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NONEXISTENCE OF SUBNORMAL SOLUTIONS FOR A
CLASS OF HIGHER ORDER COMPLEX DIFFERENTIAL

EQUATIONS
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Abstract

In this article, we investigate the existence of subnormal solutions for a
class of higher order complex differential equations. We generalize the result
of N. Li and L. Z. Yang [14], L. P. Xiao [17] and also result of Z. X. Chen
and K. H. Shon [4].
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1 Introduction

In this article, we use the standard notations of the Nevanlinna theory, see
[11, 12, 18]. We denote the order of growth of a meromorphic function f by
σ(f). To express the rate of growth of meromorphic of infinite order, we recall the
following definitions.

Definition 1 ([18]). The hyper-order of growth of a meromorphic function f is
defined by

σ2(f) = lim
r→+∞

log log T (r, f)

log r
,

where T (r, f) is the Nevanlinna characteristic function of f .

In [7], Chiang and Gao gave the definition of the e-type order of a meromorphic
function as follows.
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Definition 2 ([7]). Let f be a meromorphic function. Define

σe(f) = lim
r→+∞

log T (r, f)

r

to be the e-type order of f .

The following results are obvious.

1. If 0 < σe(f) < +∞, then σ2(f) = 1.

2. If σ2(f) < 1, then σe(f) = 0.

3. If σ2(f) = +∞, then σe(f) = +∞.

Consider the second-order homogeneous linear periodic differential equation

f ′′ + P (ez) f ′ +Q (ez) f = 0, (1)

where P (w) and Q (w) are not constants polynomials in w = ez (z ∈ C). It’s well
known that every solution of equation (1) is entire.

Definition 3 ([8, 16]). If f 6≡ 0 is a solution of equation (1), and satisfies σe(f) =
0, then we say that f is a nontrivial subnormal solution of (1). For convenience,
we also say that f ≡ 0 is a subnormal solution of (1).

In [8, 16], subnormal solutions of (1) were investigated. In [16], H. Wittich
has given the general forms of all subnormal solutions of (1) that are shown in
the following theorem.

Theorem 1. If f 6≡ 0 is a subnormal solution of (1), then f must have the form

f(z) = ecz(a0 + a1e
z + · · ·+ ame

mz),

where m ≥ 0 is an integer and c, a0, a1, . . . , am are constants with a0am 6= 0.

Based on the comparison of degrees of P and Q, Gundersen and Steinbart [8]
refined Theorem 1 and obtained the exact forms of subnormal solutions of (1) as
follows.

Theorem 2. Under the assumption of Theorem 1, the following statements hold.
(i) If degP > degQ and Q 6≡ 0, then any subnormal solution f 6≡ 0 of (1)

must have the form

f(z) = a0 + a1e
−z + · · ·+ ame

−mz,

where m ≥ 1 is an integer and a0, a1, . . . , am are constants with a0am 6= 0.
(ii) If Q ≡ 0 and degP ≥ 1, then any subnormal solution of (1) must be a

constant.
(iii) If degP < degQ, then the only subnormal solution of (1) is f ≡ 0.
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For second order differential equations, Chen and Shon [4] studied the exis-
tence of subnormal solutions of the equation

f ′′ +
[
P1 (ez) + P2

(
e−z
)]
f ′ +

[
Q1 (ez) +Q2

(
e−z
)]
f = 0, (2)

where P1(z), P2(z), Q1(z) and Q2(z) are polynomials in z, and obtained the fol-
lowing results.

Theorem 3. Let Pj(z), Qj(z) (j = 1, 2) be polynomials in z. If

degQ1 > degP1 or degQ2 > degP2,

then the equation (2) has no nontrivial subnormal solution, and every solution of
(2) satisfies σ2(f) = 1.

Theorem 4. Let Pj(z), Qj(z) (j = 1, 2) be polynomials in z. If

degQ1 < degP1 and degQ2 < degP2

and Q1 +Q2 6≡ 0, then the equation (2) has no nontrivial subnormal solution, and
every solution of (2) satisfies σ2(f) = 1.

Li-Yang [14] considered the case when degQ1 = degP1 and degQ2 = degP2

in the equation (2), and they proved it.

Theorem 5. Let

P1 (z) = anz
n + · · ·+ a1 + a0,

Q1 (z) = bnz
n + · · ·+ b1 + b0,

P2 (z) = cmz
m + · · ·+ c1 + c0,

Q2 (z) = dmz
m + · · ·+ d1 + d0,

where ai, bi (i = 0, . . . , n), cj , dj (j = 0, . . . ,m) are constants, anbncmdm 6= 0.
Suppose that andm = bncm and any one of the following three hypothesis hold:

1. There exists i satisfying (− bn
an

)ai + bi 6= 0, 0 < i < n.

2. There exists j satisfying (− bn
an

)cj + dj 6= 0, 0 < j < m.

3. (− bn
an

)2 + (− bn
an

)(a0 + c0) + b0 + d0 6= 0.

Then (2) has no nontrivial subnormal solution, and every nontrivial solution
f satisfies σ2(f) = 1.

In the same article [14], Li-Yang investigated the existence of subnormal solu-
tions of the general form

f ′′ +
[
P1 (eαz) + P2

(
e−αz

)]
f ′ +

[
Q1

(
eβz
)

+Q2

(
e−βz

)]
f = 0, (3)

where P1(z), P2(z), Q1(z) and Q2(z) are polynomials in z. α, β are complex con-
stants, and they proved the following results.
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Theorem 6. Let

P1 (z) = a1m1z
m1 + · · ·+ a11 + a10,

P2 (z) = a2m2z
m2 + · · ·+ a21 + a20,

Q1 (z) = b1n1z
n1 + · · ·+ b11 + b10,

Q2 (z) = b2n2z
n2 + · · ·+ b21 + b20,

where mk ≥ 1, nk ≥ 1 (k = 1, 2) are integers, a1i1(i1 = 0, . . . ,m1), a2i2(i2 =
0, . . . ,m2), b1j1(j1 = 0, . . . , n1), b2j2(j2 = 0, . . . , n2), α and β are complex con-
stants, a1m1a2m2b1n1b2n2 6= 0, αβ 6= 0. Suppose m1α = c1n1β (0 < c1 < 1) or
m2α = c2n2β (0 < c2 < 1). Then (3) has no nontrivial subnormal solution, and
every nontrivial solution f satisfies σ2(f) = 1.

Theorem 7. Let

P1 (z) = a1m1z
m1 + · · ·+ a11 + a10,

P2 (z) = a2m2z
m2 + · · ·+ a21 + a20,

Q1 (z) = b1n1z
n1 + · · ·+ b11 + b10,

Q2 (z) = b2n2z
n2 + · · ·+ b21 + b20,

where mk ≥ 1, nk ≥ 1 (k = 1, 2) are integers, a1i1(i1 = 0, . . . ,m1), a2i2(i2 =
0, . . . ,m2), b1j1(j1 = 0, . . . , n1), b2j2(j2 = 0, . . . , n2), α and β are complex con-
stants, a1m1a2m2b1n1b2n2 6= 0, αβ 6= 0. Suppose m1α = c1n1β (c1 > 1) and
m2α = c2n2β (c2 > 1). Then (3) has no nontrivial subnormal solution, and every
nontrivial solution f satisfies σ2(f) = 1.

