Bulletin of the *Transilvania* University of Bra ov • Vol. 9 (58) - 2016 Series I: Engineering Sciences

INFLUENCE OF FIBER ORIENTATION ON TORSIONAL VIBRATIONS OF THIN-WALLED LAMINATED COMPOSITE BEAMS

M. VOJNIC PURCAR¹ A. PROKIC¹ M.BESEVIC¹ LJ. KOZARIC¹ S. ZIVKOVIC¹

Abstract: In the paper was presented the influence of fiber orientation on torsional vibrations of thin-walled composite beams with open cross-section. Equations of motion are derived using the principle of virtual displacements. For a case of arbitrary cross-section and arbitrary stacking sequence differential equations are coupled. Closed form solution was derived for I cross section with arbitrary fiber orientation in laminate.

Key words: composite, thin-walled, vibrations.

1. Introduction

Thin-walled composite structures are widely used in many fields of aerospace, automotive, nautical and other industries. Over a past few decades they became broadly adopted in civil engineering due to many advantages of this material, like lightweight feature in relation of corrosion resistance, low resistance, thermal expansion, good mechanical characteristics, etc.

The theory of thin walled beams was first investigated Vlasov [1]. Until now, research of stability and dynamic characteristics of these materials took a lot of attention and carried out intensively.

Wu and Sun [2] developed a simplified theory based on the Vlasov-our theory. It includes seven differential equations, which relate to the axial, horizontal and vertical displacement, torsion, derivatives of vertical and horizontal movement and rotation of the axis. Later these seven equations based on four coupled differential equations.

Lee [3] analyzed the free vibrations of thin-walled composite beams and crosssection with an arbitrary stacking sequence. To solve the problem, the finite element method was used and all the tones were included in the analysis.

Kim [4] represents the exact stiffness matrix that can be applied to the free vibration analysis of thin-walled and composite beams with symmetrical and arbitrary stacking sequence with respect to the center line. This work represents the first attempt to work with the exact frequencies of thin-walled composite beams with arbitrary stacking sequence.

Equations of motion are derived for a case of arbitrary cross-section and arbitrary stacking sequence, it is shown how suitable choice of cross-section affects on equations of motion. For a specific case, a

¹ University of Novi Sad, Faculty of Civil Engineering Subotica.

closed-form solution for the natural frequences of free harmonic vibrations was derived. Results for the example are obtained numerically and using the commercial software Ansys, they verify the accuracy of the derived solutions.

2. Equations of Motion

A thin-walled beam of an arbitrary open cross-section is considered (Fig.1). Based on Vlasov's theory [1], the displacements of an arbitrary point *S* of cross-section can be described by four components, three translations $u_p, v_{p,w}$ and rotation φ about the arbitrarily taken pole *P*.

Fig. 1. Arbitrary open cross section

$$u_* = u_p - \varphi(y - y_p)$$

$$v_* = v_p + \varphi(x - x_p)$$

$$w_* = w - u'_p x - v'_p y - \varphi' \omega_p$$
(1)

- where ω_p represents warping function

with respect to the pole P.

Based on the assumptions adopted in the theory of thin-walled beams, strain values that are different from zero are strain and shear.

$$\varepsilon_{z} = \frac{\partial w_{z}}{\partial z} = w' - u_{P}'' x - v_{P}'' y - \varphi'' \omega_{P}$$

$$\gamma_{sz} = \gamma_{s} = 2\varphi' e \qquad (2)$$

where e is the distance of the observed point from the middle surface measured along the normal n.

