(z) & =a_{1 m_{1}} z^{m_{1}}+\cdots+a_{11}+a_{10}, \\
P_{2}(z) & =a_{2 m_{2}} z^{m_{2}}+\cdots+a_{21}+a_{20}, \\
Q_{1}(z) & =b_{1 n_{1}} z^{n_{1}}+\cdots+b_{11}+b_{10}, \\
Q_{2}(z) & =b_{2 n_{2}} z^{n_{2}}+\cdots+b_{21}+b_{20},
\end{aligned}
$$

where $m_{k} \geq 1, n_{k} \geq 1(k=1,2)$ are integers, $a_{1 i_{1}}\left(i_{1}=0, \ldots, m_{1}\right), a_{2 i_{2}}\left(i_{2}=\right.$ $\left.0, \ldots, m_{2}\right), b_{1 j_{1}}\left(j_{1}=0, \ldots, n_{1}\right), b_{2 j_{2}}\left(j_{2}=0, \ldots, n_{2}\right), \alpha$ and β are complex constants, $a_{1 m_{1}} a_{2 m_{2}} b_{1 n_{1}} b_{2 n_{2}} \neq 0, \alpha \beta \neq 0$. Suppose $m_{1} \alpha=c_{1} n_{1} \beta\left(0<c_{1}<1\right)$ or $m_{2} \alpha=c_{2} n_{2} \beta\left(0<c_{2}<1\right)$. Then (3) has no nontrivial subnormal solution, and every nontrivial solution f satisfies $\sigma_{2}(f)=1$.
Theorem 7. Let

$$
\begin{aligned}
P_{1}(z) & =a_{1 m_{1}} z^{m_{1}}+\cdots+a_{11}+a_{10}, \\
P_{2}(z) & =a_{2 m_{2}} z^{m_{2}}+\cdots+a_{21}+a_{20}, \\
Q_{1}(z) & =b_{1 n_{1}} z^{n_{1}}+\cdots+b_{11}+b_{10}, \\
Q_{2}(z) & =b_{2 n_{2}} z^{n_{2}}+\cdots+b_{21}+b_{20},
\end{aligned}
$$

where $m_{k} \geq 1, n_{k} \geq 1(k=1,2)$ are integers, $a_{1 i_{1}}\left(i_{1}=0, \ldots, m_{1}\right), a_{2 i_{2}}\left(i_{2}=\right.$ $\left.0, \ldots, m_{2}\right), b_{1 j_{1}}\left(j_{1}=0, \ldots, n_{1}\right), b_{2 j_{2}}\left(j_{2}=0, \ldots, n_{2}\right), \alpha$ and β are complex constants, $a_{1 m_{1}} a_{2 m_{2}} b_{1 n_{1}} b_{2 n_{2}} \neq 0, \alpha \beta \neq 0$. Suppose $m_{1} \alpha=c_{1} n_{1} \beta\left(c_{1}>1\right)$ and $m_{2} \alpha=c_{2} n_{2} \beta\left(c_{2}>1\right)$. Then (3) has no nontrivial subnormal solution, and every nontrivial solution f satisfies $\sigma_{2}(f)=1$.

For higher order differential equations, Chen-Shon [5] and Liu-Yang [15] improved the Theorems 3, 4 to higher periodic differential equation

$$
\begin{equation*}
f^{(k)}+\left[P_{k-1}\left(e^{z}\right)+Q_{k-1}\left(e^{-z}\right)\right] f^{(k-1)}+\cdots+\left[P_{0}\left(e^{z}\right)+Q_{0}\left(e^{-z}\right)\right] f=0 \tag{4}
\end{equation*}
$$

and they proved the following results.
Theorem $8([15,5])$. Let $P_{j}(z), Q_{j}(z)(j=0, \ldots, k-1)$ be polynomials in z with $\operatorname{deg} P_{j}=m_{j}, \operatorname{deg} Q_{j}=n_{j}$. If P_{0} satisfies

$$
m_{0}>\max \left\{m_{j}: 1 \leq j \leq k-1\right\}=m
$$

or Q_{0} satisfies

$$
n_{0}>\max \left\{n_{j}: 1 \leq j \leq k-1\right\}=n,
$$

then (4) has no nontrivial subnormal solution, and every solution of (4) is of hyper-order $\sigma_{2}(f)=1$.
Theorem 9 ([5]). Let $P_{j}(z), Q_{j}(z)(j=0, \ldots, k-1)$ be polynomials in z with $\operatorname{deg} P_{j}=m_{j}, \operatorname{deg} Q_{j}=n_{j}$, and $P_{0}+Q_{0} \not \equiv 0$. If there exists $m_{s}, n_{d}(s, d \in$ $\{0, \ldots, k-1\})$ satisfying both inequalities

$$
\begin{aligned}
m_{s} & >\max \left\{m_{j}: j=0, \ldots, s-1, s+1, \ldots, k-1\right\}=m, \\
n_{d} & >\max \left\{n_{j}: j=0, \ldots, d-1, d+1, \ldots, k-1\right\}=n,
\end{aligned}
$$

then (4) has no nontrivial subnormal solution, and every solution of (4) is of hyper-order $\sigma_{2}(f)=1$.

2 Main results

The main purpose of this article is to answer the following question.
Question. Can Theorems 6, 7 be generalized to higher order differential equation? We will prove the following results.

Theorem 10. Let
$f^{(k)}+\left[P_{k-1}\left(e^{\alpha_{k-1} z}\right)+Q_{k-1}\left(e^{-\alpha_{k-1} z}\right)\right] f^{(k-1)}+\cdots+\left[P_{0}\left(e^{\alpha_{0} z}\right)+Q_{0}\left(e^{-\alpha_{0} z}\right)\right] f=0$,
where

$$
\begin{aligned}
P_{j}(z) & =a_{j m_{j}} z^{m_{j}}+a_{j\left(m_{j}-1\right)} z^{m_{j}-1}+\cdots+a_{j 0}, \quad j=0, \ldots, k-1, \\
Q_{j}(z) & =b_{j n_{j}} z^{n_{j}}+b_{j\left(n_{j}-1\right)} z^{n_{j}-1}+\cdots+b_{j 0}, \quad j=0, \ldots, k-1
\end{aligned}
$$

and $m_{j} \geq 1, n_{j} \geq 1(j=0, \ldots, k-1 ; k \geq 2)$ are integers, $a_{j u} \neq 0, b_{j v} \neq 0$ and $\alpha_{j} \neq 0\left(j=0, \ldots, k-1 ; u=0, \ldots, m_{j} ; v=0, \ldots, n_{j}\right)$ are complex constants. Suppose that

$$
\left\{\begin{array}{l}
c_{j} m_{0} \alpha_{0}=m_{j} \alpha_{j}, 0<c_{j}<1, \forall j=1, \ldots, k-1 \\
o r \\
d_{j} n_{0} \alpha_{0}=n_{j} \alpha_{j}, 0<d_{j}<1, \forall j=1, \ldots, k-1,
\end{array}\right.
$$

then equation (5) has no nontrivial subnormal solution, and every solution of (5) satisfies $\sigma_{2}(f)=1$.

Theorem 11. Let
$f^{(k)}+\left[P_{k-1}\left(e^{\alpha_{k-1} z}\right)+Q_{k-1}\left(e^{-\alpha_{k-1} z}\right)\right] f^{(k-1)}+\cdots+\left[P_{0}\left(e^{\alpha_{0} z}\right)+Q_{0}\left(e^{-\alpha_{0} z}\right)\right] f=0$,
where

$$
\begin{aligned}
P_{j}(z) & =a_{j m_{j}} z^{m_{j}}+a_{j\left(m_{j}-1\right)} z^{m_{j}-1}+\cdots+a_{j 0}, \quad j=0, \ldots, k-1, \\
Q_{j}(z) & =b_{j n_{j}} z^{n_{j}}+b_{j\left(n_{j}-1\right)} z^{n_{j}-1}+\cdots+b_{j 0}, \quad j=0, \ldots, k-1
\end{aligned}
$$

and $m_{j} \geq 1, n_{j} \geq 1(j=0, \ldots, k-1 ; k \geq 2)$ are integers, $a_{j u} \neq 0, b_{j v} \neq 0$ and $\alpha_{j} \neq 0\left(j=0, \ldots, k-1 ; u=0, \ldots, m_{j} ; v=0, \ldots, n_{j}\right)$ are complex constants such that $P_{0}\left(e^{\alpha_{0} z}\right)+Q_{0}\left(e^{-\alpha_{0} z}\right) \not \equiv 0$. If there exists $s, t \in\{0, \ldots, k-1\}$ such that

$$
\left\{\begin{array}{l}
m_{s} \alpha_{s}=c_{j} m_{j} \alpha_{j}, c_{j}>1, j=0, \ldots, s-1, s+1, \ldots, k-1, \\
a \mathrm{nd} \\
n_{t} \alpha_{t}=d_{j} n_{j} \alpha_{j}, d_{j}>1, j=0, \ldots, t-1, t+1, \ldots, k-1,
\end{array}\right.
$$

then equation (6) has no nontrivial subnormal solution, and every solution of (6) satisfies $\sigma_{2}(f)=1$.

As a generalization of higher order equations of Theorem 1.5 and Theorem 1.6 in [17], we have the following results.