For higher order differential equations, Chen-Shon [5] and Liu-Yang [15] im-
proved the Theorems 3, 4 to higher periodic differential equation

f (k) +
[
Pk−1 (ez) +Qk−1

(
e−z
)]
f (k−1) + · · ·+

[
P0 (ez) +Q0

(
e−z
)]
f = 0 (4)

and they proved the following results.

Theorem 8 ([15, 5]). Let Pj(z), Qj(z) (j = 0, . . . , k−1) be polynomials in z with
degPj = mj , degQj = nj. If P0 satisfies

m0 > max{mj : 1 ≤ j ≤ k − 1} = m

or Q0 satisfies
n0 > max{nj : 1 ≤ j ≤ k − 1} = n,

then (4) has no nontrivial subnormal solution, and every solution of (4) is of
hyper-order σ2(f) = 1.

Theorem 9 ([5]). Let Pj(z), Qj(z) (j = 0, . . . , k − 1) be polynomials in z with
degPj = mj , degQj = nj , and P0 + Q0 6≡ 0. If there exists ms, nd (s, d ∈
{0, . . . , k − 1}) satisfying both inequalities

ms > max{mj : j = 0, . . . , s− 1, s+ 1, . . . , k − 1} = m,

nd > max{nj : j = 0, . . . , d− 1, d+ 1, . . . , k − 1} = n,

then (4) has no nontrivial subnormal solution, and every solution of (4) is of
hyper-order σ2(f) = 1.
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2 Main results

The main purpose of this article is to answer the following question.
Question. Can Theorems 6, 7 be generalized to higher order differential

equation? We will prove the following results.

Theorem 10. Let

f (k)+
[
Pk−1 (eαk−1z) +Qk−1

(
e−αk−1z

)]
f (k−1)+· · ·+

[
P0 (eα0z) +Q0

(
e−α0z

)]
f = 0,

(5)
where

Pj (z) = ajmjz
mj + aj(mj−1)z

mj−1 + · · ·+ aj0, j = 0, . . . , k − 1,

Qj (z) = bjnjz
nj + bj(nj−1)z

nj−1 + · · ·+ bj0, j = 0, . . . , k − 1

and mj ≥ 1, nj ≥ 1 (j = 0, . . . , k − 1; k ≥ 2) are integers, aju 6= 0, bjv 6= 0 and
αj 6= 0 (j = 0, . . . , k − 1; u = 0, . . . ,mj ; v = 0, . . . , nj) are complex constants.
Suppose that 

cjm0α0 = mjαj , 0 < cj < 1, ∀j = 1, . . . , k − 1
or
djn0α0 = njαj , 0 < dj < 1,∀j = 1, . . . , k − 1,

then equation (5) has no nontrivial subnormal solution, and every solution of (5)
satisfies σ2(f) = 1.

Theorem 11. Let

f (k)+
[
Pk−1 (eαk−1z) +Qk−1

(
e−αk−1z

)]
f (k−1)+· · ·+

[
P0 (eα0z) +Q0

(
e−α0z

)]
f = 0,

(6)
where

Pj (z) = ajmjz
mj + aj(mj−1)z

mj−1 + · · ·+ aj0, j = 0, . . . , k − 1,

Qj (z) = bjnjz
nj + bj(nj−1)z

nj−1 + · · ·+ bj0, j = 0, . . . , k − 1

and mj ≥ 1, nj ≥ 1 (j = 0, . . . , k − 1; k ≥ 2) are integers, aju 6= 0, bjv 6= 0 and
αj 6= 0 (j = 0, . . . , k−1; u = 0, . . . ,mj ; v = 0, . . . , nj) are complex constants such
that P0 (eα0z) +Q0 (e−α0z) 6≡ 0. If there exists s, t ∈ {0, . . . , k − 1} such that

msαs = cjmjαj , cj > 1, j = 0, . . . , s− 1, s+ 1, . . . , k − 1,
and
ntαt = djnjαj , dj > 1, j = 0, . . . , t− 1, t+ 1, . . . , k − 1,

then equation (6) has no nontrivial subnormal solution, and every solution of (6)
satisfies σ2(f) = 1.

As a generalization of higher order equations of Theorem 1.5 and Theorem 1.6
in [17], we have the following results.
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Theorem 12. Let

Pj (eαjz) = ajmje
mjαjz + aj(mj−1)e

(mj−1)αjz + · · ·+ aj0, j = 0, . . . , k − 1,

where mj ≥ 1 (j = 0, . . . , k − 1; k ≥ 2) are integers, aju 6= 0 and αj 6= 0 (j =
0, . . . , k− 1; u = 0, . . . ,mj) are complex constants. Suppose that cjm0α0 = mjαj ,
0 < cj < 1, ∀j = 1, . . . , k − 1. Then equation

f (k) + Pk−1 (eαk−1z) f (k−1) + · · ·+ P0 (eα0z) f = 0 (7)

has no nontrivial subnormal solution, and every solution satisfies σ2(f) = 1.

Theorem 13. Let

P ∗j (eαjz) = ajmje
mjαjz + aj(mj−1)e

(mj−1)αjz + · · ·+ aj1e
αjz, j = 0, . . . , k − 1,

where mj ≥ 1 (j = 1, . . . , k − 1; k ≥ 2) are integers, aju 6= 0 and αj 6= 0 (j =
0, . . . , k − 1; u = 0, . . . ,mj) are complex constants. Suppose that P0 (eα0z) 6≡ 0
and there exists s ∈ {1, . . . , k − 1} such that cjmsαs = mjαj , 0 < cj < 1, ∀j =
0, . . . , s− 1, s+ 1, . . . , k − 1. Then the equation

f (k) + P ∗k−1 (eαk−1z) f (k−1) + · · ·+ P ∗0 (eα0z) f = 0 (8)

has no nontrivial subnormal solution, and every solution satisfies σ2(f) = 1.

In [15], Liu-Yang gave an example that shows that in Theorem 8, if there
exists degPi = degPj and degQi = degQj (i 6= j), then equation (4) may have a
nontrivial subnormal solution.

Example ([15, page 610]). A subnormal solution f = e−z satisfies the follow-
ing equation

f (n) + f (n−1) + · · ·+ f ′′ +
(
e2z + e−2z

)
f ′ +

(
e2z + e−2z

)
f = 0,

where n is an odd number.
Question. What can we say when degP0 = degP1 and degQ0 = degQ1 in

equation (4)? We have the following result.