Reducing the normal stresses on the center of gravity and shear stresses on the pole *P*, for stress resultants the following expressions are obtained [2]:

$$N = \iint_{F} \sigma_{z} dF$$

$$M_{x} = \iint_{F} \sigma_{z} y dF$$

$$M_{y} = -\iint_{F} \sigma_{z} x dF$$

$$V_{x} = -\iint_{F} \tau_{zs} \sin \alpha dF$$

$$V_{y} = \iint_{F} \tau_{zs} \cos \alpha dF$$

$$T_{p} = \iint_{F} \tau_{zs} h_{p} dF$$

$$T_{s} = 2\iint_{F} \tau_{zs} e dF$$

$$M_{\omega_{p}} = \iint_{F} \sigma_{z} \omega_{p} dF$$
(3)

In Eqs. (3), N represents the axial force, M_x and M_y the bending moments with respect to the x and y-axis, V_x and V_y the shear forces in the x and y directions, T_p the torsion moment, T_s the Saint Venant torque, $M_{\omega P}$ the bimoment.

Equations of motion are derived using the principle *of* virtual displacements. A small element subjected to external loads *p* per unit area is considered (Fig. 2.).

Fig. 2. A small element

Stress vector is defined by:

$$\sigma = \tau_{zs} t + \sigma_z i_z =$$

$$= -\tau_{zs} \sin \alpha i_x + \tau_{zs} \cos \alpha i_y + \sigma_z i_z$$
(4)

The vector of virtual displacements is adopted in the same form as a vector of real displacements:

$$\delta W + \delta U = 0 \tag{6}$$

where δW is the virtual work of external loads and inertia forces through virtual displacements δu and δU the virtual work of actual stresses realized through virtual strains.

The virtual work of external loads and inertia forces per unit length of the element is:

$$\delta W = \iint_{F} (\sigma_{,z} \delta u + \sigma \delta u_{,z}) dF + + \int_{S} \overline{p} \delta u ds - \rho \iint_{F} \ddot{u} \delta u dF$$
(7)

where ρ is the density, and \ddot{u} is the acceleration vector given by:

get following equation for δW :

real displacements:

$$\begin{aligned}
\ddot{u} &= \ddot{u}_{*}i_{x} + \ddot{v}_{*}i_{y} + \ddot{w}_{*}i_{z} = \\
\delta u &= \delta u_{*}i_{x} + \delta v_{*}i_{y} + \delta w_{*}i_{z} = \\
&= \begin{bmatrix} \ddot{u}_{p} - \ddot{\varphi}(y - y_{p}) \end{bmatrix} i_{x} + \begin{bmatrix} \ddot{v}_{p} + \ddot{\varphi}(x - x_{p}) \end{bmatrix} i_{y} \\
&= \begin{bmatrix} \delta u_{p} - \delta \varphi(y - y_{p}) \end{bmatrix} i_{x} + \begin{bmatrix} \delta v_{p} + \delta \varphi(x - x_{p}) \end{bmatrix} i_{y} + (\ddot{w} - \ddot{u}'_{p}x - \ddot{v}'_{p}y - \ddot{\varphi}'\omega_{p}) i_{z} \\
&+ (\delta w - \delta u'_{p}x - \delta v'_{p}y - \delta \varphi'\omega_{p}) i_{z}
\end{aligned}$$
(8)
(5)
Substituting (4), (5) and (8) into (7) we

Virtual displacements parameters are arbitrary functions of coordinates and do not depend upon external loads.

The virtual work expression is:

$$\delta W = \iint_{F} \left\{ -\tau'_{zs} \sin \alpha \left[\delta u_{p} - \delta \varphi(y - y_{p}) \right] + \tau'_{zs} \cos \alpha \left[\delta v_{p} + \delta \varphi(x - x_{p}) \right] + \right. \\ \left. + \sigma'_{z} (\delta w - \delta v'_{p} y - \delta u'_{p} x - \delta \varphi' \omega_{p}) - \tau_{zs} \sin \alpha \left[\delta u'_{p} - \delta \varphi'(y - y_{p}) \right] + \right. \\ \left. + \tau_{zs} \cos \alpha \left[\delta v'_{p} + \delta \varphi'(x - x_{p}) \right] + \sigma_{z} (\delta w' - \delta v''_{p} y - \delta u''_{p} x - \delta \varphi'' \omega_{p}) \right] dF + \left. + \int_{S} \left\{ \overline{p}_{x} \left[\delta u_{p} - \delta \varphi(y - y_{p}) \right] + \overline{p}_{y} \left[\delta v_{p} + \delta \varphi(x - x_{p}) \right] + \right. \\ \left. + \overline{p}_{z} (\delta w - \delta v'_{p} y - \delta u'_{p} x - \delta \varphi' \omega_{p}) \right\} dS - \rho \iint_{F} \left(\delta u_{*} \ddot{u}_{*} + \delta v_{*} \ddot{v}_{*} + \delta w_{*} \ddot{w}_{*}) dF \right.$$