Theorem 12. Let

$$
P_{j}\left(e^{\alpha_{j} z}\right)=a_{j m_{j}} e^{m_{j} \alpha_{j} z}+a_{j\left(m_{j}-1\right)} e^{\left(m_{j}-1\right) \alpha_{j} z}+\cdots+a_{j 0}, j=0, \ldots, k-1,
$$

where $m_{j} \geq 1(j=0, \ldots, k-1 ; k \geq 2)$ are integers, $a_{j u} \neq 0$ and $\alpha_{j} \neq 0(j=$ $\left.0, \ldots, k-1 ; u=0, \ldots, m_{j}\right)$ are complex constants. Suppose that $c_{j} m_{0} \alpha_{0}=m_{j} \alpha_{j}$, $0<c_{j}<1, \forall j=1, \ldots, k-1$. Then equation

$$
\begin{equation*}
f^{(k)}+P_{k-1}\left(e^{\alpha_{k-1} z}\right) f^{(k-1)}+\cdots+P_{0}\left(e^{\alpha_{0} z}\right) f=0 \tag{7}
\end{equation*}
$$

has no nontrivial subnormal solution, and every solution satisfies $\sigma_{2}(f)=1$.
Theorem 13. Let

$$
P_{j}^{*}\left(e^{\alpha_{j} z}\right)=a_{j m_{j}} e^{m_{j} \alpha_{j} z}+a_{j\left(m_{j}-1\right)} e^{\left(m_{j}-1\right) \alpha_{j} z}+\cdots+a_{j 1} e^{\alpha_{j} z}, \quad j=0, \ldots, k-1,
$$

where $m_{j} \geq 1(j=1, \ldots, k-1 ; k \geq 2)$ are integers, $a_{j u} \neq 0$ and $\alpha_{j} \neq 0(j=$ $\left.0, \ldots, k-1 ; u=0, \ldots, m_{j}\right)$ are complex constants. Suppose that $P_{0}\left(e^{\alpha_{0} z}\right) \not \equiv 0$ and there exists $s \in\{1, \ldots, k-1\}$ such that $c_{j} m_{s} \alpha_{s}=m_{j} \alpha_{j}, 0<c_{j}<1, \forall j=$ $0, \ldots, s-1, s+1, \ldots, k-1$. Then the equation

$$
\begin{equation*}
f^{(k)}+P_{k-1}^{*}\left(e^{\alpha_{k-1} z}\right) f^{(k-1)}+\cdots+P_{0}^{*}\left(e^{\alpha_{0} z}\right) f=0 \tag{8}
\end{equation*}
$$

has no nontrivial subnormal solution, and every solution satisfies $\sigma_{2}(f)=1$.
In [15], Liu-Yang gave an example that shows that in Theorem 8, if there exists $\operatorname{deg} P_{i}=\operatorname{deg} P_{j}$ and $\operatorname{deg} Q_{i}=\operatorname{deg} Q_{j}(i \neq j)$, then equation (4) may have a nontrivial subnormal solution.

Example ([15, page 610]). A subnormal solution $f=e^{-z}$ satisfies the following equation

$$
f^{(n)}+f^{(n-1)}+\cdots+f^{\prime \prime}+\left(e^{2 z}+e^{-2 z}\right) f^{\prime}+\left(e^{2 z}+e^{-2 z}\right) f=0,
$$

where n is an odd number.
Question. What can we say when $\operatorname{deg} P_{0}=\operatorname{deg} P_{1}$ and $\operatorname{deg} Q_{0}=\operatorname{deg} Q_{1}$ in equation (4)? We have the following result.
Theorem 14. Let $P_{j}(z), Q_{j}(z)(j=0, \ldots, k-1)$ be polynomials in z with $\operatorname{deg} P_{0}=\operatorname{deg} P_{1}=m, \operatorname{deg} Q_{0}=\operatorname{deg} Q_{1}=n, \operatorname{deg} P_{j}=m_{j}, \operatorname{deg} Q_{j}=n_{j} \quad(j=$ $2, \ldots, k-1$), let

$$
\begin{aligned}
P_{1}(z) & =a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+a_{0}, \\
P_{0}(z) & =b_{m} z^{m}+b_{m-1} z^{m-1}+\cdots+b_{0}, \\
Q_{1}(z) & =c_{n} z^{n}+c_{n-1} z^{n-1}+\cdots+c_{0}, \\
Q_{0}(z) & =d_{n} z^{n}+d_{n-1} z^{n-1}+\cdots+d_{0},
\end{aligned}
$$

where $a_{u}, b_{u}, c_{v}, d_{v}(u=0, \ldots, m ; v=0, \ldots, n)$ are complex constants, $a_{m} b_{m} c_{n} d_{n} \neq$ 0 . If $a_{m} d_{n}=b_{m} c_{n}, m>\max \left\{m_{j}: j=2, \ldots, k-1\right\}, n>\max \left\{n_{j}: j=\right.$ $2, \ldots, k-1\}$ and $e^{-\left(b_{m} / a_{m}\right) z}$ is not a solution of (4), then equation (4) has no nontrivial subnormal solution, and every solution f of (4) satisfies $\sigma_{2}(f)=1$.

Example. This example shows that Theorem 14, is not a particular case and it is different from Theorems 8, 9. Consider the differential equation

$$
f^{\prime \prime \prime}+\left(e^{z}+e^{-z}\right) f^{\prime \prime}+\left(e^{3 z}-e^{-2 z}\right) f^{\prime}+\left(-2 e^{3 z}+2 e^{-2 z}\right) f=0 .
$$

By Theorems 8, 9, we can't say anything about the existence or nonexistence of nontrivial subnormal solutions, because neither hypotheses of Theorem 8 or of Theorem 9 are satisfied. But, we can see that all hypotheses of Theorem 14 are satisfied, then we guarantee that the above equation has no nontrivial subnormal solution. In fact, we have $k=3, P_{2}\left(e^{z}\right)=e^{z}, Q_{2}\left(e^{-z}\right)=e^{-z}, P_{1}\left(e^{z}\right)=$ $e^{3 z}, Q_{1}\left(e^{-z}\right)=-e^{-2 z}, P_{0}\left(e^{z}\right)=-2 e^{3 z}$ and $Q_{0}\left(e^{-z}\right)=2 e^{-2 z}, m=3, n=2$, $m>1=\operatorname{deg} P_{2}, n>1=\operatorname{deg} Q_{2}, a_{m}=1, b_{m}=-2, c_{n}=-1$ and $d_{n}=2$, and we have $a_{m} d_{n}=b_{m} c_{n}$. It's clear that $e^{-\left(b_{m} / a_{m}\right) z}=e^{2 z}$ is not a solution of the equation above.

Remark 1. In Theorem 14, if the equation (4) accepts $e^{-\left(b_{m} / a_{m}\right) z}$ as a solution, then (4) has a subnormal solution. But, if $e^{-\left(b_{m} / a_{m}\right) z}$ doesn't satisfy (4), is there another subnormal solution may that satisfy (4)? The conditions of Theorem 14 guarantee that, if (4) doesn't accept $e^{-\left(b_{m} / a_{m}\right) z}$ as a subnormal solution, then (4) doesn't accept any other subnormal solution.

Remark 2. In Theorem 14, we can replace the condition " $e^{-\left(b_{m} / a_{m}\right) z}$ is not a solution of (4)" by many partial conditions. For example

1. $P_{j}(0)+Q_{j}(0)=0,(j=0, \ldots, k-1)$.
2. $P_{j}(0)+Q_{j}(0)=1,(j=0, \ldots, k-1)$ and $a_{m} \neq b_{m}$.
3. $P_{j}(0)+Q_{j}(0)=1,(j=0, \ldots, k-1), a_{m}=b_{m}$ and k is an even number.
4. $P_{j}(0)+Q_{j}(0)=0, P_{l}(0)+Q_{l}(0)=1(j=0, \ldots, s ; l=s+1, \ldots, k-1)$, $a_{m}=b_{m}$ and s, k are both even or both odd. And so on.

Remark 3. In Theorem 5, the hypotheses (1)-(3) can be replaced by the condition " $e^{-\left(b_{n} / a_{n}\right) z}$ is not a solution of (2)".

3 Some lemmas

Lemma 1 ([18, page 82]). Let $f_{j}(z)(j=1, \ldots, n)$ be meromorphic functions, and $g_{j}(z)(j=1, \ldots, n)$ be entire functions satisfying

1. $\sum_{j=0}^{n} f_{j}(z) e^{g_{j}(z)} \equiv 0$.
2. when $1 \leq j<k \leq n$, then $g_{j}(z)-g_{k}(z)$ is not constant.
3. when $1 \leq j \leq n$ and $1 \leq h<k \leq n$, then

$$
T\left(r, f_{j}\right)=o\left\{T\left(r, e^{g_{h}-g_{k}}\right)\right\}, \quad r \rightarrow \infty, r \notin E
$$

where $E \subset(1,+\infty)$ is of finite linear measure or finite logarithmic measure.

Then $f_{j}(z) \equiv 0 \quad(j=1, \ldots, n)$.
In [5], Chen-Shon proved [5, Lemma 2] that (4) has no polynomial solution under the hypotheses of Theorem 9. We will prove a similar result for the general case under one condition that factor f in (4) is not identically zero. Chen-Shon used the Lemma 1 in their proof, to get a contradiction in case that f is polynomial with $\operatorname{deg}(f)<s \leq d$. We use the same method but for all equations of the form (4), just with condition $P_{0}\left(e^{z}\right)+Q_{0}\left(e^{-z}\right) \not \equiv 0$. We will prove.

Lemma 2. Let $P_{j}(z), Q_{j}(z)(j=0, \ldots, k-1)$ be polynomials in z with $\operatorname{deg} P_{j}=$ $m_{j}, \operatorname{deg} Q_{j}=n_{j}$. If $P_{0}\left(e^{z}\right)+Q_{0}\left(e^{-z}\right) \not \equiv 0$, then every solution of the equation

$$
\begin{equation*}
f^{(k)}+\left[P_{k-1}\left(e^{z}\right)+Q_{k-1}\left(e^{-z}\right)\right] f^{(k-1)}+\cdots+\left[P_{0}\left(e^{z}\right)+Q_{0}\left(e^{-z}\right)\right] f=0 \tag{9}
\end{equation*}
$$

is transcendental.