Theorem 14. Let Pj(z), Qj(z) (j = 0, . . . , k − 1) be polynomials in z with
degP0 = degP1 = m,degQ0 = degQ1 = n, degPj = mj , degQj = nj (j =
2, . . . , k − 1), let

P1 (z) = amz
m + am−1z

m−1 + · · ·+ a0,

P0 (z) = bmz
m + bm−1z

m−1 + · · ·+ b0,

Q1 (z) = cnz
n + cn−1z

n−1 + · · ·+ c0,

Q0 (z) = dnz
n + dn−1z

n−1 + · · ·+ d0,

where au, bu, cv, dv (u = 0, . . . ,m; v = 0, . . . , n) are complex constants, ambmcndn 6=
0. If amdn = bmcn, m > max{mj : j = 2, . . . , k − 1}, n > max{nj : j =
2, . . . , k − 1} and e−(bm/am)z is not a solution of (4), then equation (4) has no
nontrivial subnormal solution, and every solution f of (4) satisfies σ2(f) = 1.
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Example. This example shows that Theorem 14, is not a particular case and
it is different from Theorems 8, 9. Consider the differential equation

f ′′′ +
(
ez + e−z

)
f ′′ +

(
e3z − e−2z

)
f ′ +

(
−2e3z + 2e−2z

)
f = 0.

By Theorems 8, 9, we can’t say anything about the existence or nonexistence
of nontrivial subnormal solutions, because neither hypotheses of Theorem 8 or
of Theorem 9 are satisfied. But, we can see that all hypotheses of Theorem
14 are satisfied, then we guarantee that the above equation has no nontrivial
subnormal solution. In fact, we have k = 3, P2(e

z) = ez, Q2(e
−z) = e−z, P1(e

z) =
e3z, Q1(e

−z) = −e−2z, P0(e
z) = −2e3z and Q0(e

−z) = 2e−2z, m = 3, n = 2,
m > 1 = degP2, n > 1 = degQ2, am = 1, bm = −2, cn = −1 and dn = 2, and
we have amdn = bmcn. It’s clear that e−(bm/am)z = e2z is not a solution of the
equation above.

Remark 1. In Theorem 14, if the equation (4) accepts e−(bm/am)z as a solution,
then (4) has a subnormal solution. But, if e−(bm/am)z doesn’t satisfy (4), is there
another subnormal solution may that satisfy (4)? The conditions of Theorem 14
guarantee that, if (4) doesn’t accept e−(bm/am)z as a subnormal solution, then (4)
doesn’t accept any other subnormal solution.

Remark 2. In Theorem 14, we can replace the condition ” e−(bm/am)z is not a
solution of (4) ” by many partial conditions. For example

1. Pj (0) +Qj (0) = 0, (j = 0, . . . , k − 1).

2. Pj (0) +Qj (0) = 1, (j = 0, . . . , k − 1) and am 6= bm.

3. Pj (0) +Qj (0) = 1, (j = 0, . . . , k − 1), am = bm and k is an even number.

4. Pj (0) + Qj (0) = 0, Pl (0) + Ql (0) = 1 (j = 0, . . . , s; l = s + 1, . . . , k − 1),
am = bm and s, k are both even or both odd. And so on.

Remark 3. In Theorem 5, the hypotheses (1)-(3) can be replaced by the condition
”e−(bn/an)z is not a solution of (2)”.

3 Some lemmas

Lemma 1 ([18, page 82]). Let fj(z) (j = 1, . . . , n) be meromorphic functions,
and gj(z) (j = 1, . . . , n) be entire functions satisfying

1.
n∑
j=0

fj(z)e
gj(z) ≡ 0.

2. when 1 ≤ j < k ≤ n, then gj(z)− gk(z) is not constant.
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3. when 1 ≤ j ≤ n and 1 ≤ h < k ≤ n, then

T (r, fj) = o{T (r, egh−gk)}, r →∞, r 6∈ E,

where E ⊂ (1,+∞) is of finite linear measure or finite logarithmic measure.

Then fj(z) ≡ 0 (j = 1, . . . , n).

In [5], Chen-Shon proved [5, Lemma 2] that (4) has no polynomial solution
under the hypotheses of Theorem 9. We will prove a similar result for the general
case under one condition that factor f in (4) is not identically zero. Chen-Shon
used the Lemma 1 in their proof, to get a contradiction in case that f is polynomial
with deg(f) < s ≤ d. We use the same method but for all equations of the form
(4), just with condition P0 (ez) +Q0 (e−z) 6≡ 0. We will prove.

Lemma 2. Let Pj(z), Qj(z) (j = 0, . . . , k − 1) be polynomials in z with degPj =
mj , degQj = nj. If P0 (ez) +Q0 (e−z) 6≡ 0, then every solution of the equation

f (k) +
[
Pk−1 (ez) +Qk−1

(
e−z
)]
f (k−1) + · · ·+

[
P0 (ez) +Q0

(
e−z
)]
f = 0 (9)

is transcendental.

Proof. It’s well known that every solution of the equation (9) is an entire function.
f ≡ 0, is trivial solution. Since P0 (ez)+Q0 (e−z) 6≡ 0, then f can’t be a constant.
Now, suppose that f is a nonconstant polynomial solution of (9). Let

Pj (ez) +Qj
(
e−z
)

=

mj∑
p=1

ajpe
pz + cj +

nj∑
q=1

bjqe
−qz, (10)

where ajp, bjq and cj (j = 0, . . . , k−1; p = 1, . . . ,mj and q = 1, . . . , nj) are complex
constants. mj ≥ 1, nj ≥ 1 are integers and ajmjbjnj 6= 0, for all j = 0, . . . , k − 1.
Set m = max{mj : j = 0, . . . , k − 1} and n = max{nj : j = 0, . . . , k − 1} . Then
we can rewrite (10) as

Pj (ez) +Qj
(
e−z
)

=

m∑
p=mj+1

ajpe
pz +

mj∑
p=1

ajpe
pz + cj +

nj∑
q=1

bjqe
−qz +

n∑
q=nj+1

bjqe
−qz,

(11)
where ajp = 0, (p = mj + 1, . . . ,m) and bjq = 0, (q = nj + 1, . . . , n). By (9) and
(11), we obtain

m∑
p=1

Ape
pz + Ce0 +

n∑
q=1

Bqe
−qz = 0, (12)
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where

Ap =
k−1∑
j=0

ajpf
(j), (p = 1, . . . ,m),

Bq =
k−1∑
j=0

bjqf
(j), (q = 1, . . . , n), (13)

C = f (k) +
k−1∑
j=0

cjf
(j).

Since f is polynomial, then Ap, Bq and C are also polynomial. And

T (r,Ap) = o{T (r, e(α−β)z)}, p = 1, . . . ,m,

T (r,Bq) = o{T (r, e(α−β)z)}, q = 1, . . . , n, (14)

T (r, C) = o{T (r, e(α−β)z)},

where −n ≤ β < α ≤ m. By Lemma 1, (12) and (14), we obtain

Ap(z) ≡ 0 (p = 1, . . . ,m), Bq(z) ≡ 0 (q = 1, . . . , n) and C(z) ≡ 0. (15)

Since deg f > deg f ′ > · · · > deg f (k−1) > deg f (k), then by (13) and (15), we see
that

a0m = · · · = a01 = c0 = b01 = · · · = b0n = 0.

Thus P0 (ez) + Q0 (e−z) ≡ 0, and this contradicts the assumption P0 (ez) +
Q0 (e−z) 6≡ 0. Therefore, every solution of (9) must be a transcendental entire
function.

