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BROWNIAN PROBABILITIES UNDER SYMMETRIC
REARRANGEMENT
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Abstract

We show that the probability that a Brownian motion lies in a given set
at an arbitrarily fixed time is increased under the symmetric rearrangement
of the set.
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1 Introduction

The goal of this note is to prove a monotonicity property for Brownian proba-
bilities under symmetric rearrangements. Specifically, we will consider the symme-
tric rearrangement of a set and a function, formally defined as follows.

For a Borel measurable set A ⊂ Rn of finite Lebesgue measure, the symmetric
rearrangement of A (see e.g., [4]), denoted by A∗, is the open ball centered at the
origin with the same Lebesgue measure as the set A, that is

A∗ = {x ∈ Rn : Vol (B (0, |x|)) < Vol (A)} , (1)

where |x| =
√
x21 + . . . + x2n denotes the Euclidean norm of x = (x1, . . . , xn) ∈ Rn,

B (x,R) = {y ∈ Rn : |y − x| < R} denotes the open ball centered at x ∈ Rn of
radius R > 0, and Vol (A) denotes the volume (Lebesgue measure) of A ⊂ Rn.

In particular note that if A = B (0, R), its symmetric rearrangement is just
A∗ = A = B (0, R).

The symmetric (nondecreasing) rearrangement of a given non-negative func-
tion f : Rn → [0,∞) which vanishes at infinity (i.e. Vol ({x ∈ Rn : f (x) > t}) <
∞ for all t > 0), is the function f∗ : Rn → [0,∞) defined by

f∗ (x) =

∫ ∞
0

1{y∈Rn:f(y)>t}∗ (x) dt, x ∈ Rn. (2)
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It can be shown (see [4], p. 81) that the symmetric rearrangement f∗ is a
non-decreasing, radially symmetric function, that is

f∗ (x) ≤ f∗ (y) and f∗ (x) = f∗ (|x|) ,

for any x, y ∈ Rn with |x| > |y|.
In the sequel we will need the following result showing that the symmetric

rearrangement of a radially symmetric decreasing function is the same as the
original function. More precisely we have the following.

Lemma 1. Let ϕ : [0,∞)→ [0,∞) be a strictly decreasing and continuous func-
tion with limt→∞ ϕ (t) = 0. If f : Rn → [0,∞) is given by f (y) = ϕ (|y|), then
f∗ = f .

Proof. Consider an arbitrarily fixed t > 0. If t ≥ ϕ (0), since ϕ is assumed strictly
decreasing, we have {y ∈ Rn : f (y) > t} = {y ∈ Rn : ϕ (|y|) > t ≥ ϕ (0)} = ∅, so
by definition we have {y ∈ Rn : f (y) > t}∗ = ∅ = {y ∈ Rn : f (y) > t} in this
case.

If t < ϕ (0), there exists R > 0 such that t = ϕ (R). We have

{y ∈ Rn : f (y) > t} = {y ∈ Rn : ϕ (|y|) > t = ϕ (R)}
= {y ∈ Rn : |y| < R}
= B (0, R) ,

and therefore {y ∈ Rn : f (y) > t}∗ = B (0, R)∗ = B (0, R) = {y ∈ Rn : f (y) > t} ,
since by the previous remark, open balls are invariant under symmetric rearrange-
ment.

We showed that for any t > 0 we have

{y ∈ Rn : f (y) > t}∗ = {y ∈ Rn : f (y) > t} ,

which combined with (2) and the layer cake representation of f (see for example
[4], Theorem 1.13) gives

f∗ (x) =

∫ ∞
0

1{y∈Rn:f(y)>t}∗ (x) dt =

∫ ∞
0

1{y∈Rn:f(y)>t} (x) dt = f (x) ,

for any x ∈ Rn, concluding the proof.

One important property of the symmetric rearrangement of a function is that
it increases the value of integrals, in the following sense.