Proof. It's well known that every solution of the equation (9) is an entire function. $f \equiv 0$, is trivial solution. Since $P_{0}\left(e^{z}\right)+Q_{0}\left(e^{-z}\right) \not \equiv 0$, then f can't be a constant. Now, suppose that f is a nonconstant polynomial solution of (9). Let

$$
\begin{equation*}
P_{j}\left(e^{z}\right)+Q_{j}\left(e^{-z}\right)=\sum_{p=1}^{m_{j}} a_{j p} e^{p z}+c_{j}+\sum_{q=1}^{n_{j}} b_{j q} e^{-q z} \tag{10}
\end{equation*}
$$

where $a_{j p}, b_{j q}$ and $c_{j}\left(j=0, \ldots, k-1 ; p=1, \ldots, m_{j}\right.$ and $\left.q=1, \ldots, n_{j}\right)$ are complex constants. $m_{j} \geq 1, n_{j} \geq 1$ are integers and $a_{j m_{j}} b_{j n_{j}} \neq 0$, for all $j=0, \ldots, k-1$. Set $m=\max \left\{m_{j}: j=0, \ldots, k-1\right\}$ and $n=\max \left\{n_{j}: j=0, \ldots, k-1\right\}$. Then we can rewrite (10) as
$P_{j}\left(e^{z}\right)+Q_{j}\left(e^{-z}\right)=\sum_{p=m_{j}+1}^{m} a_{j p} e^{p z}+\sum_{p=1}^{m_{j}} a_{j p} e^{p z}+c_{j}+\sum_{q=1}^{n_{j}} b_{j q} e^{-q z}+\sum_{q=n_{j}+1}^{n} b_{j q} e^{-q z}$,
where $a_{j p}=0,\left(p=m_{j}+1, \ldots, m\right)$ and $b_{j q}=0,\left(q=n_{j}+1, \ldots, n\right)$. By (9) and (11), we obtain

$$
\begin{equation*}
\sum_{p=1}^{m} A_{p} e^{p z}+C e^{0}+\sum_{q=1}^{n} B_{q} e^{-q z}=0 \tag{12}
\end{equation*}
$$

where

$$
\begin{align*}
A_{p} & =\sum_{j=0}^{k-1} a_{j p} f^{(j)}, \quad(p=1, \ldots, m) \\
B_{q} & =\sum_{j=0}^{k-1} b_{j q} f^{(j)}, \quad(q=1, \ldots, n) \tag{13}\\
C & =f^{(k)}+\sum_{j=0}^{k-1} c_{j} f^{(j)}
\end{align*}
$$

Since f is polynomial, then A_{p}, B_{q} and C are also polynomial. And

$$
\begin{align*}
T\left(r, A_{p}\right) & =o\left\{T\left(r, e^{(\alpha-\beta) z}\right)\right\}, \quad p=1, \ldots, m \\
T\left(r, B_{q}\right) & =o\left\{T\left(r, e^{(\alpha-\beta) z}\right)\right\}, q=1, \ldots, n \tag{14}\\
T(r, C) & =o\left\{T\left(r, e^{(\alpha-\beta) z}\right)\right\}
\end{align*}
$$

where $-n \leq \beta<\alpha \leq m$. By Lemma 1, (12) and (14), we obtain

$$
\begin{equation*}
A_{p}(z) \equiv 0(p=1, \ldots, m), B_{q}(z) \equiv 0(q=1, \ldots, n) \text { and } C(z) \equiv 0 \tag{15}
\end{equation*}
$$

Since $\operatorname{deg} f>\operatorname{deg} f^{\prime}>\cdots>\operatorname{deg} f^{(k-1)}>\operatorname{deg} f^{(k)}$, then by (13) and (15), we see that

$$
a_{0 m}=\cdots=a_{01}=c_{0}=b_{01}=\cdots=b_{0 n}=0
$$

Thus $P_{0}\left(e^{z}\right)+Q_{0}\left(e^{-z}\right) \equiv 0$, and this contradicts the assumption $P_{0}\left(e^{z}\right)+$ $Q_{0}\left(e^{-z}\right) \not \equiv 0$. Therefore, every solution of (9) must be a transcendental entire function.

Lemma 3 ([5, 1]). Let $A_{0}, A_{1}, \ldots, A_{k-1}$ be entire functions of finite order. If $f(z)$ is a solution of the equation

$$
f^{(k)}+A_{k-1} f^{(k-1)}+\cdots+A_{1} f^{\prime}+A_{0} f=0
$$

then $\sigma_{2}(f) \leq \max \left\{\sigma\left(A_{j}\right): j=0, \ldots, k-1\right\}$.
Lemma 4 ([9]). Let f be a transcendental meromorphic function, and $\alpha>1$ be a given constant. Then there exists a set $E \subset(1, \infty)$ with finite logarithmic measure and a constant $B>0$ that depends only on α and $i, j(0 \leq i<j)$, such that for all z satisfying $|z|=r \notin E \cup[0,1]$

$$
\left|\frac{f^{(j)}(z)}{f^{(i)}(z)}\right| \leq B\left[\frac{T(\alpha r, f)}{r}\left(\log ^{\alpha} r\right) \log T(\alpha r, f)\right]^{j-i}
$$

Lemma 5 ([9]). Let $f(z)$ be a transcendental meromorphic function with $\sigma(f)=$ $\sigma<+\infty$. Let $H=\left\{\left(k_{1}, j_{1}\right), \ldots,\left(k_{q}, j_{q}\right)\right\}$ be a finite set of distinct pairs of integers that satisfy $k_{i}>j_{i} \geq 0$, for $i=1, \ldots, q$. And let $\varepsilon>0$ be a given constant.

Then there exists a set $E \in[0,2 \pi)$ that has linear measure zero, such that if $\psi \in[0,2 \pi) \backslash E$, then there is a constant $R_{0}=R_{0}(\psi)>1$ such that for all z satisfying $\arg z=\psi$ and $|z|=r \geq R_{0}$ and for all $(k, j) \in H$, we have

$$
\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \leq|z|^{(\sigma-1+\varepsilon)(k-j)}
$$

Lemma $6([10,13])$. Let $f(z)$ be an entire function and suppose that $\left|f^{(k)}(z)\right|$ is unbounded on some ray $\arg z=\theta$. Then, there exists an infinite sequence of points $z_{n}=r_{n} e^{i \theta}(n=1,2, \ldots)$, where $r_{n} \rightarrow+\infty$, such that $f^{(k)}\left(z_{n}\right) \rightarrow \infty$ and

$$
\left|\frac{f^{(j)}\left(z_{n}\right)}{f^{(k)}\left(z_{n}\right)}\right| \leq \frac{1}{(k-j)!}\left|z_{n}\right|^{k-j}(1+o(1)), \quad(j=0, \ldots, k-1) .
$$

Lemma 7 ([2]). Let f be an entire function with $\sigma(f)=\sigma<+\infty$. Suppose there exists a set $E \cup[0,2 \pi)$ that has linear measure zero, such that for any ray $\arg z=\theta_{0} \in[0,2 \pi) \backslash E$ and for sufficiently large r, we have

$$
\left|f\left(r e^{i \theta_{0}}\right)\right| \leq M r^{k}
$$

where $M=M\left(\theta_{0}\right)>0$ is a constant and $k>0$ is a constant independent of θ_{0}, then f is a polynomial with $\operatorname{deg} f \leq k$.
Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be an entire function, $\mu_{f}(r)$ be the maximum term, i.e., $\mu_{f}(r)=\max \left\{\left|a_{n}\right| r^{n} ; n=0,1, \cdots\right\}$, and let $\nu_{f}(r)$ be the central index of f, i.e., $\nu_{f}(r)=\max \left\{m ; \mu_{f}(r)=\left|a_{m}\right| r^{m}\right\}$.

Lemma 8 ([6]). Let f be an entire function of infinite order with $\sigma_{2}(f)=\alpha(0 \leq$ $\alpha<\infty)$ and a set $E \subset[1,+\infty)$ have finite logarithmic measure. Then there exists $\left\{z_{k}=r_{k} e^{i \theta_{k}}\right\}$ such that $\left|f\left(z_{k}\right)\right|=M\left(r_{k}, f\right), \theta_{k} \in[0,2 \pi), \lim _{k \rightarrow \infty} \theta_{k}=\theta_{0} \in[0,2 \pi)$, $r_{k} \notin E, r_{k} \rightarrow \infty$, and such that

1. if $\sigma_{2}(f)=\alpha(0<\alpha<\infty)$, then for any given $\varepsilon_{1}\left(0<\varepsilon_{1}<\alpha\right)$,

$$
\exp \left\{r_{k}^{\alpha-\varepsilon_{1}}\right\}<\nu_{f}\left(r_{k}\right)<\exp \left\{r_{k}^{\alpha+\varepsilon_{1}}\right\},
$$

2. if $\sigma(f)=\infty$ and $\sigma_{2}(f)=0$, then for any given $\varepsilon_{2}\left(0<\varepsilon_{2}<\frac{1}{2}\right)$ and for any large $M>0$, we have as r_{k} sufficiently large

$$
r_{k}^{M}<\nu_{f}\left(r_{k}\right)<\exp \left\{r_{k}^{\varepsilon_{2}}\right\} .
$$

Lemma 9 ([12]). Let $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ be a polynomial with $a_{n} \neq 0$. Then, for every $\varepsilon>0$, there exists $r_{0}>0$ such that for all $r=|z|>r_{0}$ we have the inequalities

$$
(1-\varepsilon)\left|a_{n}\right| r^{n} \leq|P(z)| \leq(1+\varepsilon)\left|a_{n}\right| r^{n} .
$$

Lemma 10 ([3]). Consider $h(z) e^{a z}$ where h is a nonzero entire function with $\sigma(h)=\alpha<1, a=d e^{i \varphi}(d>0, \varphi \in[0,2 \pi))$. Set $E_{0}=\{\theta \in[0,2 \pi): \cos (\varphi+\theta)=$ $0\}$. Then for any given $\varepsilon(0<\varepsilon<1-\alpha)$, there is a set $E \subset[0,2 \pi)$ that has linear measure zero, if $z=r e^{i \theta}, \theta \in[0,2 \pi) \backslash\left(E \cup E_{0}\right)$, we have as r sufficiently large

1. if $\cos (\varphi+\theta)>0$, then

$$
\exp \{(1-\varepsilon) d r \cos (\varphi+\theta)\} \leq\left|h(z) e^{a z}\right| \leq \exp \{(1+\varepsilon) d r \cos (\varphi+\theta)\},
$$

2. if $\cos (\varphi+\theta)<0$, then

$$
\exp \{(1+\varepsilon) d r \cos (\varphi+\theta)\} \leq\left|h(z) e^{a z}\right| \leq \exp \{(1-\varepsilon) d r \cos (\varphi+\theta)\} .
$$

Let $P(z)=(a+i b) z^{n}+\cdots$ be a polynomial with degree $n \geq 1$, and $z=r e^{i \theta}$. We denote $\delta(P, \theta):=a \cos (n \theta)-b \sin (n \theta)$.

