
Bulletin of the Transilvania University of Braşov • Vol 9(58), No. 1 - 2016

Series III: Mathematics, Informatics, Physics, 97-110

A MODIFIED ALGORITHM FOR SOLVING THE INVERSE
MINIMUM COST FLOW PROBLEM UNDER THE

BOTTLENECK-TYPE HAMMING DISTANCE

Massoud AMAN2, Hassan HASSANPOUR3 and Javad TAYYEBI∗1

Abstract

Given an instance of the minimum cost flow problem, the corresponding
inverse problem is to modify the arc costs as little as possible so that a given
feasible flow becomes optimal to the modified minimum cost flow problem.
In this article, we study this inverse problem in that the modifications are
measured by the weighted bottleneck-type Hamming distance. We present a
new efficient algorithm to solve the inverse problem. Finally, we theoretically
compare the proposed algorithm with the previous one.

2010 Mathematics Subject Classification: 90C27, 03D15.
Key words: Inverse problem, Hamming distance, minimum cost flow

problem.

1 Introduction

For a particular optimization problem and a given feasible solution x0, the in-
verse problem is to adjust some parameters of the optimization problem as little
as possible to make x0 form an optimal solution to the modified problem. The
modifications can be measured by different distances as the l1, l2 and l∞ norms
and also, the weighted Hamming distances. The concept of inverse problems was
first proposed by Tarantola in geophysical sciences [11]. Subsequently, Burton
and Toint [5, 6] made use of this concept in combinatorial optimization and con-
sidered the inverse shortest path problem. Afterwards, several types of inverse
combinatorial optimization problems were considered by many authors (see [7, 9]
for a survey).
Two versions of the inverse minimum cost flow problems are studied in literature:

2Department of Mathematics, Faculty of Mathematical Sciences and Statistics, Birjand Uni-
versity, Birjand, Iran, e-mail: mamann@birjand.ac.ir

3Department of Mathematics, Faculty of Mathematical Sciences and Statistics, Birjand Uni-
versity, Birjand, Iran, e-mail: hhassanpour@birjand.ac.ir

1* Corresponding author, Department of Industrial Engineering, Birjand University of Tech-
nology, Birjand, Iran, e-mail: javadtayyebi@birjandut.ac.ir& javadtayyebi@birjand.ac.ir



98 M. Aman, H. Hassanpour and J. Tayyebi

the capacity inverse minimum cost flow problem and the (cost) inverse minimum
cost flow problem. In the capacity inverse minimum cost flow problem, we adjust
the arc capacities so that a feasible solution becomes optimal to the modified
problem. This problem is considered in [8, 13]. For the l1 norm and the sum-type
Hamming distance, it is shown that the problem is strongly NP-complete even on
bipartite networks. For the l∞ norm and the bottleneck-type Hamming distance,
algorithms are presented to solve the problem in strongly polynomial time. In the
(cost) inverse minimum cost flow problem, the initial cost vector is modified such
that a given feasible flow is optimal with respect to the new cost vector. Zhang and
Liu [15] used the optimality conditions of the linear programming problems and
proposed an efficient algorithm for solving the inverse problem under the l1 norm.
Ahuja and Orlin [2, 3] showed that the inverse of a linear programming problem
is a new linear programming problem and considered the inverse minimum cost
flow problem, a special case of inverse linear programming problems. When the
modifications of the cost vector are measured by the l1 norm, they showed the
inverse problem reduces to a unit capacity minimum cost flow problem. For the
l∞ norm, they converted the inverse problem into a minimum cost-to-time ratio
cycle problem. Jiang et al. [10] considered the inverse minimum cost flow problem
under both the sum-type and the bottleneck-type Hamming distances. For the
sum-type case, it is shown that the problem is APX-hard by reduction from the
weighted feedback arc set problem. In the bottleneck-type case, they proposed an
algorithm for solving the problem. Recently, we showed that their proposed algo-
rithm does not solve correctly the inverse problem due to some incorrect results
[12]. Then, we presented two algorithms to solve the inverse problem in O(m2n)
and O(mn log n) times [12, 14].
In this paper, we propose an algorithm for the bottleneck-type case. This algo-
rithm solves a shortest path problem in each iteration similar to the one presented
in [12]. It uses the concepts of sensitivity analysis to find shortest paths by using
the shortest paths obtained in the previous iteration efficiently. Its worst-case
complexity is O(m2n) similar to that of the previous one but it runs faster than
the previous one in practice because the computational cost of solving shortest
path problems decreases.
The rest of this article is organized as follows. In Section 2, we state some prelimi-
naries and notions. In Section 3, we present our proposed algorithm and compare
it with the previous one presented in [12]. Finally, we conclude in Section 4.