Lemma 3 ([5, 1]). Let A0, A1, . . . , Ak−1 be entire functions of finite order. If
f(z) is a solution of the equation

f (k) +Ak−1f
(k−1) + · · ·+A1f

′ +A0f = 0,

then σ2(f) ≤ max{σ(Aj) : j = 0, . . . , k − 1}.

Lemma 4 ([9]). Let f be a transcendental meromorphic function, and α > 1 be a
given constant. Then there exists a set E ⊂ (1,∞) with finite logarithmic measure
and a constant B > 0 that depends only on α and i, j(0 ≤ i < j), such that for
all z satisfying |z| = r 6∈ E ∪ [0, 1]∣∣∣∣∣f (j)(z)f (i)(z)

∣∣∣∣∣ ≤ B
[
T (αr, f)

r
(logα r) log T (αr, f)

]j−i
.

Lemma 5 ([9]). Let f(z) be a transcendental meromorphic function with σ(f) =
σ < +∞. Let H = {(k1, j1), . . . , (kq, jq)} be a finite set of distinct pairs of integers
that satisfy ki > ji ≥ 0, for i = 1, . . . , q. And let ε > 0 be a given constant.
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Then there exists a set E ∈ [0, 2π) that has linear measure zero, such that if
ψ ∈ [0, 2π)\E, then there is a constant R0 = R0(ψ) > 1 such that for all z
satisfying arg z = ψ and |z| = r ≥ R0 and for all (k, j) ∈ H, we have∣∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣∣ ≤ |z|(σ−1+ε)(k−j).
Lemma 6 ([10, 13]). Let f(z) be an entire function and suppose that |f (k)(z)|
is unbounded on some ray arg z = θ. Then, there exists an infinite sequence of
points zn = rne

iθ (n = 1, 2, . . . ), where rn → +∞, such that f (k)(zn)→∞ and∣∣∣∣∣f (j)(zn)

f (k)(zn)

∣∣∣∣∣ ≤ 1

(k − j)!
|zn|k−j(1 + o(1)), (j = 0, . . . , k − 1).

Lemma 7 ([2]). Let f be an entire function with σ(f) = σ < +∞. Suppose
there exists a set E ∪ [0, 2π) that has linear measure zero, such that for any ray
arg z = θ0 ∈ [0, 2π)\E and for sufficiently large r, we have∣∣∣f(reiθ0)

∣∣∣ ≤Mrk,

where M = M(θ0) > 0 is a constant and k > 0 is a constant independent of θ0,
then f is a polynomial with deg f ≤ k.

Let f (z) =
∞∑
n=0

anz
n be an entire function, µf (r) be the maximum term, i.e.,

µf (r) = max{|an| rn; n = 0, 1, · · · }, and let νf (r) be the central index of f , i.e.,
νf (r) = max{m; µf (r) = |am| rm}.

Lemma 8 ([6]). Let f be an entire function of infinite order with σ2(f) = α (0 ≤
α <∞) and a set E ⊂ [1,+∞) have finite logarithmic measure. Then there exists
{zk = rke

iθk} such that |f(zk)| = M(rk, f), θk ∈ [0, 2π), lim
k→∞

θk = θ0 ∈ [0, 2π),

rk 6∈ E, rk →∞, and such that

1. if σ2(f) = α (0 < α <∞), then for any given ε1 (0 < ε1 < α),

exp{rα−ε1k } < νf (rk) < exp{rα+ε1k },

2. if σ(f) =∞ and σ2(f) = 0, then for any given ε2 (0 < ε2 <
1
2) and for any

large M > 0, we have as rk sufficiently large

rMk < νf (rk) < exp{rε2k }.

Lemma 9 ([12]). Let P (z) = anz
n + an−1z

n−1 + · · · + a0 be a polynomial with
an 6= 0. Then, for every ε > 0, there exists r0 > 0 such that for all r = |z| > r0
we have the inequalities

(1− ε)|an|rn ≤ |P (z)| ≤ (1 + ε)|an|rn.
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Lemma 10 ([3]). Consider h(z)eaz where h is a nonzero entire function with
σ(h) = α < 1, a = deiϕ (d > 0, ϕ ∈ [0, 2π)). Set E0 = {θ ∈ [0, 2π) : cos(ϕ + θ) =
0}. Then for any given ε (0 < ε < 1−α), there is a set E ⊂ [0, 2π) that has linear
measure zero, if z = reiθ, θ ∈ [0, 2π)\(E ∪ E0), we have as r sufficiently large

1. if cos(ϕ+ θ) > 0, then

exp {(1− ε)dr cos(ϕ+ θ)} ≤ |h(z)eaz| ≤ exp {(1 + ε)dr cos(ϕ+ θ)} ,

2. if cos(ϕ+ θ) < 0, then

exp {(1 + ε)dr cos(ϕ+ θ)} ≤ |h(z)eaz| ≤ exp {(1− ε)dr cos(ϕ+ θ)} .

Let P (z) = (a+ ib)zn + · · · be a polynomial with degree n ≥ 1, and z = reiθ.
We denote δ(P, θ) := a cos(nθ)− b sin(nθ).

Remark 4. By definitions of Pj , Qj (j = 0, . . . , k − 1) in Theorem 10 and
Theorem 11, by Lemma 9 and Lemma 10, we can obtain that for all z = reiθ,
θ ∈ [0, 2π)\(E ∪ E0)

∣∣Pj (eαjz) +Qj
(
e−αjz

)∣∣ =

{ ∣∣ajmj

∣∣ emjδ(αjz,θ)r(1 + o(1)), (δ(αjz, θ) > 0; r → +∞)∣∣bjnj

∣∣ e−njδ(αjz,θ)r(1 + o(1)), (δ(αjz, θ) < 0; r → +∞)

4 Proof of Theorem 10

Proof. (1) Suppose that f is a nontrivial solution of (5). Then f is an entire
function. Since P0 (eα0z) + Q0 (e−α0z) 6≡ 0, then every nonzero constant is not
a solution of (5). Now, suppose that f0 = anz

n + · · · + a0 (n ≥ 1; a0, . . . , an
are constants, an 6= 0) is a polynomial solution of (5). Let E0 = {θ ∈ [0, 2π) :
δ(α0z, θ) = 0}, E0 is a finite set. Take z = reiθ, θ ∈ [0, 2π)\(E0 ∪E) with E some
set with linear measure zero. If cjm0α0 = mjαj , (0 < cj < 1,∀j = 1, . . . , k − 1),
then we choose θ ∈ [0, 2π)\(E0∪E) such δ(α0z, θ) = |α0| cos(argα0+θ) > 0, then