Remark 4. By definitions of $P_{j}, Q_{j}(j=0, \ldots, k-1)$ in Theorem 10 and Theorem 11, by Lemma 9 and Lemma 10, we can obtain that for all $z=r e^{i \theta}$, $\theta \in[0,2 \pi) \backslash\left(E \cup E_{0}\right)$

$$
\left|P_{j}\left(e^{\alpha_{j} z}\right)+Q_{j}\left(e^{-\alpha_{j} z}\right)\right|= \begin{cases}\left|a_{j m_{j}}\right| e^{m_{j} \delta\left(\alpha_{j} z, \theta\right) r}(1+o(1)), & \left(\delta\left(\alpha_{j} z, \theta\right)>0 ; r \rightarrow+\infty\right) \\ \left|b_{j n_{j}}\right| e^{-n_{j} \delta\left(\alpha_{j} z, \theta\right) r}(1+o(1)), & \left(\delta\left(\alpha_{j} z, \theta\right)<0 ; r \rightarrow+\infty\right)\end{cases}
$$

4 Proof of Theorem 10

Proof. (1) Suppose that f is a nontrivial solution of (5). Then f is an entire function. Since $P_{0}\left(e^{\alpha_{0} z}\right)+Q_{0}\left(e^{-\alpha_{0} z}\right) \not \equiv 0$, then every nonzero constant is not a solution of (5). Now, suppose that $f_{0}=a_{n} z^{n}+\cdots+a_{0}\left(n \geq 1 ; a_{0}, \ldots, a_{n}\right.$ are constants, $\left.a_{n} \neq 0\right)$ is a polynomial solution of (5). Let $E_{0}=\{\theta \in[0,2 \pi)$: $\left.\delta\left(\alpha_{0} z, \theta\right)=0\right\}, E_{0}$ is a finite set. Take $z=r e^{i \theta}, \theta \in[0,2 \pi) \backslash\left(E_{0} \cup E\right)$ with E some set with linear measure zero. If $c_{j} m_{0} \alpha_{0}=m_{j} \alpha_{j},\left(0<c_{j}<1, \forall j=1, \ldots, k-1\right)$, then we choose $\theta \in[0,2 \pi) \backslash\left(E_{0} \cup E\right)$ such $\delta\left(\alpha_{0} z, \theta\right)=\left|\alpha_{0}\right| \cos \left(\arg \alpha_{0}+\theta\right)>0$, then $\delta\left(\alpha_{j} z, \theta\right)=\frac{c_{j}}{m_{j}} m_{0} \delta\left(\alpha_{0} z, \theta\right)>0,(\forall j=1, \ldots, k-1)$. By Lemma 9, Lemma 10 and (5) for a sufficiently large r, we have

$$
\begin{aligned}
\left|a_{n}\right|\left|a_{0 m_{0}}\right| e^{m_{0} \delta\left(\alpha_{0} z, \theta\right) r} r^{n}(1+o(1)) & =\left|P_{0}\left(e^{\alpha_{0} z}\right)+Q_{0}\left(e^{-\alpha_{0} z}\right)\right|\left|f_{0}\right| \\
& \leq\left|f_{0}^{(k)}\right|+\sum_{j=1}^{k-1}\left|P_{j}\left(e^{\alpha_{j} z}\right)+Q_{j}\left(e^{-\alpha_{j} z}\right)\right|\left|f_{0}^{(j)}\right| \\
& \leq M e^{c m_{0} \delta\left(\alpha_{0} z, \theta\right) r} r^{n}(1+o(1)),
\end{aligned}
$$

where $0<c=\max \left\{c_{j}: j=1, \ldots, k-1\right\}<1$. This is a contradiction. Then (5) has no nonzero polynomial solution. If $d_{j} n_{0} \alpha_{0}=n_{j} \alpha_{j},\left(0<d_{j}<1, \forall j=1, \ldots, k-1\right)$, then we choose $\theta \in[0,2 \pi) \backslash\left(E_{0} \cup E\right)$, such that $\delta\left(\alpha_{0} z, \theta\right)=\left|\alpha_{0}\right| \cos \left(\arg \alpha_{0}+\theta\right)<0$,
then $\delta\left(\alpha_{j} z, \theta\right)=\frac{d_{j}}{n_{j}} n_{0} \delta\left(\alpha_{0} z, \theta\right)<0,(\forall j=1, \ldots, k-1)$. Using the similar method as in case $\delta\left(\alpha_{0} z, \theta\right)>0$, we obtain

$$
\left|a_{n}\right|\left|b_{0 n_{0}}\right| e^{-n_{0} \delta\left(\alpha_{0} z, \theta\right) r} r^{n}(1+o(1)) \leq M e^{-d n_{0} \delta\left(\alpha_{0} z, \theta\right) r} r^{n}(1+o(1)),
$$

where $0<d=\max \left\{d_{j}: j=1, \ldots, k-1\right\}<1$. This is a contradiction. So, (5) has no nonzero polynomial solution.
(2) By Lemma 4 we can see that there exists a set $E \subset(1, \infty)$ with finite logarithmic measure and there is a constant $B>0$ such that for all z satisfying $|z|=r \notin E \cup[0,1]$, we have

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f(z)}\right| \leq B[T(2 r, f)]^{j+1}, j=1, \ldots, k . \tag{16}
\end{equation*}
$$

Suppose that $f \not \equiv 0$ is a subnormal solution, then $\sigma_{e}(f)=0$. Hence, for all $\varepsilon>0$ and for sufficiently large r, we have

$$
\begin{equation*}
T(r, f)<e^{\varepsilon r} . \tag{17}
\end{equation*}
$$

Substituting (17) into (16) with sufficiently large $|z|=r \notin E \cup[0,1]$, we obtain

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f(z)}\right| \leq B e^{2 \varepsilon(j+1) r} \leq B e^{2 \varepsilon(k+1) r}, j=1, \ldots, k . \tag{18}
\end{equation*}
$$

(i) Suppose that $c_{j} m_{0} \alpha_{0}=m_{j} \alpha_{j},\left(0<c_{j}<1, \forall j=1, \ldots, k-1\right)$. Take $z=r e^{i \theta}$ such that $r \notin E \cup[0,1]$ and $\delta\left(\alpha_{0} z, \theta\right)=\left|\alpha_{0}\right| \cos \left(\arg \alpha_{0}+\theta\right)>0$, then $\delta\left(\alpha_{j} z, \theta\right)=$ $\frac{c_{j}}{m_{j}} m_{0} \delta\left(\alpha_{0} z, \theta\right)>0,(\forall j=1, \ldots, k-1)$. Therefore

$$
\begin{align*}
\left|P_{0}\left(e^{\alpha_{0} z}\right)+Q_{0}\left(e^{-\alpha_{0} z}\right)\right| & =\left|a_{0 m_{0}}\right| e^{m_{0} \delta\left(\alpha_{0} z, \theta\right) r}(1+o(1)), \tag{19}\\
\left|P_{j}\left(e^{\alpha_{j} z}\right)+Q_{j}\left(e^{-\alpha_{j} z}\right)\right| & =\left|a_{j m_{j}}\right| e^{m_{j} \delta\left(\alpha_{j} z, \theta\right) r}(1+o(1)) \\
& =\left|a_{j m_{j}}\right| e^{c_{j} m_{0} \delta\left(\alpha_{0} z, \theta\right) r}(1+o(1)) \\
& \leq D e^{m_{0} \delta\left(\alpha_{0} z, \theta\right) r}(1+o(1)), \tag{20}
\end{align*}
$$

where $D=\max _{1 \leq j \leq k-1}\left\{\left|a_{j m_{j}}\right|\right\}$ and $0<c=\max _{1 \leq j \leq k-1}\left\{\left|c_{j}\right|\right\}<1$. Substituting (18), (19) and (20) into (5), we obtain

$$
\begin{aligned}
\left|a_{0 m_{0}}\right| e^{m_{0} \delta\left(\alpha_{0} z, \theta\right) r}(1+o(1)) & =\left|P_{0}\left(e^{\alpha_{0} z}\right)+Q_{0}\left(e^{-\alpha_{0} z}\right)\right| \\
& \leq\left|\frac{f^{(k)}}{f}\right|+\sum_{j=1}^{k-1}\left|P_{j}\left(e^{\alpha_{j} z}\right)+Q_{j}\left(e^{-\alpha_{j} z}\right)\right|\left|\frac{f^{(j)}}{f}\right| \\
& \leq B e^{2 \varepsilon(k+1) r}+(k-1) D B e^{c m_{0} \delta\left(\alpha_{0} z, \theta\right) r} e^{2 \varepsilon(k+1) r}(1+o(1)) .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\left|a_{0 m_{0}}\right| e^{m_{0} \delta\left(\alpha_{0} z, \theta\right) r}(1+o(1)) \leq M e^{\left[c m_{0} \delta\left(\alpha_{0} z, \theta\right)+2 \varepsilon(k+1)\right] r}(1+o(1)) \tag{21}
\end{equation*}
$$

for some constant $M>0$. Since $0<c<1$, then we can see that (21) is a contradiction when

$$
0<\varepsilon<\frac{1-c}{2(k+1)} m_{0} \delta\left(\alpha_{0} z, \theta\right) .
$$

Hence, equation (5) has no nontrivial subnormal solution.
(ii) Suppose that $d_{j} n_{0} \alpha_{0}=n_{j} \alpha_{j},\left(0<d_{j}<1, \forall j=1, \ldots, k-1\right)$. We choose $z=r e^{i \theta}$, such that $r \notin E \cup[0,1]$ and $\delta\left(\alpha_{0} z, \theta\right)=\left|\alpha_{0}\right| \cos \left(\arg \alpha_{0}+\theta\right)<0$, then $\delta\left(\alpha_{j} z, \theta\right)=\frac{d_{j}}{n_{j}} n_{0} \delta\left(\alpha_{0} z, \theta\right)<0,(\forall j=1, \ldots, k-1)$. Using the similar method as in the proof of (i) above, we obtain

$$
\begin{equation*}
\left|b_{0 n_{0}}\right| e^{-n_{0} \delta\left(\alpha_{0} z, \theta\right) r}(1+o(1)) \leq M e^{\left[-d n_{0} \delta\left(\alpha_{0} z, \theta\right)+2 \varepsilon(k+1)\right] r}(1+o(1)), \tag{22}
\end{equation*}
$$

where $0<d=\max _{1 \leq j \leq k-1}\left\{\left|d_{j}\right|\right\}<1$, and for some constant $M>0$. We see that (22) is a contradiction when

$$
0<\varepsilon<-\frac{1-d}{2(k+1)} n_{0} \delta\left(\alpha_{0} z, \theta\right) .
$$

Hence, (5) has no nontrivial subnormal solution.
(3) By Lemma 3, every solution f of (5) satisfies $\sigma_{2}(f) \leq 1$. Suppose that $\sigma_{2}(f)<1$. Then $\sigma_{e}(f)=0$, i.e., f is subnormal solution and this contradicts the conclusion above. So $\sigma_{2}(f)=1$.