The virtual work of internal load due to the corresponding variation of deformation, per unit length of element, is:

$$\delta U = -\iint_{F} (\sigma_z \delta \varepsilon_z + \tau_s \delta \gamma_s) dF$$
(10)

(5)

Using expressions (2) for virtual strains we get:

$$\delta U = -\iint_{F} \left[\sigma_{z} (\delta w' - \delta u''_{p} x - \delta v''_{p} y - \delta \varphi'' \omega_{p}) + \tau_{s} 2\delta \varphi' e \right] dF$$
(11)

By suitable rearrangement of equations displacement parameters, the principle of
(9) and (11) in accordance with virtual virtual work may be expresses as:

$$\delta w \left\{ \iint_{F} \sigma'_{z} dF - \rho \iint_{F} \ddot{w}_{*} dF + \int_{s} \overline{p}_{z} ds \right\} + \delta u_{p} \left\{ -\iint_{F} \tau'_{zs} \sin \alpha dF - \rho \iint_{F} \ddot{u}_{*} dF + \int_{s} \overline{p}_{x} ds \right\} + \delta v_{p} \left\{ \iint_{F} \tau'_{zs} \cos \alpha dF - \rho \iint_{F} \ddot{v}_{*} dF + \int_{s} \overline{p}_{y} ds \right\} + \delta \phi \left\{ \iint_{F} \tau'_{zs} h_{p} dF + \rho \iint_{F} [(y - y_{p})\ddot{u}_{*} - (x - x_{p})\ddot{v}_{*}] dF + \int_{s} [\overline{p}_{y}(x - x_{p}) - \overline{p}_{x}(y - y_{p})] ds \right\}$$
(12)

$$-\delta u'_{p} \left\{ \iint_{F} (\sigma'_{z}x + \tau_{zs} \sin \alpha) dF - \rho \iint_{F} x \ddot{w}_{*} dF + \int_{s} \overline{p}_{z} x ds \right\} - \delta v'_{p} \left\{ \iint_{F} (\sigma'_{z}y + \tau_{zs} \cos \alpha) dF - \rho \iint_{F} y \ddot{w}_{*} dF + \int_{s} \overline{p}_{z} y ds \right\} - \delta v'_{p} \left\{ \iint_{F} (\sigma'_{z}\omega_{p} + \tau_{zs}h_{p} + 2\tau_{s}e) dF - \rho \iint_{F} \omega_{p} \ddot{w}_{*} dF + \int_{s} \overline{p}_{z} \omega_{p} ds \right\} = 0$$

Since the virtual displacement parameters can have arbitrary values, equation (12) will be satisfied if the expressions in great brackets vanish. The forces V_x, V_y, T_p can be eliminated from equation (13) in order to obtained four equations:

Using the expressions for stress
resultants (3) one obtains:
$$N' - \rho \iint_{F} \ddot{w}_{*} dF + p_{z} = 0$$
$$V'_{x} - \rho \iint_{F} \ddot{u}_{*} dF + p_{x} = 0$$
$$V'_{y} - \rho \iint_{F} \ddot{v}_{*} dF + p_{y} = 0$$
$$T'_{p} + \rho \iint_{F} \left[(y - y_{p}) \ddot{u}_{*} - (x - x_{p}) \ddot{v}_{*} \right] dF$$
$$+ m_{p} = 0$$
$$M'_{y} + V_{x} + \rho \iint_{F} x \ddot{w}_{*} dF + m_{y} = 0$$
$$M'_{x} - V_{y} - \rho \iint_{F} y \ddot{w}_{*} dF + m_{x} = 0$$
$$M'_{\omega p} - T_{p} + T_{s} - \rho \iint_{F} \omega_{p} \ddot{w}_{*} dF + m_{\omega_{p}} = 0$$
(13)