2 Some fundamental notions and problem definition

In this section, we review some fundamental notions used throughout this
article and also, formulate the inverse minimum cost flow problem.
Let G(V,A, c,p) be a connected and directed network where V = {1, 2, . . . , n} is
the set of nodes, A is the set of m arcs, p is the capacity vector for arcs and c is the
cost vector for arcs. Each node i ∈ V has an associated supply or demand of value
b(i). The well-known minimum cost flow problem minimizes the cost of sending



The inverse minimum cost flow problem 99

a flow x to the network G(V,A, c,p) under some balancing constraints over the
nodes and capacity constraints over the arcs. This problem can be formally stated
as follows [1]:

min
∑

(i,j)∈A

cijxij ,

s.t.
∑

(i,j)∈A

xij −
∑

(j,i)∈A

xji = bi ∀i ∈ V, (1)

0 ≤ xij ≤ pij ∀(i, j) ∈ A.

For a network G(V,A,p, c) and a feasible flow x0 of the network, the correspond-
ing residual network, denoted by G′(V,A′,x0,p′, c′), can be constructed by the
following algorithm.

Algorithm 1. ([10])

Step 1 The node set is still V .

Step 2 If (i, j) ∈ A and x0
ij < pij, then (i, j) ∈ A′, c′ij = cij and p′ij = pij − x0

ij.

Step 3 If (i, j) ∈ A and x0
ij > 0 then (j, i) ∈ A′, c′ji = −cij and p′ji = x0

ij.

We denote the arc sets created by steps 2 and 3 as A′1 and A′2, respectively. Let
us introduce some notations for a given feasible flow x0 of problem (1) as follows:

L = {(i, j) ∈ A : x0
ij = 0};

M = {(i, j) ∈ A : 0 < x0
ij < pij};

U = {(i, j) ∈ A : x0
ij = pij}.

The relationships between the arc sets defined are given in the following.

Property 1.

• (i, j) ∈ A′1 if and only if (i, j) ∈ L ∪M .

• (i, j) ∈ A′2 if and only if (j, i) ∈ U ∪M .

For each arc (i, j) ∈ A, the associated reduced cost is defined as cπij = cij −
πi + πj where πi, i ∈ V , is the ith variable of the corresponding dual problem.
The following lemma gives the complementary slackness optimality conditions for
a given feasible solution [1].

Theorem 1. A feasible flow x0 is optimal to problem (1) if and only if the fol-
lowing conditions hold:

• cπij ≥ 0 for each (i, j) ∈ L;



100 M. Aman, H. Hassanpour and J. Tayyebi

• cπij = 0 for each (i, j) ∈M ;

• cπij ≤ 0 for each (i, j) ∈ U ;

for some values of the dual variables π.

A special type of problem (1) is the shortest path problem when the upper
bounds are infinite, b(s) = n − 1 and b(i) = −1, i ∈ V \{s}, where s ∈ V is a
distinguished node called the source. Each basic feasible solution to the shortest
path problem corresponds to a spanning out-tree T rooted at node s. For a given
out-tree T and each j ∈ V , pred(j) is a node i so that (i, j) ∈ T . A node j is
called a successor of node i if pred(j) = i. The descendants of a node i are the
node i itself, its successors, successors of its successors, and so on. We denote the
descendants of a node i by desT (i). For a given out-tree T and every nontree arc
(i, j) ∈ A, we denote by Cij the unique cycle in T ∪{(i, j)}. It can be verified that
the reduced cost of arc (i, j) equals to

∑
(l,k)∈C̄ij

clk−
∑

(l,k)∈Cij
clk where C̄ij and

Cij contain respectively arcs of Cij in the direction and the opposite direction of
(i, j) [1].
We now define the inverse minimum cost flow problem. For an instance of the
minimum cost flow problem and a given feasible flow x0, the inverse minimum
cost flow problem under the bottleneck-type Hamming distance is to replace the
cost vector c with d so that the following conditions are satisfied [10, 12]:

• x0 is an optimal flow to the minimum cost flow problem defined onG(V,A,d,p).