5 Proof of Theorem 11

Proof. Suppose that $f \not \equiv 0$ is a solution of equation (6). Then f is an entire function. Since $P_{0}\left(e^{\alpha_{0} z}\right)+Q_{0}\left(e^{-\alpha_{0} z}\right) \not \equiv 0$, then f cannot be nonzero constant.
(1) We will prove that f is a transcendental function. We assume that f is a polynomial solution to (6), and we set

$$
f(z)=a_{n} z^{n}+\cdots+a_{0},
$$

where $n \geq 1, a_{0}, \ldots, a_{n}$ are constants with $a_{n} \neq 0$. Suppose that $s \leq t$. Since $P_{0}\left(e^{\alpha_{0} z}\right)+Q_{0}\left(e^{-\alpha_{0} z}\right) \not \equiv 0$, then we can rewrite (6) as

$$
\begin{equation*}
f(z)=-\sum_{j=1}^{n} \frac{P_{j}\left(e^{\alpha_{j} z}\right)+Q_{j}\left(e^{-\alpha j z}\right)}{P_{0}\left(e^{\alpha_{0} z}\right)+Q_{0}\left(e^{-\alpha_{0} z}\right)} f^{(j)}(z) \tag{23}
\end{equation*}
$$

which is a contradiction since the left side of equation (23) is a polynomial function but the right side is a transcendental function, and even in case

$$
\frac{P_{j}\left(e^{\alpha_{j} z}\right)+Q_{j}\left(e^{-\alpha j z}\right)}{P_{0}\left(e^{\alpha_{0} z}\right)+Q_{0}\left(e^{-\alpha_{0} z}\right)}=K_{j}, \forall j=1, \cdots, n,
$$

where $K_{j}, \forall j=1, \cdots, n$ are complex constants, we obtain $a_{n}=0$, and this also contradicts the assumption $a_{n} \neq 0$. Hence, every solution of (6) is transcendental.
(2) Now, we will prove that every solution f of (6) satisfies $\sigma(f)=+\infty$. We assume that $\sigma(f)=\sigma<+\infty$. By Lemma 5 , we know that for any given $\varepsilon>0$ there exists a set $E \subset[0,2 \pi)$ that has linear measure zero, and for each $\psi \in[0,2 \pi) \backslash E$, there is a constant $R_{0}=R_{0}(\psi)>1$ such that for all z satisfying $\arg z=\psi$ and $|z|=r \geq R_{0}$, we have for $l \leq k-1$

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f^{(l)}(z)}\right| \leq|z|^{(\sigma-1+\varepsilon)(j-l)} ; \quad j=l+1, \ldots, k . \tag{24}
\end{equation*}
$$

Let $H=\left\{\theta \in[0,2 \pi): \delta\left(\alpha_{s} z, \theta\right)=0\right\}, H$ is a finite set. By the hypotheses of Theorem 11, we have $H=\left\{\theta \in[0,2 \pi): \delta\left(\alpha_{j} z, \theta\right)=0,(j=0, \ldots, k-1)\right\}$. We take $z=r e^{i \theta}$, such that $\theta \in[0,2 \pi) \backslash E \cup H$. Then $\delta\left(\alpha_{s} z, \theta\right)>0$ or $\delta\left(\alpha_{s} z, \theta\right)<0$. If $\delta\left(\alpha_{s} z, \theta\right)>0$, then $\delta\left(\alpha_{j} z, \theta\right)>0$ for all $j=0, \ldots, s-1, s+1, \ldots, k-1$. We assert that $\left|f^{(s)}(z)\right|$ is bounded on the ray $\arg z=\theta$. If $\left|f^{(s)}(z)\right|$ is unbounded, then by Lemma 6, there exists an infinite sequence of points $z_{u}=r_{u} e^{i \theta}(u=1,2, \ldots)$ where $r_{u} \rightarrow+\infty$ such that $f^{(s)}\left(z_{u}\right) \rightarrow \infty$ and

$$
\begin{equation*}
\left|\frac{f^{(j)}\left(z_{u}\right)}{f^{(s)}\left(z_{u}\right)}\right| \leq \frac{1}{(s-j)!}\left|z_{u}\right|^{s-j}(1+o(1)), \quad(j=0, \ldots, s-1) . \tag{25}
\end{equation*}
$$

By (6) we obtain

$$
\begin{align*}
&\left|a_{s m_{s}}\right| e^{m_{s} \delta\left(\alpha_{s} z_{u}, \theta\right) r_{u}}(1+o(1))=\left|P_{s}\left(e^{\alpha_{s} z_{u}}\right)+Q_{s}\left(e^{-\alpha_{s} z_{u}}\right)\right| \\
& \leq\left|\frac{f^{(k)}\left(z_{u}\right)}{f^{(s)}\left(z_{u}\right)}\right|+\sum_{j=0, j \neq s}^{k-1}\left|P_{j}\left(e^{\alpha_{j} z_{u}}\right)+Q_{j}\left(e^{-\alpha_{j} z_{u}}\right)\right|\left|\frac{f^{(j)}\left(z_{u}\right)}{f^{(s)}\left(z_{u}\right)}\right| \\
& \leq r_{u}^{(\sigma-1+\varepsilon)(k-s)}+\sum_{j>s}\left|a_{j m_{j}}\right| e^{m_{j} \delta\left(\alpha_{j} z_{u}, \theta\right) r_{u}} r_{u}^{(\sigma-1+\varepsilon)(j-s)} \\
&+\sum_{j<s} \frac{1}{(s-j)!}\left|a_{j m_{j}}\right| e^{m_{j} \delta\left(\alpha_{j} z_{u}, \theta\right) r_{u}} r_{u}^{s-j}(1+o(1)) \\
& \leq M e^{C m_{s} \delta\left(\alpha_{s} z_{u}, \theta\right) r_{u}} r_{u}^{\rho}(1+o(1)) \tag{26}
\end{align*}
$$

for some $M>0$, where $\rho \geq \max \left\{\max _{s<j \leq k-1}\{(\sigma-1+\varepsilon)(j-s)\} ; \max _{0 \leq j<s}\{s-j\}\right\}$ $=\max \left\{\max _{s<j \leq k-1}\{(\sigma-1+\varepsilon)(j-s)\} ; s\right\}$. Since $0<C=\max _{j}\left\{\frac{1}{c_{j}}\right\}<1$ and $\delta\left(\alpha_{s} z_{u}, \theta\right)>0$, then (26) is a contradiction when $r_{u} \rightarrow+\infty$. Hence, $\left|f^{(s)}(z)\right|$ is bounded on the ray $\arg z=\theta$. Therefore, for sufficiently large r, we have

$$
\begin{equation*}
\left|f\left(r e^{i \theta}\right)\right| \leq C_{1} r^{s} \tag{27}
\end{equation*}
$$

If $\delta\left(\alpha_{s} z, \theta\right)<0$, then $\delta\left(\alpha_{j} z, \theta\right)<0$ for all $j=0, \ldots, s-1, s+1, \ldots, k-1$, in particular $\delta\left(\alpha_{t} z, \theta\right)<0$, i.e., $-n_{t} \delta\left(\alpha_{t} z, \theta\right)>0$. We assert that $\left|f^{(t)}(z)\right|$ is bounded
on the ray $\arg z=\theta$. If $\left|f^{(t)}(z)\right|$ is unbounded, then by Lemma 6 , there exists an infinite sequence of points $z_{u}=r_{u} e^{i \theta}(u=1,2, \ldots)$ where $r_{u} \rightarrow+\infty$ such that $f^{(t)}\left(z_{u}\right) \rightarrow \infty$ and

$$
\left|\frac{f^{(j)}\left(z_{u}\right)}{f^{(t)}\left(z_{u}\right)}\right| \leq \frac{1}{(t-j)!}\left|z_{u}\right|^{t-j}(1+o(1)),(j=0, \ldots, t-1)
$$

We obtain

$$
\begin{equation*}
\left|b_{t m_{t}}\right| e^{-n_{t} \delta\left(\alpha_{t} z_{u}, \theta\right) r_{u}}(1+o(1)) \leq M e^{-D n_{t} \delta\left(\alpha_{t} z_{u}, \theta\right) r_{u}} r_{u}^{\rho}(1+o(1)) \tag{28}
\end{equation*}
$$

for some $M>0$, where $\rho \geq \max \left\{\max _{t<j \leq k-1}\{(\sigma-1+\varepsilon)(j-t)\} ; \max _{0 \leq j<t}\{t-j\}\right\}$
$=\max \left\{\max _{t<j \leq k-1}\{(\sigma-1+\varepsilon)(j-t)\} ; t\right\}$. Since $0<D=\max _{j}\left\{\frac{1}{d_{j}}\right\}<1$ and
$-n_{t} \delta\left(\alpha_{t} z, \theta\right)>0$, then we see that (28) is a contradiction when $r_{u} \rightarrow+\infty$. Thus, for sufficiently large r, we have

$$
\begin{equation*}
\left|f\left(r e^{i \theta}\right)\right| \leq C_{2} r^{t} . \tag{29}
\end{equation*}
$$

Since the linear measure of $E \cup H$ is zero, by (27), (29) and Lemma 7, we conclude that f is polynomial, which contradicts the fact that f is transcendental. Therefore $\sigma(f)=+\infty$.
(3) Finally, we will prove that (6) has no nontrivial subnormal solution. Suppose that (6) has a subnormal solution f. So, $\sigma(f)=\infty$ and by Lemma 3, we see that $\sigma_{2}(f) \leq 1$. Set $\sigma_{2}(f)=\mu \leq 1$. By Lemma 4, there exists a set $E_{1} \subset(1, \infty)$ having a finite logarithmic measure, and there is a constant $B>0$ such that for all z satisfying $|z|=r \notin[0,1] \cup E_{1}$, we have

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f(z)}\right| \leq B[T(2 r, f)]^{j+1}, \quad j=1, \ldots, k \tag{30}
\end{equation*}
$$