δ(αjz, θ) =
cj
mj

m0δ(α0z, θ) > 0, (∀j = 1, . . . , k− 1). By Lemma 9, Lemma 10 and

(5) for a sufficiently large r, we have

|an| |a0m0 | em0δ(α0z,θ)rrn(1 + o(1)) =
∣∣P0 (eα0z) +Q0

(
e−α0z

)∣∣ |f0|
≤

∣∣∣f (k)0

∣∣∣+

k−1∑
j=1

∣∣Pj (eαjz) +Qj
(
e−αjz

)∣∣ ∣∣∣f (j)0

∣∣∣
≤ Mecm0δ(α0z,θ)rrn(1 + o(1)),

where 0 < c = max{cj : j = 1, . . . , k−1} < 1. This is a contradiction. Then (5) has
no nonzero polynomial solution. If djn0α0 = njαj , (0 < dj < 1,∀j = 1, . . . , k−1),
then we choose θ ∈ [0, 2π)\(E0∪E), such that δ(α0z, θ) = |α0| cos(argα0+θ) < 0,
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then δ(αjz, θ) =
dj
nj
n0δ(α0z, θ) < 0, (∀j = 1, . . . , k− 1). Using the similar method

as in case δ(α0z, θ) > 0, we obtain

|an| |b0n0 | e−n0δ(α0z,θ)rrn(1 + o(1)) ≤Me−dn0δ(α0z,θ)rrn(1 + o(1)),

where 0 < d = max{dj : j = 1, . . . , k − 1} < 1. This is a contradiction. So, (5)
has no nonzero polynomial solution.
(2) By Lemma 4 we can see that there exists a set E ⊂ (1,∞) with finite log-
arithmic measure and there is a constant B > 0 such that for all z satisfying
|z| = r 6∈ E ∪ [0, 1], we have∣∣∣∣∣f (j)(z)f(z)

∣∣∣∣∣ ≤ B [T (2r, f)]j+1 , j = 1, . . . , k. (16)

Suppose that f 6≡ 0 is a subnormal solution, then σe(f) = 0. Hence, for all ε > 0
and for sufficiently large r, we have

T (r, f) < eεr. (17)

Substituting (17) into (16) with sufficiently large |z| = r 6∈ E ∪ [0, 1], we obtain∣∣∣∣∣f (j)(z)f(z)

∣∣∣∣∣ ≤ Be2ε(j+1)r ≤ Be2ε(k+1)r, j = 1, . . . , k. (18)

(i) Suppose that cjm0α0 = mjαj , (0 < cj < 1,∀j = 1, . . . , k − 1). Take z = reiθ

such that r 6∈ E ∪ [0, 1] and δ(α0z, θ) = |α0| cos(argα0 + θ) > 0, then δ(αjz, θ) =
cj
mj

m0δ(α0z, θ) > 0, (∀j = 1, . . . , k − 1). Therefore

∣∣P0 (eα0z) +Q0

(
e−α0z

)∣∣ = |a0m0 | em0δ(α0z,θ)r(1 + o(1)), (19)

∣∣Pj (eαjz) +Qj
(
e−αjz

)∣∣ =
∣∣ajmj

∣∣ emjδ(αjz,θ)r(1 + o(1))

=
∣∣ajmj

∣∣ ecjm0δ(α0z,θ)r(1 + o(1))

≤ Decm0δ(α0z,θ)r(1 + o(1)), (20)

where D = max
1≤j≤k−1

{
∣∣ajmj

∣∣} and 0 < c = max
1≤j≤k−1

{|cj |} < 1. Substituting (18),

(19) and (20) into (5), we obtain

|a0m0 | em0δ(α0z,θ)r(1 + o(1)) =
∣∣P0 (eα0z) +Q0

(
e−α0z

)∣∣
≤

∣∣∣∣∣f (k)f
∣∣∣∣∣+

k−1∑
j=1

∣∣Pj (eαjz) +Qj
(
e−αjz

)∣∣ ∣∣∣∣∣f (j)f
∣∣∣∣∣

≤ Be2ε(k+1)r + (k − 1)DBecm0δ(α0z,θ)re2ε(k+1)r(1 + o(1)).
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Hence,

|a0m0 | em0δ(α0z,θ)r(1 + o(1)) ≤Me[cm0δ(α0z,θ)+2ε(k+1)]r(1 + o(1)) (21)

for some constant M > 0. Since 0 < c < 1, then we can see that (21) is a
contradiction when

0 < ε <
1− c

2(k + 1)
m0δ(α0z, θ).

Hence, equation (5) has no nontrivial subnormal solution.
(ii) Suppose that djn0α0 = njαj , (0 < dj < 1, ∀j = 1, . . . , k − 1). We choose

z = reiθ, such that r 6∈ E ∪ [0, 1] and δ(α0z, θ) = |α0| cos(argα0 + θ) < 0, then

δ(αjz, θ) =
dj
nj
n0δ(α0z, θ) < 0, (∀j = 1, . . . , k − 1). Using the similar method as

in the proof of (i) above, we obtain

|b0n0 | e−n0δ(α0z,θ)r(1 + o(1)) ≤Me[−dn0δ(α0z,θ)+2ε(k+1)]r(1 + o(1)), (22)

where 0 < d = max
1≤j≤k−1

{|dj |} < 1, and for some constant M > 0. We see that (22)

is a contradiction when

0 < ε < − 1− d
2(k + 1)

n0δ(α0z, θ).

Hence, (5) has no nontrivial subnormal solution.
(3) By Lemma 3, every solution f of (5) satisfies σ2(f) ≤ 1. Suppose that

σ2(f) < 1. Then σe(f) = 0, i.e., f is subnormal solution and this contradicts the
conclusion above. So σ2(f) = 1.

5 Proof of Theorem 11

Proof. Suppose that f 6≡ 0 is a solution of equation (6). Then f is an entire
function. Since P0 (eα0z) +Q0 (e−α0z) 6≡ 0, then f cannot be nonzero constant.

(1) We will prove that f is a transcendental function. We assume that f is a
polynomial solution to (6), and we set

f(z) = anz
n + · · ·+ a0,

where n ≥ 1, a0, . . . , an are constants with an 6= 0. Suppose that s ≤ t. Since
P0 (eα0z) +Q0 (e−α0z) 6≡ 0, then we can rewrite (6) as

f(z) = −
n∑
j=1

Pj(e
αjz) +Qj(e

−αjz)

P0(eα0z) +Q0(e−α0z)
f (j)(z) (23)

which is a contradiction since the left side of equation (23) is a polynomial function
but the right side is a transcendental function, and even in case

Pj(e
αjz) +Qj(e

−αjz)

P0(eα0z) +Q0(e−α0z)
= Kj , ∀j = 1, · · · , n,
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where Kj , ∀j = 1, · · · , n are complex constants, we obtain an = 0, and this also
contradicts the assumption an 6= 0. Hence, every solution of (6) is transcendental.