$$N' - \rho \iint_{F} \ddot{w}_{*} dF + p_{z} = 0$$

$$M''_{y} + \rho \iint_{F} x \ddot{w}_{*}' dF + \rho \iint_{F} \ddot{u}_{*} dF - p_{x} + m'_{y} = 0$$

$$M''_{x} - \rho \iint_{F} y \ddot{w}_{*}' dF - \rho \iint_{F} \ddot{v}_{*} dF + p_{y} + m'_{x} = 0$$

$$M''_{\omega p} + T'_{s} - \rho \iint_{F} \omega_{p} \ddot{w}_{*}' dF + \rho \iint_{F} [(y - y_{p}) \ddot{u}_{*} - (x - x_{p}) \ddot{v}_{*}] dF + m_{p} + m'_{\omega_{p}} = 0$$
(14)

The stress resultants can be expressed directly in terms of the displacements. The equations are written in matrix form:

$$\begin{bmatrix} N\\ M_{y}\\ -M_{x}\\ -M_{\omega p}\\ T_{s} \end{bmatrix} = \begin{bmatrix} F_{com} & -S_{x,com} & -S_{y,com} & -S_{\omega p,com} & S_{e,com}\\ -S_{x,com} & I_{xx,com} & I_{xy,com} & I_{x\omega p,com} & -I_{xe,com}\\ -S_{y,com} & I_{xy,com} & I_{y\omega p,com} & -I_{ye,com}\\ -S_{\omega p,com} & I_{x\omega p,com} & I_{y\omega p,com} & -I_{\omega pe,com} \\ S_{e,com} & -I_{xe,com} & -I_{ye,com} & -I_{\omega pe,com} \\ \end{bmatrix} \begin{bmatrix} w'\\ u''_{p}\\ v''_{p}\\ \phi''\\ \phi' \end{bmatrix}$$
(15)

Selecting appropriate position and orientation of coordinate axis, and also appropriate position of the pole P and the point zero O_1 we can write:

$$S_{\$p,com} = 0$$

$$I_{x\$p,com} = 0$$

$$I_{y\$p,com} = 0$$
(17)

$$S_{x,com} = 0$$

$$S_{y,com} = 0$$

$$I_{xy,com} = 0$$
(16)

_

$$\begin{bmatrix} F_{com} & 0 & 0 & 0 \\ 0 & I_{xx,com} & 0 & 0 \\ 0 & 0 & I_{yy,com} & 0 \\ 0 & 0 & 0 & I_{o_D \oplus_D,com} \end{bmatrix} \begin{bmatrix} w'' \\ u'''_P \\ \psi'''' \\ \varphi''' \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & S_{e,com} \\ 0 & 0 & 0 & -I_{xe,com} \\ 0 & 0 & 0 & 0 \\ -S_{e,com} & I_{xe,com} & I_{ye,com} \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} w' \\ u''_P \\ \psi''_P \\ \varphi'' \end{bmatrix} - \rho \begin{bmatrix} F & -S_x & -S_y & -S_{\oplus_P} \\ -S_x & I_{xx} & I_{xy} & I_{x\oplus_P} \\ -S_y & I_{xy} & I_{y\oplus_P} & I_{\oplus_P \oplus_P} \end{bmatrix} \begin{bmatrix} \ddot{w}' \\ \ddot{u}''_P \\ \ddot{\psi}''_P \\ \ddot{\psi}''_P \\ \dot{\varphi}'' \end{bmatrix} + \\ + \rho \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & F & 0 & y_P F - S_y \\ 0 & 0 & F & -x_P F + S_x \\ 0 & y_P F - S_y & -x_P F + S_x \end{bmatrix} \begin{bmatrix} \ddot{w} \\ \ddot{v}_P \\ \ddot{\psi}_P \\ \ddot{\psi}_P \\ \ddot{\psi}_P \\ \ddot{\psi}_P \end{bmatrix} = \begin{bmatrix} -p'_z \\ p_x - m'_y \\ p_y + m'_x \\ m_P + m'_{\Theta_P} \end{bmatrix}$$
(18)