From Wiman-Valiron theory, there is a set $E_{2} \subset(1, \infty)$ having finite logarithmic measure, so we can choose z satisfying $|z|=r \notin E_{2}$ and $|f(z)|=M(r, f)$. Thus, we have

$$
\begin{equation*}
\frac{f^{(j)}(z)}{f(z)}=\left(\frac{\nu_{f}(r)}{z}\right)^{j}(1+o(1)), \quad j=1, \ldots, k . \tag{31}
\end{equation*}
$$

By Lemma 8, we can see that there exists a sequence $\left\{z_{n}=r_{n} e^{i \theta_{n}}\right\}$ such that $\left|f\left(z_{n}\right)\right|=M\left(r_{n}, f\right), \theta_{n} \in[0,2 \pi), \lim _{n \rightarrow \infty} \theta_{n}=\theta_{0} \in[0,2 \pi), r_{n} \notin[0,1] \cup E_{1} \cup E_{2}$, $r_{n} \rightarrow \infty$, and such that

1. if $\mu>0$, then for any given $\varepsilon_{1}\left(0<\varepsilon_{1}<\mu\right)$,

$$
\begin{equation*}
\exp \left\{r_{n}^{\mu-\varepsilon_{1}}\right\}<\nu_{f}\left(r_{n}\right)<\exp \left\{r_{n}^{\mu+\varepsilon_{1}}\right\}, \tag{32}
\end{equation*}
$$

2. if $\mu=0$, and since $\sigma(f)=\infty$, then for any given $\varepsilon_{2}\left(0<\varepsilon_{2}<\frac{1}{2}\right)$ and for any large $M>0$, we have as r_{n} sufficiently large

$$
\begin{equation*}
r_{n}^{M}<\nu_{f}\left(r_{n}\right)<\exp \left\{r_{n}^{\varepsilon_{2}}\right\} \tag{33}
\end{equation*}
$$

From (32) and (33), we obtain that

$$
\begin{equation*}
\nu_{f}\left(r_{n}\right)>r_{n}, \quad r_{n} \rightarrow \infty \tag{34}
\end{equation*}
$$

Since θ_{0} may belong to $\left\{\theta \in[0,2 \pi): \delta\left(\alpha_{s} z, \theta\right)>0\right\}$, or $\left\{\theta \in[0,2 \pi): \delta\left(\alpha_{s} z, \theta\right)<\right.$ $0\}$, or $\left\{\theta \in[0,2 \pi): \delta\left(\alpha_{s} z, \theta\right)=0\right\}$, we divide the proof into three cases.
Case 1. $\theta_{0} \in\left\{\theta \in[0,2 \pi): \delta\left(\alpha_{s} z, \theta\right)>0\right\}$. By $\theta_{n} \rightarrow \theta_{0}$, there exists $N>0$ such that, as $n>N$, we have $\delta\left(\alpha_{s} z_{n}, \theta_{n}\right)>0$. Since f is subnormal, then for any given $\varepsilon>0$, we have

$$
\begin{equation*}
T(r, f) \leq e^{\varepsilon r} \tag{35}
\end{equation*}
$$

By (30), (31) and (35), we obtain

$$
\begin{equation*}
\left(\frac{\nu_{f}\left(r_{n}\right)}{r_{n}}\right)^{j}(1+o(1))=\left|\frac{f^{(j)}\left(z_{n}\right)}{f\left(z_{n}\right)}\right| \leq B\left[T\left(2 r_{n}, f\right)\right]^{k+1} \leq B e^{2(k+1) \varepsilon r_{n}}, j=1, \ldots, k \tag{36}
\end{equation*}
$$

Because $\delta\left(\alpha_{s} z_{n}, \theta_{n}\right)>0$, then $\delta\left(\alpha_{j} z_{n}, \theta_{n}\right)>0(j=0, \ldots, s-1, s+1, \ldots, k-1)$, and we have

$$
\begin{equation*}
\left|P_{s}\left(e^{\alpha_{s} z_{n}}\right)+Q_{s}\left(e^{-\alpha_{s} z_{n}}\right)\right|=\left|a_{s m_{s}}\right| e^{m_{s} \delta\left(\alpha_{s} z_{n}, \theta_{n}\right) r_{n}}(1+o(1)) \tag{37}
\end{equation*}
$$

and

$$
\begin{align*}
\left|P_{j}\left(e^{\alpha_{j} z_{n}}\right)+Q_{j}\left(e^{-\alpha_{j} z_{n}}\right)\right| & =\left|a_{j m_{j}}\right| e^{m_{j} \delta\left(\alpha_{j} z_{n}, \theta_{n}\right) r_{n}}(1+o(1)) \\
& =\left|a_{j m_{j}}\right| e^{\frac{m_{s}}{c_{j}} \delta\left(\alpha_{s} z_{n}, \theta_{n}\right) r_{n}}(1+o(1)) \\
& \leq M e^{C m_{s} \delta\left(\alpha_{s} z_{n}, \theta_{n}\right) r_{n}}(1+o(1)), \quad j \neq s, \tag{38}
\end{align*}
$$

where $M=\max _{j}\left\{\left|a_{j m_{j}}\right|\right\}$ and $0<C=\max _{j}\left\{\frac{1}{c_{j}}\right\}<1$. We have by (6)

$$
\begin{aligned}
& \left|P_{s}\left(e^{\alpha_{s} z_{n}}\right)+Q_{s}\left(e^{-\alpha_{s} z_{n}}\right)\right|\left|\frac{f^{(s)}\left(z_{n}\right)}{f\left(z_{n}\right)}\right| \\
& \quad \leq\left|\frac{f^{(k)}\left(z_{n}\right)}{f\left(z_{n}\right)}\right|+\sum_{j=0, j \neq s}^{k-1}\left|P_{j}\left(e^{\alpha_{j} z_{n}}\right)+Q_{j}\left(e^{-\alpha_{j} z_{n}}\right)\right|\left|\frac{f^{(j)}\left(z_{n}\right)}{f\left(z_{n}\right)}\right| .
\end{aligned}
$$

By using Wiman-Valiron theory, we obtain

$$
\begin{aligned}
& \left|P_{s}\left(e^{\alpha_{s} z_{n}}\right)+Q_{s}\left(e^{-\alpha_{s} z_{n}}\right)\right|\left(\frac{\nu_{f}\left(r_{n}\right)}{r_{n}}\right)^{s}(1+o(1)) \\
\leq & \left(\frac{\nu_{f}\left(r_{n}\right)}{r_{n}}\right)^{k}(1+o(1))+\sum_{j=0, j \neq s}^{k-1}\left|P_{j}\left(e^{\alpha_{j} z_{n}}\right)+Q_{j}\left(e^{-\alpha_{j} z_{n}}\right)\right|\left(\frac{\nu_{f}\left(r_{n}\right)}{r_{n}}\right)^{j}(1+o(1)) .
\end{aligned}
$$

which implies

$$
\begin{aligned}
\mid P_{s}\left(e^{\alpha_{s} z_{n}}\right)+ & Q_{s}\left(e^{-\alpha_{s} z_{n}}\right) \left\lvert\,(1+o(1)) \leq\left(\frac{\nu_{f}\left(r_{n}\right)}{r_{n}}\right)^{k-s}(1+o(1))\right. \\
& +\sum_{j=0, j \neq s}^{k-1}\left|P_{j}\left(e^{\alpha_{j} z_{n}}\right)+Q_{j}\left(e^{-\alpha_{j} z_{n}}\right)\right|\left(\frac{\nu_{f}\left(r_{n}\right)}{r_{n}}\right)^{j-s}(1+o(1)) .
\end{aligned}
$$

By (34) we have

$$
\frac{\nu_{f}\left(r_{n}\right)}{r_{n}}>1, \quad r_{n} \rightarrow+\infty
$$

then

$$
\begin{aligned}
\mid P_{s}\left(e^{\alpha_{s} z_{n}}\right) & +Q_{s}\left(e^{-\alpha_{s} z_{n}}\right) \mid(1+o(1)) \\
\leq & \left(1+\sum_{j=0, j \neq s}^{k-1}\left|P_{j}\left(e^{\alpha_{j} z_{n}}\right)+Q_{j}\left(e^{-\alpha_{j} z_{n}}\right)\right|\right)\left(\frac{\nu_{f}\left(r_{n}\right)}{r_{n}}\right)^{k}(1+o(1))
\end{aligned}
$$

and by (36), (37) and (38) we obtain

$$
\begin{align*}
& \left|a_{s m_{s}}\right| e^{m_{s} \delta\left(\alpha_{s} z_{n}, \theta_{n}\right) r_{n}}(1+o(1))=\left|P_{s}\left(e^{\alpha_{s} z_{n}}\right)+Q_{s}\left(e^{-\alpha_{s} z_{n}}\right)\right|(1+o(1)) \\
& \quad \leq\left(1+\sum_{j=0, j \neq s}^{k-1}\left|P_{j}\left(e^{\alpha_{j} z_{n}}\right)+Q_{j}\left(e^{-\alpha_{j} z_{n}}\right)\right|\right)\left(\frac{\nu_{f}\left(r_{n}\right)}{r_{n}}\right)^{k}(1+o(1)) \\
& \leq k M B e^{C m_{s} \delta\left(\alpha_{s} z_{n}, \theta_{n}\right) r_{n}} e^{2(k+1) \varepsilon r_{n}}(1+o(1)) \tag{39}
\end{align*}
$$

Since $0<C<1$ and $\delta\left(\alpha_{s} z_{n}, \theta_{n}\right)>0$, then we can see that (39) is a contradiction when $r_{n} \rightarrow \infty$ and

$$
0<\varepsilon<\frac{1-C}{2(k+1)} m_{s} \delta\left(\alpha_{s} z_{n}, \theta_{n}\right)
$$