Lemma 2 (Hardy-Littlewood inequality, [4], Theorem 3.4). If f, g : Rn → [0,∞)
are measurable functions vanishing at infinity, then∫

Rn

f (x) g (x) dx ≤
∫
Rn

f∗ (x) g∗ (x) dx, (3)

in the sense that when the left hand side is infinite, so is the right hand side.
Moreover, if g is a radially strictly decreasing function (i.e. g(|x|) < g(|y|) for

x, y ∈ Rn with |x| > |y|), then the above inequality holds iff f = f∗.
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2 Main result

The main result is the following

Theorem 1. If (Bt)t≥0 is an n−dimensional Brownian motion starting at the
origin, and A ⊂ Rn is a Borel measurable set with finite Lebesgue measure which
contains the origin, then for any t ≥ 0 we have

P 0 (Bt ∈ A) ≤ P 0 (Bt ∈ A∗) . (4)

Moreover, the equality holds in (4) if and only if A = A∗ a.e. with respect to
the Lebesgue measure.

Proof. The transition density of the n-dimensional Brownian motion starting at

x ∈ Rn (see e.g. [1]) is given by p (t, x, y) = 1

(2πt)n/2 e
− |x−y|2

2t .

Fixing an arbitrary t > 0, we have

P 0 (Bt ∈ A) =

∫
A
p (t, 0, y) dy =

∫
Rn

1A (y) p (t, 0, y) dy.

Applying Lemma 2 with f (y) = 1A (y) and g (y) = p (t, 0, y) = 1

(2πt)n/2 e
− |y|

2

2t ,

we obtain

P 0 (Bt ∈ A) ≤
∫
Rn

1∗A (y) p∗ (t, 0, y) dy.

It is not difficult to see that 1∗A (y) = 1A∗ (y) for any y ∈ Rn. Also, we

have p (t, 0, y) = 1

(2πt)n/2 e
− |y|

2

2t = ϕ (|y|), where ϕ (u) = 1

(2πt)n/2 e
−u2

2t is strictly

decreasing and continuous on [0,∞), with limu→∞ ϕ (u) = 0. By Lemma 1 we
have p∗ (t, 0, y) = p (t, 0, y), and therefore we obtain

P 0 (Bt ∈ A) ≤
∫
Rn

1∗A (y) p∗ (t, 0, y) dy (5)

=

∫
Rn

1A∗ (y) p (t, 0, y) dy

=

∫
A∗

p (t, 0, y) dy

= P 0 (Bt ∈ A∗) ,

concluding the first part of the proof.

For the second part, note that since g (y) = p (t, 0, y) is radially (symmetric)
strictly decreasing, the Hardy-Littlewood inequality also shows that the equality
in (5) can hold if and only if 1∗A = 1A, which is equivalent to A∗ = A a.e.,
concluding the proof.

We conclude with some open questions. The result in Theorem 1 shows that
the probability that Brownian motion hits a set of given volume (at a fixed, given
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time) is increased under the symmetric rearrangement of the set. We were led
to consider such symmetric rearrangement inequalities for Brownian motion as a
possible line of attack of the long-standing Gaussian correlation inequality, which
can be stated equivalently in terms of Brownian motion as

P 0 (Bt ∈ A ∩B) ≥ P 0 (Bt ∈ A)P 0 (Bt ∈ B) , (6)

or
P 0 (Bt ∈ A|Bt ∈ B) ≥ P 0 (Bt ∈ A) ,

for arbitrary convex sets A,B ⊂ Rn symmetric with respect to the origin. See for
example [3] or [5] for resolution of the conjecture in certain particular cases.

It seems natural to ask whether the result in Theorem 1 holds for other pro-
cesses besides Brownian motion, for instance for conditional Brownian motion, or
for the reflecting Brownian motion. We ask the following.

Question 1. In the notation of Theorem 1, is it true that the same inequality
holds if one conditions on the event that the Brownian motion belongs to a certain
measurable set B ⊂ Rn containing the origin? Explicitly, is it true that for any
t ≥ 0 we have

P 0 (Bt ∈ A|Bt ∈ B) ≤ P 0 (Bt ∈ A∗|Bt ∈ B)?

Question 2. Consider an arbitrarily smooth domain D ⊂ Rn containing the
origin, and let Xt be the reflecting Brownian motion on D starting at the origin
(see for example [2]). Is it true that for any Borel measurable set A ⊂ Rn with
finite Lebesgue measure which contains the origin, and any t ≥ 0 we have

P 0 (Xt ∈ A) ≤ P 0 (Xt ∈ A∗)?
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