Analyzing this system of equations we can conclude that the differential equations of motion cannot be separated, meaning

that the equations describing the axial, transverse and torsional vibrations must be solved simultaneously.

3. I Cross Section

If we observe the beams symmetrical around two axes with antisymmetric orientations of the laminas in relation to geometrical axis, elements of the matrix equal to zero are:

$$I_{xe,com} = I_{ye,com} = I_{\omega_D e,com} = 0$$
(19)

As the main central axis of the composite cross-section overlap with the axis of homogenius cross-section we can write:

$$S_x = S_y = S_{\omega_D} = I_{xy} = I_{x\omega_D} = I_{y\omega_D} = 0$$
 (20)

For double symmetry center of gravity overlaps with shear center, meaning

$$x_D = y_D = 0 \tag{21}$$

4. Solution for I Cross Section

The solution of equation (18) with assumptions (19) and (20) may be expressed in the form:

$$\begin{bmatrix} w(z,t) \\ \varphi(z,t) \end{bmatrix} = \begin{bmatrix} W(z) \\ \Phi(z) \end{bmatrix} \sin pt$$
(22)

Substituting Eq (22) into (18) yields:

$$\begin{bmatrix} F_{com} & 0 \\ 0 & I_{\omega_{D}\omega_{D},com} \end{bmatrix} \begin{bmatrix} W'' \\ \Phi''' \end{bmatrix} + \begin{bmatrix} 0 & S_{e,com} \\ -S_{e,com} & 0 \end{bmatrix} \begin{bmatrix} W' \\ \Phi'' \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 0 & I_{ee,com} \end{bmatrix} \begin{bmatrix} W' \\ \Phi'' \end{bmatrix} + \rho p^{2} \begin{bmatrix} -F & 0 \\ 0 & I_{\omega_{D}\omega_{D}} \end{bmatrix} \begin{bmatrix} W' \\ \Phi'' \end{bmatrix} - \rho p^{2} \begin{bmatrix} 0 & 0 \\ 0 & I_{D} \end{bmatrix} \begin{bmatrix} W \\ \Phi \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(23)

In the case of a beam with simply supported ends the end conditions are:

$$\begin{bmatrix} W \\ \Phi \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} W'' \\ \Phi'' \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(24)

Equation (24) will be satisfied by taking $\begin{bmatrix} W_{(z)} \end{bmatrix} \begin{bmatrix} C \end{bmatrix}^{2}$

$$\begin{bmatrix} W(z) \\ \Phi(z) \end{bmatrix} = \begin{bmatrix} C_W \\ C_{\Phi} \end{bmatrix} \sin \lambda_n z$$
(25)

Where C_W, C_U, C_V, C_{Φ} are the constants and $\lambda_n = \frac{n\pi}{L}$

Substituting Eq (25) into (23) results in:

$$\lambda_{n}^{4} \begin{bmatrix} 0 & 0 \\ 0 & I_{\omega_{D}\omega_{D},com} \end{bmatrix} \begin{bmatrix} C_{W} \\ C_{\Phi} \end{bmatrix} + \lambda_{n}^{2} \begin{bmatrix} -F_{com} & -S_{e,com} \\ S_{e,com} & I_{ee,com} \end{bmatrix} \begin{bmatrix} C_{W} \\ C_{\Phi} \end{bmatrix} + -\rho p^{2} \lambda_{n}^{2} \begin{bmatrix} 0 & 0 \\ 0 & I_{\omega_{D}\omega_{D}} \end{bmatrix} \begin{bmatrix} C_{W} \\ C_{\Phi} \end{bmatrix} - \rho p^{2} \begin{bmatrix} -F & 0 \\ 0 & I_{D} \end{bmatrix} \begin{bmatrix} C_{W} \\ C_{\Phi} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(26)