Case 2. $\theta_{0} \in\left\{\theta \in[0,2 \pi): \delta\left(\alpha_{s} z, \theta\right)<0\right\}$. By $\theta_{n} \rightarrow \theta_{0}$, there exists $N>0$ such that, as $n>N$, we have $\delta\left(\alpha_{s} z_{n}, \theta_{n}\right)<0$, then $\delta\left(\alpha_{j} z_{n}, \theta_{n}\right)>0(j=0, \ldots, s-1, s+$ $1, \ldots, k-1)$. In particular $\delta\left(\alpha_{t} z_{n}, \theta_{n}\right)<0$, i.e., $-n_{t} \delta\left(\alpha_{t} z_{n}, \theta_{n}\right)>0$. We have

$$
\begin{equation*}
\left|P_{t}\left(e^{\alpha_{t} z_{n}}\right)+Q_{t}\left(e^{-\alpha_{t} z_{n}}\right)\right|=\left|b_{t n_{t}}\right| e^{-n_{t} \delta\left(\alpha_{t} z_{n}, \theta_{n}\right) r_{n}}(1+o(1)) \tag{40}
\end{equation*}
$$

and

$$
\begin{align*}
\left|P_{j}\left(e^{\alpha_{j} z_{n}}\right)+Q_{j}\left(e^{-\alpha_{j} z_{n}}\right)\right| & =\left|b_{j n_{j}}\right| e^{n_{j} \delta\left(\alpha_{j} z_{n}, \theta_{n}\right) r_{n}}(1+o(1)) \\
& =\left|b_{j n_{j}}\right| e^{\frac{n_{t}}{d_{j} \delta\left(\alpha_{t} z_{n}, \theta_{n}\right) r_{n}}}(1+o(1)) \\
& \leq M e^{D n_{t} \delta\left(\alpha_{t} z_{n}, \theta_{n}\right) r_{n}}(1+o(1)), \quad j \neq t \tag{41}
\end{align*}
$$

where $M=\max _{j}\left\{\left|b_{j n_{j}}\right|\right\}$ and $0<D=\max _{j}\left\{\frac{1}{d_{j}}\right\}<1$. By the same way used to obtain (39) we deduce that, after (34), (36), (40), (41) and (6), we obtain

$$
\begin{equation*}
\left|b_{t n_{t}}\right| e^{-n_{t} \delta\left(\alpha_{t} z_{n}, \theta_{n}\right) r_{n}}(1+o(1)) \leq k M B e^{-D n_{t} \delta\left(\alpha_{t} z_{n}, \theta_{n}\right) r_{n}} e^{2(k+1) \varepsilon r_{n}}(1+o(1)) \tag{42}
\end{equation*}
$$

Since $0<D<1$ and $-n_{t} \delta\left(\alpha_{t} z_{n}, \theta_{n}\right)>0$, then we can see that (42) is a contradiction when $r_{n} \rightarrow \infty$ and

$$
0<\varepsilon<-\frac{1-D}{2(k+1)} n_{t} \delta\left(\alpha_{t} z_{n}, \theta_{n}\right) .
$$

Case 3. $\theta_{0} \in H=\left\{\theta \in[0,2 \pi): \delta\left(\alpha_{s} z, \theta\right)=0\right\}$. By $\theta_{n} \rightarrow \theta_{0}$, for any given $\gamma>0$, there exists $N>0$ such that, as $n>N$, we have $\theta_{n} \in\left[\theta_{0}-\gamma, \theta_{0}+\gamma\right]$ and $z_{n}=r_{n} e^{i \theta_{n}} \in S\left(\theta_{0}\right)=\left\{z: \theta_{0}-\gamma \leq \arg z \leq \theta_{0}+\gamma\right\}$. By Lemma 4, there exists a set $E_{3} \subset(1, \infty)$ having finite logarithmic measure, and there is a constant $B>0$, such that for all z satisfying $|z|=r \notin[0,1] \cup E_{3}$, we have for $l \leq k-1$

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f^{(l)}(z)}\right| \leq B[T(2 r, f)]^{j-l+1} \leq B[T(2 r, f)]^{k+1}, j=l+1, \ldots, k \tag{43}
\end{equation*}
$$

Now, we consider the growth of $f\left(r e^{i \theta}\right)$ on the ray $\arg z=\theta \in\left[\theta_{0}-\gamma, \theta_{0}\right) \cup\left(\theta_{0}, \theta_{0}+\right.$ $\gamma]$. Denote $S_{1}\left(\theta_{0}\right)=\left[\theta_{0}-\gamma, \theta_{0}\right)$ and $S_{2}\left(\theta_{0}\right)=\left(\theta_{0}, \theta_{0}+\gamma\right]$. We can easily see that when $\theta_{1} \in S_{1}\left(\theta_{0}\right)$ and $\theta_{2} \in S_{2}\left(\theta_{0}\right)$ then $\delta\left(\alpha_{s} z, \theta_{1}\right) \delta\left(\alpha_{s} z, \theta_{2}\right)<0$. Without loss of the generality, we suppose that $\delta\left(\alpha_{s} z, \theta\right)>0$ for $\theta \in S_{1}\left(\theta_{0}\right)$ and $\delta\left(\alpha_{s} z, \theta\right)<0$ for $\theta \in S_{2}\left(\theta_{0}\right)$. Since f is subnormal, then for any given $\varepsilon>0$, we have

$$
\begin{equation*}
T(r, f) \leq e^{\varepsilon r} \tag{44}
\end{equation*}
$$

We assert that $\left|f^{(s)}\left(r e^{i \theta}\right)\right|$ is bounded on the ray $\arg z=\theta$. If $\left|f^{(s)}(z)\right|$ is unbounded, then by Lemma 6, there exists an infinite sequence of points $w_{u}=r_{u} e^{i \theta}$ $(u=1,2, \ldots)$ where $r_{u} \rightarrow+\infty$ such that $f^{(s)}\left(w_{u}\right) \rightarrow \infty$ and

$$
\begin{equation*}
\left|\frac{f^{(j)}\left(w_{u}\right)}{f^{(s)}\left(w_{u}\right)}\right| \leq \frac{1}{(s-j)!} r_{u}^{s-j}(1+o(1)) \leq r_{u}^{s}(1+o(1)), \quad j=0, \ldots, s-1 \tag{45}
\end{equation*}
$$

By (43) and (44), we obtain
$\left|\frac{f^{(j)}\left(w_{u}\right)}{f^{(s)}\left(w_{u}\right)}\right| \leq B\left[T\left(2 r_{u}, f\right)\right]^{j-s+1} \leq B\left[T\left(2 r_{u}, f\right)\right]^{k+1} \leq e^{2(k+1) \varepsilon r_{u}}, \quad j=s+1, \ldots, k$.
By (6), (37), (38), (45) and (46), we deduce

$$
\begin{equation*}
\left|a_{s m_{s}}\right| e^{m_{s} \delta\left(\alpha_{s} z_{n}, \theta\right) r_{u}}(1+o(1)) \leq k M B e^{C m_{s} \delta\left(\alpha_{s} w_{u}, \theta\right) r_{u}} e^{2(k+1) \varepsilon r_{u}} r_{u}^{s}(1+o(1)) . \tag{47}
\end{equation*}
$$

Since $0<C<1$ and $\delta\left(\alpha_{s} w_{u}, \theta\right)>0$, then we can see that (47) is a contradiction when $r_{u} \rightarrow \infty$ and

$$
0<\varepsilon<\frac{1-C}{2(k+1)} m_{s} \delta\left(\alpha_{s} w_{u}, \theta\right)
$$

Hence, for sufficiently large r, we have

$$
\begin{equation*}
\left|f\left(r e^{i \theta}\right)\right| \leq M_{1} r^{s} \tag{48}
\end{equation*}
$$

on the ray $\arg z=\theta \in\left[\theta_{0}-\gamma, \theta_{0}\right)$. For $\theta \in S_{2}\left(\theta_{0}\right)$, we have $\delta\left(\alpha_{s} z, \theta\right)<0$, $\delta\left(\alpha_{t} z, \theta\right)<0$ and we assert that $\left|f^{(t)}\left(r e^{i \theta}\right)\right|$ is bounded on the ray $\arg z=\theta$. If $\left|f^{(t)}(z)\right|$ is unbounded, then by Lemma 6 , there exists an infinite sequence of points $w_{u}=r_{u} e^{i \theta}(u=1,2, \ldots)$ where $r_{u} \rightarrow+\infty$ such that $f^{(t)}\left(w_{u}\right) \rightarrow \infty$ and

$$
\begin{equation*}
\left|\frac{f^{(j)}\left(w_{u}\right)}{f^{(t)}\left(w_{u}\right)}\right| \leq \frac{1}{(t-j)!} r_{u}^{t-j}(1+o(1)) \leq r_{u}^{t}(1+o(1)), \quad j=0, \ldots, t-1 \tag{49}
\end{equation*}
$$

By (43) and (44), we obtain

$$
\begin{equation*}
\left|\frac{f^{(j)}\left(w_{u}\right)}{f^{(t)}\left(w_{u}\right)}\right| \leq B\left[T\left(2 r_{u}, f\right)\right]^{j-t+1} \leq B\left[T\left(2 r_{u}, f\right)\right]^{k+1} \leq B e^{2(k+1) \varepsilon r_{u}}, j=t+1, \ldots, k . \tag{50}
\end{equation*}
$$

By (6), (40), (41), (49) and (50), we deduce

$$
\begin{equation*}
\left|b_{t n_{t}}\right| e^{-n_{t} \delta\left(\alpha_{t} w_{u}, \theta\right) r_{u}}(1+o(1)) \leq k M B e^{-D n_{t} \delta\left(\alpha_{t} w_{u}, \theta\right) r_{u}} e^{2(k+1) \varepsilon r_{n}} r_{u}^{t}(1+o(1)) . \tag{51}
\end{equation*}
$$

Since $0<D<1$ and $-n_{t} \delta\left(\alpha_{t} z_{n}, \theta_{n}\right)>0$, then we can see that (51) is a contradiction when $r_{n} \rightarrow \infty$ and

$$
0<\varepsilon<-\frac{1-D}{2(k+1)} n_{t} \delta\left(\alpha_{t} z_{n}, \theta_{n}\right)
$$

Hence, for sufficiently large r

$$
\begin{equation*}
\left|f\left(r e^{i \theta}\right)\right| \leq M_{2} r^{t} \tag{52}
\end{equation*}
$$

on the ray $\arg z=\theta \in\left(\theta_{0}, \theta_{0}+\gamma\right]$. By (48) and (52), we have for sufficiently large r

$$
\begin{equation*}
\left|f\left(r e^{i \theta}\right)\right| \leq M r^{k} \tag{53}
\end{equation*}
$$

on the ray $\arg z=\theta \neq \theta_{0}, z \in S\left(\theta_{0}\right)$. Since f has infinite order and $\left\{z_{n}=r_{n} e^{i \theta_{n}} \in\right.$ $\left.S\left(\theta_{0}\right)\right\}$ satisfies $\left|f\left(z_{n}\right)\right|=M\left(r_{n}, f\right)$, we see that for any large $N>0$, and as n sufficiently large, we have

$$
\begin{equation*}
\left|f\left(r_{n} e^{i \theta_{n}}\right)\right| \geq \exp \left\{r_{n}^{N}\right\} \tag{54}
\end{equation*}
$$

Then, from (53) and (54), we get $M r_{n}^{k} \geq \exp \left\{r_{n}^{N}\right\}$ that is a contradiction. Hence, (6) has no nontrivial subnormal solution.
(4) By Lemma 3, every solution f of (6) satisfies $\sigma_{2}(f) \leq 1$. Suppose that $\sigma_{2}(f)<1$, then $\sigma_{e}(f)=0$, i.e., f is subnormal solution and this contradicts the conclusion above. So $\sigma_{2}(f)=1$.