• −lij ≤ dij − cij ≤ uij where lij ≥ 0 and uij ≥ 0 are respectively given
bounds for decreasing and increasing cij . These constraints are called the
bound constraints.

• The value max(i,j)∈AwijH(cij , dij) is minimized where wij > 0 is a penalty
for modifying cij and H(cij , dij) is the Hamming distance between cij and
dij , i.e., H(cij , dij) = 1 if cij 6= dij and H(cij , dij) = 0 otherwise.

By using Theorem 1, we can formulate the inverse minimum cost flow problem as
follows :

min max
(i,j)∈A

wijH(cij , dij),

dπij ≥ 0 ∀(i, j) ∈ L,
dπij = 0 ∀(i, j) ∈M, (2)

dπij ≤ 0 ∀(i, j) ∈ U,
−lij ≤ dij − cij ≤ uij ,

where dπij = dij − πi + πj for some values of the dual variables πi. In problem (2),
dij ’s and πi’s are variables to be determined. Without any loss of generality, we
henceforth assume that the values wij ’s are distinct. This assumption guarantees
that each wij is only associated with one arc (i, j).



The inverse minimum cost flow problem 101

3 Algorithm

In this section, we consider problem (2) and propose an efficient algorithm.
Sort the objective values of problem (2) in the nondecreasing order: let w0 = 0 ≤
w1 ≤ w2 ≤ . . . ≤ wm denote the sorted list of the objective values of the problem.
Each element of the sorted list (except w0 = 0) equals to the penalty of an arc. If
the optimal objective value is w0, then x0 is optimal to the initial network; else,
the initial network has to be modified.
The proposed algorithm is to find the least index k ∈ {0, 1, . . . ,m} so that there
exists a feasible solution of problem (2) with the objective value wk. Obviously,
a feasible solution with this property is optimal to problem (2). Suppose that
d is such a feasible solution. Since the objective value of d is equal to wk, it
follows that dij = cij for each (i, j) ∈ A with wij > wk. But the component
dij can be any value in the interval [cij − lij , cij + uij ] if wij ≤ wk. We only
restrict our attention to a special form of feasible solutions and look for such an
optimal solution. Let us provide some more details concerning this special form
by considering the following cases:

Case 1 ((i, j) ∈ L with wij ≤ wk) In this case, dij must satisfy the inequality
dπij = dij − πi + πj ≥ 0 if problem is feasible. Hence, we set dij equal to its
upper bound cij + uij to obtain the largest value of dπij .

Case 2 ((i, j) ∈ U with wij ≤ wk) In this case, dπij = dij−πi+πj ≤ 0 if problem
is feasible. Thus, we set dij equal to its lower bound cij − lij to obtain the
minimum value of dπij .

Case 3 ((i, j) ∈M with wij ≤ wk) In this case, theorem 1 implies that dij =
πi − πj .

Case 4 ((i, j) ∈ A with wij > wk) We set dij = cij to obtain a solution with the
objective value less than or equal to wk.

Now, we are in the position to introduce the special form of feasible solutions.
Suppose that (d, π) is a feasible solution to problem (2) with objective value less
than or equal to wk. We define a new cost vector d(k) as follows:

d
(k)
ij =


cij A\A(k),

cij + uij (i, j) ∈ L ∩A(k),

cij − lij (i, j) ∈ U ∩A(k),

dij (i, j) ∈M ∩A(k),

(3)

where A(k) = {(i, j) ∈ A : wij ≤ wk}. It is obvious that the objective value of
d(k) is at most wk. The following proposition is on the feasibility of d(k)

Proposition 1. If the ordered pair (d, π) is a feasible solution to problem (2)
with objective value less than or equal to wk, then (d(k), π) is also feasible where
d(k) is defined in (3).



102 M. Aman, H. Hassanpour and J. Tayyebi

Proof. It is easy to see that d(k) satisfies the bound constraints by its definition.
From the feasibility of (d, π) and the definition of d(k), the following expressions
hold:

• dij ≤ cij + uij = d
(k)
ij ∀(i, j) ∈ L ∩A(k);

• dij ≥ cij − lij = d
(k)
ij ∀(i, j) ∈ U ∩A(k);

• d(k)
ij = dij ∀(i, j) ∈ (A\A(k)) ∪M .