Setting the determinant of the above system equal to zero:

$$\begin{vmatrix} -\lambda_n^2 F_{com} + \rho p^2 F & -\lambda_n^2 S_{e,com} \\ \lambda_n^2 S_{e,com} & \lambda_n^4 I_{\omega_D} \omega_D, com + \lambda_n^2 I_{ee,com} - \rho p^2 \lambda_n^2 I_{\omega_D} \omega_D - \rho p^2 I_D \end{vmatrix} = 0$$
(27)

$$a \cdot p^4 + b \cdot p^2 + c = 0 \tag{28}$$

yields the following algebraic frequency equation

with the coefficients:

$$a = -\rho^{2} \lambda_{n}^{2} F I_{\omega_{D} \omega_{D}} - \rho^{2} I_{D} F$$

$$b = \rho \lambda_{n}^{4} F_{com} I_{\omega_{D} \omega_{D}} + \rho \lambda_{n}^{4} F I_{\omega_{D} \omega_{D}, com} + \rho \lambda_{n}^{2} I_{D} F_{com} + \rho \lambda_{n}^{2} F I_{ee, com}$$
(29)

$$c = -\lambda_{n}^{6} F_{com} I_{\omega_{D} \omega_{D}, com} - \lambda_{n}^{4} F_{com} I_{ee, com} + \lambda_{n}^{4} S_{e, com}^{2}$$

5. Numerical Example

Torsional frequences for the simply supported I-beam with arbitrary lamination in relation to the midline are evaluated. We consider I-beam that has a flange width 50cm and the height 60cm. Total thicknesses of the web and flanges are 3cm. It is assumed to have eight layers in laminate, material properties are:

 $E_1 = 144 \ GPa, E_2 = 9.65 \ GPa,$ $G_{12} = 4.14 \ GPa, \ \upsilon = 0.3$

	Frequency (Hz) of the beam in observed example								ole 1.
	[0/30/60/90] _s			[0/90/0/90] _s			$[30/-30/30/-30]_{s}$		
	Theory	Ansys	Error %	Theory	Ansys	Error %	Theory	Ansys	Error %
т	12 475	14 052	5 70	14.069	14711	1.72	15 070	16 240	7 70
1	13.475	14.253	5.78	14.968	14./11	1.72	15.079	16.240	7.70
II	47.885	48.105	0.46	55.905	52.616	5.88	47.990	49.032	2.16

6. Conclusion

Principal of virtual displacements is used for solving system of equations of thinwalled laminated beams.

Solution is derived for natural frequences of free harmonic vibrations. Accuracy of derived solution is confirmed with numerical example.

Torsional vibrations of simply supported beam obtained theoretically coincide with the solution obtained with the software package Ansys [5] and that confirms validation of derived solution. Fiber orientation has influence on the results.

Acknowledgements

Paper is part of the project ON174027 supported by Ministry of Education and Science of the Republic of Serbia.

References

- 1. Vlasov, V.,: *Thin-walled elastic beams*. Jerusalem. Israel Program for Scientific Translation, 1961
- Wu, X, Sun, CT. Simplifed theory for composite thin-walled beams. AIAA Journal, 1992;30(12).
- 3. Lee, J., Kim, SE.: Free vibration of thin walled composite beams with I cross section, Composite Structures 55(2002) 205-215
- 4. Kim, N., Shin, DK., Park, YS.: Dynamic stiffness matrix of thinwalled composite I-beam with symmetric and arbitrary laminations, Journal of Sound and Vibration 318 (2008) 364–388
- 5. Ansys, Inc., 275 Tehnology Dr Canonsburg, PA 15317, USA