(2) Now, we will prove that every solution f of (6) satisfies σ(f) = +∞.
We assume that σ(f) = σ < +∞. By Lemma 5, we know that for any given
ε > 0 there exists a set E ⊂ [0, 2π) that has linear measure zero, and for each
ψ ∈ [0, 2π)\E, there is a constant R0 = R0(ψ) > 1 such that for all z satisfying
arg z = ψ and |z| = r ≥ R0, we have for l ≤ k − 1∣∣∣∣∣f (j)(z)f (l)(z)

∣∣∣∣∣ ≤ |z|(σ−1+ε)(j−l); j = l + 1, . . . , k. (24)

Let H = {θ ∈ [0, 2π) : δ(αsz, θ) = 0}, H is a finite set. By the hypotheses of
Theorem 11, we have H = {θ ∈ [0, 2π) : δ(αjz, θ) = 0, (j = 0, . . . , k − 1)}. We
take z = reiθ, such that θ ∈ [0, 2π)\E ∪H. Then δ(αsz, θ) > 0 or δ(αsz, θ) < 0. If
δ(αsz, θ) > 0, then δ(αjz, θ) > 0 for all j = 0, . . . , s− 1, s+ 1, . . . , k− 1. We assert
that

∣∣f (s)(z)∣∣ is bounded on the ray arg z = θ. If
∣∣f (s)(z)∣∣ is unbounded, then by

Lemma 6, there exists an infinite sequence of points zu = rue
iθ (u = 1, 2, . . . )

where ru → +∞ such that f (s)(zu)→∞ and∣∣∣∣∣f (j)(zu)

f (s)(zu)

∣∣∣∣∣ ≤ 1

(s− j)!
|zu|s−j(1 + o(1)), (j = 0, . . . , s− 1). (25)

By (6) we obtain

|asms | emsδ(αszu,θ)ru(1 + o(1)) =
∣∣Ps(eαszu) +Qs(e

−αszu)
∣∣

≤

∣∣∣∣∣f (k)(zu)

f (s)(zu)

∣∣∣∣∣+

k−1∑
j=0,j 6=s

∣∣Pj(eαjzu) +Qj(e
−αjzu)

∣∣ ∣∣∣∣∣f (j)(zu)

f (s)(zu)

∣∣∣∣∣
≤r(σ−1+ε)(k−s)u +

∑
j>s

∣∣ajmj

∣∣ emjδ(αjzu,θ)rur(σ−1+ε)(j−s)u

+
∑
j<s

1

(s− j)!
∣∣ajmj

∣∣ emjδ(αjzu,θ)rurs−ju (1 + o(1))

≤MeCmsδ(αszu,θ)rurρu(1 + o(1)), (26)

for some M > 0, where ρ ≥ max

{
max

s<j≤k−1
{(σ − 1 + ε)(j − s)} ; max

0≤j<s
{s− j}

}
= max

{
max

s<j≤k−1
{(σ − 1 + ε)(j − s)} ; s

}
. Since 0 < C = max

j
{ 1
cj
} < 1 and

δ(αszu, θ) > 0, then (26) is a contradiction when ru → +∞. Hence,
∣∣f (s)(z)∣∣

is bounded on the ray arg z = θ. Therefore, for sufficiently large r, we have∣∣∣f(reiθ)
∣∣∣ ≤ C1r

s. (27)

If δ(αsz, θ) < 0, then δ(αjz, θ) < 0 for all j = 0, . . . , s − 1, s + 1, . . . , k − 1, in
particular δ(αtz, θ) < 0, i.e., −ntδ(αtz, θ) > 0. We assert that

∣∣f (t)(z)∣∣ is bounded
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on the ray arg z = θ. If
∣∣f (t)(z)∣∣ is unbounded, then by Lemma 6, there exists an

infinite sequence of points zu = rue
iθ (u = 1, 2, . . . ) where ru → +∞ such that

f (t)(zu)→∞ and∣∣∣∣∣f (j)(zu)

f (t)(zu)

∣∣∣∣∣ ≤ 1

(t− j)!
|zu|t−j(1 + o(1)), (j = 0, . . . , t− 1).

We obtain

|btmt | e−ntδ(αtzu,θ)ru(1 + o(1)) ≤Me−Dntδ(αtzu,θ)rurρu(1 + o(1)) (28)

for some M > 0, where ρ ≥ max

{
max

t<j≤k−1
{(σ − 1 + ε)(j − t)} ; max

0≤j<t
{t− j}

}
= max

{
max

t<j≤k−1
{(σ − 1 + ε)(j − t)} ; t

}
. Since 0 < D = max

j
{ 1
dj
} < 1 and

−ntδ(αtz, θ) > 0, then we see that (28) is a contradiction when ru → +∞. Thus,
for sufficiently large r, we have ∣∣∣f(reiθ)

∣∣∣ ≤ C2r
t. (29)

Since the linear measure of E ∪ H is zero, by (27), (29) and Lemma 7, we con-
clude that f is polynomial, which contradicts the fact that f is transcendental.
Therefore σ(f) = +∞.

(3) Finally, we will prove that (6) has no nontrivial subnormal solution. Sup-
pose that (6) has a subnormal solution f. So, σ(f) =∞ and by Lemma 3, we see
that σ2(f) ≤ 1. Set σ2(f) = µ ≤ 1. By Lemma 4, there exists a set E1 ⊂ (1,∞)
having a finite logarithmic measure, and there is a constant B > 0 such that for
all z satisfying |z| = r 6∈ [0, 1] ∪ E1, we have∣∣∣∣∣f (j)(z)f(z)

∣∣∣∣∣ ≤ B [T (2r, f)]j+1 , j = 1, . . . , k. (30)

From Wiman-Valiron theory, there is a set E2 ⊂ (1,∞) having finite logarithmic
measure, so we can choose z satisfying |z| = r 6∈ E2 and |f(z)| = M(r, f). Thus,
we have

f (j)(z)

f(z)
=

(
νf (r)

z

)j
(1 + o(1)), j = 1, . . . , k. (31)

By Lemma 8, we can see that there exists a sequence {zn = rne
iθn} such that

|f(zn)| = M(rn, f), θn ∈ [0, 2π), lim
n→∞

θn = θ0 ∈ [0, 2π), rn 6∈ [0, 1] ∪ E1 ∪ E2,

rn →∞, and such that

1. if µ > 0, then for any given ε1 (0 < ε1 < µ),

exp{rµ−ε1n } < νf (rn) < exp{rµ+ε1n }, (32)



44 B. Beläıdi and M. A. Zemirni

2. if µ = 0, and since σ(f) = ∞, then for any given ε2 (0 < ε2 <
1
2) and for

any large M > 0, we have as rn sufficiently large

rMn < νf (rn) < exp{rε2n }. (33)

From (32) and (33), we obtain that

νf (rn) > rn, rn →∞. (34)

Since θ0 may belong to {θ ∈ [0, 2π) : δ(αsz, θ) > 0}, or {θ ∈ [0, 2π) : δ(αsz, θ) <
0}, or {θ ∈ [0, 2π) : δ(αsz, θ) = 0}, we divide the proof into three cases.
Case 1. θ0 ∈ {θ ∈ [0, 2π) : δ(αsz, θ) > 0}. By θn → θ0, there exists N > 0 such
that, as n > N, we have δ(αszn, θn) > 0. Since f is subnormal, then for any given
ε > 0, we have

T (r, f) ≤ eεr. (35)

By (30), (31) and (35), we obtain(
νf (rn)

rn

)j
(1+o(1)) =

∣∣∣∣∣f (j)(zn)

f(zn)

∣∣∣∣∣ ≤ B [T (2rn, f)]k+1 ≤ Be2(k+1)εrn , j = 1, . . . , k.