These imply that

• (d
(k)
ij )π = d

(k)
ij − πi + πj ≥ dij − πi + πj = dπij ≥ 0 ∀(i, j) ∈ L;

• (d
(k)
ij )π = d

(k)
ij − πi + πj ≤ dij − πi + πj = dπij ≤ 0 ∀(i, j) ∈ U ;

• (d
(k)
ij )π = d

(k)
ij − πi + πj = dij − πi + πj = dπij = 0 ∀(i, j) ∈M .

Thus, (d(k), π) is also feasible.

Proposition 1 guarantees the feasibility of (d(k), π) if a feasible solution (d, π)
with objective value less than or equal to wk exists. The feasibility of d(k) can
be identified even without introducing d and only by finding a convenient vector
π. Based on the constraints of problem (2), (d(k), π) is feasible if the following
inequalities system has at least one solution:

πi − πj ≤ cij + uij ∀(i, j) ∈ L ∩A(k), (4a)

πi − πj ≤ cij ∀(i, j) ∈ L\A(k), (4b)

πi − πj ≥ cij − lij ∀(i, j) ∈ U ∩A(k), (4c)

πi − πj ≥ cij ∀(i, j) ∈ U\A(k), (4d)

πi − πj = d
(k)
ij ∀(i, j) ∈M ∩A(k), (4e)

πi − πj = cij ∀(i, j) ∈M\A(k), (4f)

d
(k)
ij ≤ cij + uij ∀(i, j) ∈M ∩A(k), (4g)

d
(k)
ij ≥ cij − lij ∀(i, j) ∈M ∩A(k), (4h)

where πi, i ∈ V, and d
(k)
ij , (i, j) ∈ M ∩ A(k), are unknowns to be determined. By

using (4e), we eliminate the unknowns d
(k)
ij . Consequently, the system is converted



The inverse minimum cost flow problem 103

into

πi − πj ≤ cij + uij ∀(i, j) ∈ L ∩A(k),

πi − πj ≤ cij ∀(i, j) ∈ L\A(k),

πi − πj ≥ cij − lij ∀(i, j) ∈ U ∩A(k),

πi − πj ≥ cij ∀(i, j) ∈ U\A(k),

πi − πj = cij ∀(i, j) ∈M\A(k),

πi − πj ≤ cij + uij ∀(i, j) ∈M ∩A(k),

πi − πj ≥ cij − lij ∀(i, j) ∈M ∩A(k),

or equivalently,

πi − πj ≤ cij + uij ∀(i, j) ∈ L ∩A(k),

πi − πj ≤ cij ∀(i, j) ∈ L\A(k),

πj − πi ≤ −cij + lij ∀(i, j) ∈ U ∩A(k),

πj − πi ≤ −cij ∀(i, j) ∈ U\A(k),

πi − πj ≤ cij ∀(i, j) ∈M\A(k), (5)

πj − πi ≤ −cij ∀(i, j) ∈M\A(k),

πi − πj ≤ cij + uij ∀(i, j) ∈M ∩A(k),

πj − πi ≤ −cij + lij ∀(i, j) ∈M ∩A(k).

It is remarkable that each constraint of system (5) corresponds to an arc (i, j) in
the residual network G′(V,A′,x0,u′, c′) and vice versa. By using Property 1, the
inequalities system can be rewritten in the compact form

πi − πj ≤ c̄(k)
ij ∀(i, j) ∈ A′, (6)

where the vector c̄(k) is defined by

c̄
(k)
ij =


cij + uij (i, j) ∈ A′1 ∩A(k),

cij (i, j) ∈ A′1\A(k),

−cji + lji (i, j) ∈ A′2 ∩A(k),

−cji (i, j) ∈ A′2\A(k),

∀(i, j) ∈ A′. (7)

System (6) is known as a system of difference constraints. We wish to deter-
mine whether the system of difference constraints given by (6) has a feasible
solution, and if so, we want to identify a feasible solution. Define the network
G(V ′′, A′′, c(k)), called the constraint network, as follows:

V ′′ = V ∪ {s}
A′′ = A′ ∪ {(s, j) : j ∈ V }

c
(k)
ij =

{
c̄

(k)
ij (i, j) ∈ A′,

0 (i, j) ∈ A′′\A′.
(8)

The following lemma gives us the desired result.