6 Proof of Theorem 12

Proof. We consider $Q_{j}(z) \equiv 0(j=1, \ldots, k-1)$ in (5). By a similar method of proof to Theorem 10, we conclude the result.

7 Proof of Theorem 13

Proof. We consider $Q_{j}(z) \equiv 0(j=1, \ldots, k-1)$ in (6). We use the same method as in the proof of Theorem 11. Just in the case when $\delta\left(\alpha_{s} z, \theta\right)<0$, we use the fact that $\left|f^{(k)}(z)\right|$ is bounded on the ray $\arg z=\theta$. If $\left|f^{(k)}(z)\right|$ is unbounded, then by Lemma 6 , there exists an infinite sequence of points $z_{n}=r_{n} e^{i \theta}(n=1,2, \ldots)$ where $r_{n} \rightarrow+\infty$ such that $f^{(k)}\left(z_{n}\right) \rightarrow \infty$ and

$$
\begin{equation*}
\left|\frac{f^{(j)}\left(z_{n}\right)}{f^{(k)}\left(z_{n}\right)}\right| \leq r_{n}^{k}(1+o(1)), \quad(j=0, \ldots, k-1) . \tag{55}
\end{equation*}
$$

By the definition of $P_{j}^{*}\left(e^{\alpha_{j} z}\right)$, and because $\delta\left(\alpha_{s} z, \theta\right)<0$, i.e., $\delta\left(\alpha_{j} z, \theta\right)<0, \forall j$, by $m_{s} \alpha_{s}=c_{j} m_{j} \alpha_{j}$. Then, we can write

$$
\begin{equation*}
\left|P_{j}^{*}\left(e^{\alpha_{j} z_{n}}\right)\right|=\left|a_{j 1}\right| e^{\delta\left(\alpha_{j} z_{n}, \theta\right) r_{n}}(1+o(1)) . \tag{56}
\end{equation*}
$$

By (8), (55) and (56), we have

$$
\begin{align*}
1 & \leq \sum_{j=0}^{k-1}\left|P_{j}^{*}\left(e^{\alpha_{j} z_{n}}\right)\right|\left|\frac{f^{(j)}\left(z_{n}\right)}{f^{(k)}\left(z_{n}\right)}\right| \\
& \leq \sum_{j=0}^{k-1}\left|a_{j 1}\right| e^{\delta\left(\alpha_{j} z_{n}, \theta\right) r_{n}} r_{n}^{k}(1+o(1)) . \tag{57}
\end{align*}
$$

Since $\delta\left(\alpha_{j} z, \theta\right)<0, \forall j$, then (57) is a contradiction as $r_{n} \rightarrow \infty$. Thus, $\left|f^{(k)}(z)\right| \leq$ M, so $|f(z)| \leq M r^{k}$.

8 Proof of Theorem 14

Proof. Suppose that f is a nontrivial subnormal solution of (4). Let

$$
h(z)=f(z) e^{\left(b_{m} / a_{m}\right) z} .
$$

Then h is a nontrivial subnormal solution of the equation

$$
\begin{equation*}
h^{(k)}+\sum_{j=0}^{k-1}\left[R_{j}\left(e^{z}\right)+S_{j}\left(e^{-z}\right)\right] h^{(j)}=0, \tag{58}
\end{equation*}
$$

where

$$
R_{j}\left(e^{z}\right)+S_{j}\left(e^{-z}\right)=C_{k}^{j}\left(-\frac{b_{m}}{a_{m}}\right)^{k-j}+\sum_{l=j}^{k-1} C_{l}^{j}\left(-\frac{b_{m}}{a_{m}}\right)^{l-j}\left[P_{l}\left(e^{z}\right)+Q_{l}\left(e^{-z}\right)\right]
$$

Because $m>\max \left\{m_{j}: j=2, \ldots, k-1\right\}$ and $n>\max \left\{n_{j}: j=2, \ldots, k-1\right\}$, we have

$$
\begin{aligned}
\operatorname{deg} R_{1} & =\operatorname{deg} P_{1}=m \\
\operatorname{deg} S_{1} & =\operatorname{deg} Q_{1}=n
\end{aligned}
$$

From $a_{m} d_{n}=b_{m} c_{n}$, we see in the formula

$$
\begin{aligned}
R_{0}\left(e^{z}\right)+S_{0}\left(e^{-z}\right)= & \left(-\frac{b_{m}}{a_{m}}\right)^{k}+\sum_{l=2}^{k-1}\left(-\frac{b_{m}}{a_{m}}\right)^{l}\left[P_{l}\left(e^{z}\right)+Q_{l}\left(e^{-z}\right)\right] \\
& +\left(-\frac{b_{m}}{a_{m}}\right)\left[P_{1}\left(e^{z}\right)+Q_{1}\left(e^{-z}\right)\right]+\left[P_{0}\left(e^{z}\right)+Q_{0}\left(e^{-z}\right)\right]
\end{aligned}
$$

that

$$
\begin{aligned}
\operatorname{deg} R_{0} & <m, \\
\operatorname{deg} S_{0} & <n .
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
\operatorname{deg} R_{1} & =m>\operatorname{deg} R_{j}: j=0,2, \ldots, k-1, \\
\operatorname{deg} S_{1} & =n>\operatorname{deg} S_{j}: j=0,2, \ldots, k-1
\end{aligned}
$$

and since $e^{-\left(b_{m} / a_{m}\right) z}$ is not a solution of (4), then

$$
R_{0}\left(e^{z}\right)+S_{0}\left(e^{-z}\right)=\left(-\frac{b_{m}}{a_{m}}\right)^{k}+\sum_{l=0}^{k-1}\left(-\frac{b_{m}}{a_{m}}\right)^{l}\left[P_{l}\left(e^{z}\right)+Q_{l}\left(e^{-z}\right)\right] \not \equiv 0
$$

By applying Theorem 9 on equation (58), we obtain the conclusion.
Acknowledgments. The authors would like to thank the anonymous referee for his/her valuable suggestions and comments which improved this paper.

References

[1] Chen, Z. X., The growth of solutions of $f^{\prime \prime}+e^{-z} f^{\prime}+Q(z) f=0$ where the $\operatorname{order}(Q)=1$, Sci. China Ser. A 45 (2002), no. 3, 290-300.
[2] Chen, Z. X., On the hyper order of solutions of higher order differential equations, Chinese Ann. Math. Ser. B 24 (2003), no. 4, 501-508.
[3] Chen, Z. X., Shon, K. H., On the growth of solutions of a class of higher order differential equations, Acta Math. Sci. Ser. B Engl. Ed. 24 (2004), no. 1, 52-60.
[4] Chen, Z. X., Shon, K. H., On subnormal solutions of second order linear periodic differential equations, Sci. China Ser. A 50 (2007), no. 6, 786-800.
[5] Chen, Z. X., Shon, K. H., Subnormal solutions of differential equations with periodic coefficients, Acta Math. Sci. Ser. B Engl. Ed. 30 (2010), no. 1, 75-88.
[6] Chen, Z. X., Shon, K. H., The hyper order of solutions of second order differential equations and subnormal solutions of periodic equations, Taiwanese J. Math. 14 (2010), no. 2, 611-628.
[7] Chiang, Y. M., Gao, S. A., On a problem in complex oscillation theory of periodic second order linear differential equations and some related perturbation results, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 2, 273-290.
[8] Gundersen, G. G., Steinbart, M., Subnormal solutions of second order linear differential equations with periodic coefficients, Results Math. 25 (1994), no. 3-4, 270-289.
[9] Gundersen, G. G., Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) 37 (1988), no. 1, 88-104.
[10] Gundersen, G. G., Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc. 305 (1988), no. 1, 415-429.
[11] Hayman, W. K., Meromorphic functions, Oxford Mathematical Monographs Clarendon Press, Oxford 1964.
[12] Laine, I., Nevanlinna theory and complex differential equations, de Gruyter Studies in Mathematics, 15. Walter de Gruyter \& Co., Berlin, 1993.
[13] Laine, I., Yang, R., Finite order solutions of complex linear differential equations, Electron. J. Differential Equations, Vol. 2004 (2004), No. 65, 1-8.
[14] Li, N., Yang, L. Z., Growth of solutions to second-order complex differential equations, Electron. J. Differential Equations, Vol. 2014 (2014), No 51, 1-12.
[15] Liu, K., Yang, L. Z., On the complex oscillation of higher order linear differential equations, Bull. Korean Math. Soc. 46 (2009), no. 4, 607-615.
[16] Wittich, H., Subnormale Lösungen der Differentialgleichung $w^{\prime \prime}+p\left(e^{z}\right) w^{\prime}+$ $q\left(e^{z}\right) w=0$, Nagoya Math. J. 30 (1967), 29-37.
[17] Xiao, L. P., Nonexistence of a subnormal solution of certain second order periodic differential equations, J. Math. Anal. Appl. 402 (2013), no. 2, 527535.
[18] Yang, C. C., Yi, H. X., Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, 2003.

[^0]: ${ }^{1}$ Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB), B. P. 227 Mostaganem-(Algeria), e-mail: belaidi@univ-mosta.dz
 ${ }^{2}$ Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB), B. P. 227 Mostaganem-(Algeria), e-mail: zmrn.amine@gmail.com