(36)
Because δ(αszn, θn) > 0, then δ(αjzn, θn) > 0 (j = 0, . . . , s− 1, s + 1, . . . , k − 1),
and we have∣∣Ps(eαszn) +Qs(e

−αszn)
∣∣ = |asms | emsδ(αszn,θn)rn(1 + o(1)) (37)

and ∣∣Pj(eαjzn) +Qj(e
−αjzn)

∣∣ =
∣∣ajmj

∣∣ emjδ(αjzn,θn)rn(1 + o(1))

=
∣∣ajmj

∣∣ ems
cj
δ(αszn,θn)rn

(1 + o(1))

≤ MeCmsδ(αszn,θn)rn(1 + o(1)), j 6= s, (38)

where M = max
j
{
∣∣ajmj

∣∣} and 0 < C = max
j
{ 1
cj
} < 1. We have by (6)

∣∣Ps(eαszn) +Qs(e
−αszn)

∣∣ ∣∣∣∣∣f (s)(zn)

f(zn)

∣∣∣∣∣
≤

∣∣∣∣∣f (k)(zn)

f(zn)

∣∣∣∣∣+
k−1∑

j=0,j 6=s

∣∣Pj(eαjzn) +Qj(e
−αjzn)

∣∣ ∣∣∣∣∣f (j)(zn)

f(zn)

∣∣∣∣∣ .
By using Wiman-Valiron theory, we obtain∣∣Ps(eαszn) +Qs(e

−αszn)
∣∣ (νf (rn)

rn

)s
(1 + o(1))

≤
(
νf (rn)

rn

)k
(1 + o(1)) +

k−1∑
j=0,j 6=s

∣∣Pj(eαjzn) +Qj(e
−αjzn)

∣∣ (νf (rn)

rn

)j
(1 + o(1)).
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which implies

∣∣Ps(eαszn) +Qs(e
−αszn)

∣∣ (1 + o(1)) ≤
(
νf (rn)

rn

)k−s
(1 + o(1))

+

k−1∑
j=0,j 6=s

∣∣Pj(eαjzn) +Qj(e
−αjzn)

∣∣ (νf (rn)

rn

)j−s
(1 + o(1)).

By (34) we have
νf (rn)

rn
> 1, rn → +∞

then ∣∣Ps(eαszn) +Qs(e
−αszn)

∣∣ (1 + o(1))

≤

1 +

k−1∑
j=0,j 6=s

∣∣Pj(eαjzn) +Qj(e
−αjzn)

∣∣(νf (rn)

rn

)k
(1 + o(1))

and by (36), (37) and (38) we obtain

|asms | emsδ(αszn,θn)rn(1 + o(1)) =
∣∣Ps(eαszn) +Qs(e

−αszn)
∣∣ (1 + o(1))

≤

1 +
k−1∑

j=0,j 6=s

∣∣Pj(eαjzn) +Qj(e
−αjzn)

∣∣(νf (rn)

rn

)k
(1 + o(1))

≤ kMBeCmsδ(αszn,θn)rne2(k+1)εrn(1 + o(1)). (39)

Since 0 < C < 1 and δ(αszn, θn) > 0, then we can see that (39) is a contradiction

when rn →∞ and

0 < ε <
1− C

2(k + 1)
msδ(αszn, θn).

Case 2. θ0 ∈ {θ ∈ [0, 2π) : δ(αsz, θ) < 0}. By θn → θ0, there exists N > 0 such
that, as n > N, we have δ(αszn, θn) < 0, then δ(αjzn, θn) > 0 (j = 0, . . . , s−1, s+
1, . . . , k − 1). In particular δ(αtzn, θn) < 0, i.e., −ntδ(αtzn, θn) > 0. We have∣∣Pt(eαtzn) +Qt(e

−αtzn)
∣∣ = |btnt | e−ntδ(αtzn,θn)rn(1 + o(1)) (40)

and ∣∣Pj(eαjzn) +Qj(e
−αjzn)

∣∣ =
∣∣bjnj

∣∣ enjδ(αjzn,θn)rn(1 + o(1))

=
∣∣bjnj

∣∣ ent
dj
δ(αtzn,θn)rn

(1 + o(1))

≤ MeDntδ(αtzn,θn)rn(1 + o(1)), j 6= t, (41)

where M = max
j
{
∣∣bjnj

∣∣} and 0 < D = max
j
{ 1
dj
} < 1. By the same way used to

obtain (39) we deduce that, after (34), (36), (40), (41) and (6), we obtain

|btnt | e−ntδ(αtzn,θn)rn(1 + o(1)) ≤ kMBe−Dntδ(αtzn,θn)rne2(k+1)εrn(1 + o(1)). (42)
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Since 0 < D < 1 and −ntδ(αtzn, θn) > 0, then we can see that (42) is a contra-
diction when rn →∞ and

0 < ε < − 1−D
2(k + 1)

ntδ(αtzn, θn).

Case 3. θ0 ∈ H = {θ ∈ [0, 2π) : δ(αsz, θ) = 0}. By θn → θ0, for any given
γ > 0, there exists N > 0 such that, as n > N, we have θn ∈ [θ0 − γ, θ0 + γ] and
zn = rne

iθn ∈ S(θ0) = {z : θ0 − γ ≤ arg z ≤ θ0 + γ}. By Lemma 4, there exists a
set E3 ⊂ (1,∞) having finite logarithmic measure, and there is a constant B > 0,
such that for all z satisfying |z| = r 6∈ [0, 1] ∪ E3, we have for l ≤ k − 1∣∣∣∣∣f (j)(z)f (l)(z)

∣∣∣∣∣ ≤ B [T (2r, f)]j−l+1 ≤ B [T (2r, f)]k+1 , j = l + 1, . . . , k. (43)

Now, we consider the growth of f(reiθ) on the ray arg z = θ ∈ [θ0−γ, θ0)∪(θ0, θ0+
γ]. Denote S1(θ0) = [θ0 − γ, θ0) and S2(θ0) = (θ0, θ0 + γ]. We can easily see that
when θ1 ∈ S1(θ0) and θ2 ∈ S2(θ0) then δ(αsz, θ1)δ(αsz, θ2) < 0. Without loss of
the generality, we suppose that δ(αsz, θ) > 0 for θ ∈ S1(θ0) and δ(αsz, θ) < 0 for
θ ∈ S2(θ0). Since f is subnormal, then for any given ε > 0, we have

T (r, f) ≤ eεr. (44)

We assert that
∣∣f (s)(reiθ)∣∣ is bounded on the ray arg z = θ. If

∣∣f (s)(z)∣∣ is un-
bounded, then by Lemma 6, there exists an infinite sequence of points wu = rue

iθ

(u = 1, 2, . . . ) where ru → +∞ such that f (s)(wu)→∞ and∣∣∣∣∣f (j)(wu)

f (s)(wu)

∣∣∣∣∣ ≤ 1

(s− j)!
rs−ju (1 + o(1)) ≤ rsu(1 + o(1)), j = 0, . . . , s− 1. (45)

By (43) and (44), we obtain∣∣∣∣∣f (j)(wu)

f (s)(wu)

∣∣∣∣∣ ≤ B [T (2ru, f)]j−s+1 ≤ B [T (2ru, f)]k+1 ≤ e2(k+1)εru , j = s+1, . . . , k.