104 M. Aman, H. Hassanpour and J. Tayyebi

Lemma 1. ([1]) System (6) has a solution π if and only if the shortest path
problem defined on G(V ′′, A′′, c(k)) contains no negative cycle and has the finite
shortest path distance πi from node s to each node i.

Theorem 2.

• If the shortest path problem defined on the constraint network G(V ′′, A′′, c(k))
has a finite optimal solution with the shortest path distances πi, i ∈ V , then
the solution (d(k), π) is feasible to problem (2) where d(k) is defined by (3)
and (4e).

• If the constraint network G(V ′′, A′′, c(k)) contains a negative cycle, then
problem (2) contains no feasible solution with the objective value less than
or equal to wk.

Proof. The proof of the first part is obvious from the above argument. We only
prove the second part by contradiction. Suppose that problem (2) has a feasible
solution (d, π) with the objective value less than or equal to wk. By Proposition
1, the solution (d(k), π) is also feasible where d(k) is defined by (3). Consequently,
system (6) has at least one solution. Based on Lemma 1, the constraint network
G(V ′′, A′′, c(k)) contains no negative cycle which is a contradiction.

Now, we are in a position to state a feasibility condition to problem (2).

Corollary 1. Problem (2) is infeasible if the network G(V ′′, A′′, c(m)) contains a
negative cycle where c(m) is defined by (7) and (8) for k = m.

Proof. Since the network G(V ′′, A′′, c(m)) contains a negative cycle, based on The-
orem 2, problem (2) contains no feasible solution with the objective value less than
or equal to wm. Therefore, the problem is infeasible because wm is the greatest
objective value.

We now explain our proposed algorithm with more details. The algorithm con-
tains at mostm+1 iterations corresponding to the objective values w0, w1, . . . , wm.
In the kth iteration, the algorithm solves the shortest path problem defined on
the network G(V ′′, A′′, c(m+1−k)), k = 1, 2, . . . ,m + 1, and one of the following
two cases occurs:

The shortest path problem has a finite optimal solution. Let πi, i ∈ V,
be the shortest path distance from node 1 to node i. Based on Theorem 2,
the solution (d(m+1−k), π) is feasible to problem (2) with the objective value
wm+1−k. In this case, the algorithm begins the next iteration for finding a
feasible solution with objective value better than wm+1−k, if one exists.

The network G(V ′′, A′′, c(m+1−k)) contains a negative cycle. Problem (2) con-
tains no feasible solution with objective value less than or equal to wm+1−k
(see Theorem 2). Hence, the algorithm terminates and the feasible solution
obtained from the previous iteration is optimal to problem (2).



The inverse minimum cost flow problem 105

Let us summarize our discussion. The algorithm finds a sequence of feasible so-
lutions d(m),d(m−1), . . . , until the current constraint network contains a negative
cycle. The last feasible solution found by the algorithm is optimal based on The-
orem 2. It is notable that if the algorithm identifies a negative cycle in the first
iteration, then problem (2) is infeasible (see Corollary 1).
Due to the little difference between the constraints networks corresponding to
two consecutive iterations, we use the concepts of sensitivity analysis to solve
the shortest path problems efficiently. Let T (m+1−k) denote the shortest path

tree and π
(m+1−k)
i , i ∈ V , be the shortest path distance of node s to node

i in the network G(V ′′, A′′, c(m+1−k)) for k = 1, 2, . . . ,m + 1. At the begin-
ning of the (k + 1)th iteration, we wish to obtain T (m−k) and π(m−k) by us-
ing T (m+1−k) and π(m+1−k) obtained from the previous iteration. Suppose that
(ik, jk) ∈ A is an arc with the penalty wm+1−k, Since the objective values are dis-
tinct, Am+1−k\Am−k = {(ik, jk)}. The following cases determine the differences
between the constraint networks corresponding to the kth and (k+1)th iterations,
i.e. G(V ′′, A′′, c(m+1−k)) and G(V ′′, A′′, c(m−k)), respectively:

• If (ik, jk) ∈ L, then the difference is in (ik, jk) ∈ A′ because c
(m+1−k)
ikjk

=

cikjk + uikjk and c
(m−k)
ikjk

= cikjk .

• If (ik, jk) ∈ U , then the difference is in (jk, ik) ∈ A′ because c
(m+1−k)
jkik

=

−cikjk + likjk and c
(m−k)
jkik

= −cikjk .