(46)
By (6), (37), (38), (45) and (46), we deduce

|asms | emsδ(αszn,θ)ru(1 + o(1)) ≤ kMBeCmsδ(αswu,θ)rue2(k+1)εrursu(1 + o(1)). (47)

Since 0 < C < 1 and δ(αswu, θ) > 0, then we can see that (47) is a contradiction
when ru →∞ and

0 < ε <
1− C

2(k + 1)
msδ(αswu, θ).

Hence, for sufficiently large r, we have∣∣∣f(reiθ)
∣∣∣ ≤M1r

s (48)
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on the ray arg z = θ ∈ [θ0 − γ, θ0). For θ ∈ S2(θ0), we have δ(αsz, θ) < 0,
δ(αtz, θ) < 0 and we assert that

∣∣f (t)(reiθ)∣∣ is bounded on the ray arg z = θ.

If
∣∣f (t)(z)∣∣ is unbounded, then by Lemma 6, there exists an infinite sequence of

points wu = rue
iθ (u = 1, 2, . . . ) where ru → +∞ such that f (t)(wu)→∞ and∣∣∣∣∣f (j)(wu)

f (t)(wu)

∣∣∣∣∣ ≤ 1

(t− j)!
rt−ju (1 + o(1)) ≤ rtu(1 + o(1)), j = 0, . . . , t− 1. (49)

By (43) and (44), we obtain∣∣∣∣∣f (j)(wu)

f (t)(wu)

∣∣∣∣∣ ≤ B [T (2ru, f)]j−t+1 ≤ B [T (2ru, f)]k+1 ≤ Be2(k+1)εru , j = t+1, . . . , k.

(50)
By (6), (40), (41), (49) and (50), we deduce

|btnt | e−ntδ(αtwu,θ)ru(1 + o(1)) ≤ kMBe−Dntδ(αtwu,θ)rue2(k+1)εrnrtu(1 + o(1)). (51)

Since 0 < D < 1 and −ntδ(αtzn, θn) > 0, then we can see that (51) is a contra-
diction when rn →∞ and

0 < ε < − 1−D
2(k + 1)

ntδ(αtzn, θn).

Hence, for sufficiently large r ∣∣∣f(reiθ)
∣∣∣ ≤M2r

t (52)

on the ray arg z = θ ∈ (θ0, θ0 + γ]. By (48) and (52), we have for sufficiently large
r ∣∣∣f(reiθ)

∣∣∣ ≤Mrk (53)

on the ray arg z = θ 6= θ0, z ∈ S(θ0). Since f has infinite order and {zn = rne
iθn ∈

S(θ0)} satisfies |f(zn)| = M(rn, f), we see that for any large N > 0, and as n
sufficiently large, we have ∣∣∣f(rne

iθn)
∣∣∣ ≥ exp{rNn }. (54)

Then, from (53) and (54), we get Mrkn ≥ exp{rNn } that is a contradiction. Hence,
(6) has no nontrivial subnormal solution.

(4) By Lemma 3, every solution f of (6) satisfies σ2(f) ≤ 1. Suppose that
σ2(f) < 1, then σe(f) = 0, i.e., f is subnormal solution and this contradicts the
conclusion above. So σ2(f) = 1.

6 Proof of Theorem 12

Proof. We consider Qj(z) ≡ 0 (j = 1, . . . , k − 1) in (5). By a similar method of
proof to Theorem 10, we conclude the result.
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7 Proof of Theorem 13

Proof. We consider Qj(z) ≡ 0 (j = 1, . . . , k − 1) in (6). We use the same method
as in the proof of Theorem 11. Just in the case when δ(αsz, θ) < 0, we use the
fact that

∣∣f (k)(z)∣∣ is bounded on the ray arg z = θ. If
∣∣f (k)(z)∣∣ is unbounded, then

by Lemma 6, there exists an infinite sequence of points zn = rne
iθ (n = 1, 2, . . . )

where rn → +∞ such that f (k)(zn)→∞ and∣∣∣∣∣f (j)(zn)

f (k)(zn)

∣∣∣∣∣ ≤ rkn(1 + o(1)), (j = 0, . . . , k − 1). (55)

By the definition of P ∗j (eαjz), and because δ(αsz, θ) < 0, i.e., δ(αjz, θ) < 0,∀j, by
msαs = cjmjαj . Then, we can write∣∣P ∗j (eαjzn)

∣∣ = |aj1| eδ(αjzn,θ)rn(1 + o(1)). (56)

By (8), (55) and (56), we have

1 ≤
k−1∑
j=0

∣∣P ∗j (eαjzn)
∣∣ ∣∣∣∣∣f (j)(zn)

f (k)(zn)

∣∣∣∣∣
≤

k−1∑
j=0

|aj1| eδ(αjzn,θ)rnrkn(1 + o(1)). (57)

Since δ(αjz, θ) < 0,∀j , then (57) is a contradiction as rn →∞. Thus,
∣∣f (k)(z)∣∣ ≤

M, so |f(z)| ≤Mrk.

8 Proof of Theorem 14

Proof. Suppose that f is a nontrivial subnormal solution of (4). Let

h(z) = f(z)e(bm/am)z.

Then h is a nontrivial subnormal solution of the equation

h(k) +

k−1∑
j=0

[
Rj (ez) + Sj

(
e−z
)]
h(j) = 0, (58)

where

Rj (ez) + Sj
(
e−z
)

= Cjk

(
− bm
am

)k−j
+

k−1∑
l=j

Cjl

(
− bm
am

)l−j [
Pl (e

z) +Ql
(
e−z
)]
.

Because m > max{mj : j = 2, . . . , k − 1} and n > max{nj : j = 2, . . . , k − 1}, we
have

degR1 = degP1 = m,

degS1 = degQ1 = n.
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From amdn = bmcn, we see in the formula

R0 (ez) + S0
(
e−z
)

=

(
− bm
am

)k
+
k−1∑
l=2

(
− bm
am

)l [
Pl (e

z) +Ql
(
e−z
)]

+

(
− bm
am

)[
P1 (ez) +Q1

(
e−z
)]

+
[
P0 (ez) +Q0

(
e−z
)]

that

degR0 < m,

degS0 < n.

Then, we have

degR1 = m > degRj : j = 0, 2, . . . , k − 1,

degS1 = n > degSj : j = 0, 2, . . . , k − 1

and since e−(bm/am)z is not a solution of (4), then

R0 (ez) + S0
(
e−z
)

=

(
− bm
am

)k
+
k−1∑
l=0

(
− bm
am

)l [
Pl (e

z) +Ql
(
e−z
)]
6≡ 0.

By applying Theorem 9 on equation (58), we obtain the conclusion.
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