• If (ik, jk) ∈M , then the difference is in two arcs (ik, jk), (jk, ik) ∈ A′ because

c
(m+1−k)
ikjk

= cikjk +uikjk and c
(m+1−k)
jkik

= −cikjk+ likjk but c
(m−k)
ikjk

= cikjk and

c
(m−k)
jkik

= −cikjk .

Therefore, the difference between G(V ′′, A′′, c(m+1−k)) and G(V ′′, A′′, c(m−k)) is
at most in two arcs. Note that the modified costs of (ik, jk) and (jk, ik) in
G(V ′′, A′′, c(m−k)) are less than or equal to those in G(V ′′, A′′, c(m+1−k)).
Assume that the difference between G(V ′′, A′′, c(m+1−k)) and G(V ′′, A′′, c(m−k)) is
the cost of (ik, jk) ∈ L. The other cases can be discussed similarly. We now state
how to obtain the current shortest path tree T (m−k) by considering the following
cases.

(ik, jk) /∈ T (m+1−k): If the current reduced cost of (ik, jk), i.e., (c(m−k))πikjk =

c
(m−k)
ikjk

−π(m+1−k)
ik

+π
(m+1−k)
jk

, is nonnegative, then the optimality conditions
hold and the network modification does not change the shortest path tree.
thus, T (m−k) = T (m+1−k) and π(m−k) = π(m+1−k). Else, one of the following
two cases occur: (I) The network G(V ′′, A′′, c(m−k)) contains the negative
cycle Cikjk when ik ∈ desT (jk). In this case, the algorithm terminates
because problem (2) has no feasible solution with objective value less than
or equal to wm−k based on Theorem 2. (II) If ik /∈ desT (jk), then the
network contains no negative cycle and consequently, T (m−k) and π(m−k)



106 M. Aman, H. Hassanpour and J. Tayyebi

Figure 1: (a) The network G(V ′′, A′′, c(m+1−k)); (b) The network
G(V ′′, A′′, c(m−k)).

can be obtained as follows (see Figure 1):

T (m−k) = (T (m+1−k)\{(pred(jk), jk)}) ∪ {(ik, jk)}

and

π
(m−k)
j =

{
π

(m+1−k)
j − π(m+1−k)

jk
+ π

(m+1−k)
ik

+ c
(m−k)
ikjk

j ∈ desT (m+1−k)(jk),

π
(m+1−k)
j j /∈ desT (m+1−k)(jk),

for each j ∈ V .

(ik, jk) ∈ T (m+1−k): T (m−k) may be quite different from T (m+1−k) if the cost of
(ik, jk) is modified. Thus, we solve the shortest path problem defined on
G(V ′′, A′′, c(m−k)) without using T (m+1−k). One can apply the FIFO label-
correcting algorithm as a subroutine to solve the shortest path problem or
to identify a negative cycle [1].

Summarily, if the difference between the constraint networks is in a tree arc, then
the algorithm solves the shortest path problem and else, it identifies the shortest
path tree by using the shortest path tree of the previous iteration.
Now, we are ready to state formally our proposed algorithm for solving problem
(2).

Algorithm 2.

Initialization: Set k = 1.



The inverse minimum cost flow problem 107

Step 1: Solve the shortest path problem defined on G(V ′′, A′′, c(m+1−k)) by the
FIFO label-correcting algorithm. If the network contains a negative cycle,
then stop because problem (2) is infeasible (see Corollary 1). Else, set T to
the obtained shortest path tree and πi to the shortest path distance from s to
i for each i ∈ V and go to Step 2.

Step 2: Determine arc (ik, jk) with the penalty wm+1−k. If (ik, jk) ∈ T or
(jk, ik) ∈ T , then go to Step 3 and else, go to Step 4.

Step 3: Solve the shortest path problem defined on G(V ′′, A′′, c(m−k)) by the FIFO
label-correcting algorithm. If the problem has a finite optimal solution, then
set T to the obtained shortest path tree and πi to the shortest path distance
from s to i for each i ∈ V and go to Step 5. Else, go to Step 6.

Step 4: If (ik, jk) ∈ L ∪M and the reduced cost of (ik, jk) is negative, then

• if ik ∈ desT (jk), then go to Step 6;

• else, update T and π as follows: πj = πj − πjk + πik + cikjk for each
j ∈ desT (jk) and T = (T\{pred(jk), jk)})∪{(ik, jk)} and go to Step 5.

If (ik, jk) ∈ U ∪M and the reduced cost of (jk, ik) is negative, then

• if jk ∈ desT (ik), then go to Step 6;

• else, update T and π as follows: πj = πj − πik + πjk − cikjk for each
j ∈ desT (ik) and T = (T\{pred(ik), ik)})∪ {(jk, ik)} and go to Step 5.

Step 5: If k > m, then stop because the initial cost vector c with the objective
value w0 = 0 is optimal to problem (2); else, set k = k+ 1 and go to Step 2.

Step 6: Stop and construct d(m+1−k) by using (3) and (4e). The vector (d(m+1−k), π)
is an optimal solution to problem (2) with the objective value wm+1−k.

We now analyze the complexity of Algorithm 2. Since the objective values
wm, wm−1, . . . , w0 are traversed one by one, the number of iterations is at most
m + 1. In each iteration, either the FIFO label-correcting algorithm runs or
the shortest path tree and the shortest distances are updated. The complexity
of the FIFO label-correcting algorithm is O(mn) and the computational cost of
updating is at most O(n). Therefore, the bottleneck operation in Algorithm
2 is the number of running the FIFO label-correcting algorithm. So we have
established the following result.

Theorem 3. Algorithm 2 solves problem (2) in O(m2n) time.

3.1 Comparison of the two algorithms

In [12], we presented an algorithm for solving problem (2) with the same com-
plexity O(m2n). Now, we compare Algorithm 2, called the backward algorithm,
with the one presented in [12] which is called the forward algorithm.



108 M. Aman, H. Hassanpour and J. Tayyebi

The forward algorithm traverses the networks G(V ′′, A′′, c(k−1)) instead of the
networks G(V ′′, A′′, c(m+1−k)) for k = 1, 2, . . . ,m + 1. The backward algorithm
finds a feasible solution d(m+1−k), in the kth iteration and terminates when a
negative cycle is identified while the forward algorithm detects the presence of a
negative cycle in each iteration and terminates when a feasible solution d(k−1) is
found. The backward algorithm determines whether or not problem (2) is feasible
in the first iteration but the other determines it in the last iteration.
A major difference of both the algorithms is that the forward algorithm uses
the FIFO label-correcting algorithm as a subroutine in each iteration while the
backward algorithm uses it in some iterations. In fact, in each iteration of the
backward algorithm, either the FIFO label-correcting algorithm is used or the
shortest path tree of the previous iteration is updated. The first occurs with the
probability n−1

m and the second with the probability m+1−n
m . Hence, the probabil-

ity of running the FIFO label-correcting algorithm is relatively small, especially
for dense networks. Therefore, the backward algorithm is faster than the forward
algorithm in practice.
It is notable that the forward algorithm gives only one feasible solution of problem
(2) which is also optimal but the backward algorithm can produce a feasible solu-
tion in each iteration. Since the computational cost of finding an optimal solution
could be large for large networks, one can use some feasible solutions obtained
by the backward algorithm as approximations of optimal solutions whenever the
available time for solving the problem is short.

4 Conclusions

In this article, we considered the inverse minimum cost flow problem under the
weighted bottleneck-type Hamming distance. An efficient algorithm is proposed
for solving the problem. The algorithm solves a shortest path problem in each
iteration and uses the concepts of sensitivity analysis to improve the running time.

References

[1] Ahuja, R. K., Maganti, T. L. and Orlin, J. B., Network flows, Prentice-Hall,
Englewood Cliffs, 1993.

[2] Ahuja, R. K. and Orlin, J. B., Inverse optimization, Operation Research 49
(2001), 771-783.

[3] Ahuja, R. K. and Orlin, J. B., Combinatorial algorithms for inverse network
flow problems, Networks 40, (2002), 181-187.

[4] Bazaraa, M. S. and Jarvis, J. J., Linear programming and network flows,
Wiley, New York, 1977.

[5] Burton, D. and Toint, Ph. L., On an instance of the inverse shortest paths
problem, Mathematical Programming 53 (1992) 45-61.



The inverse minimum cost flow problem 109

[6] Burton, D. and Toint, Ph. L., On the use of an inverse shortest paths algo-
rithm for recovering linearly correlated costs, Mathematical Programming 63
(1994), 1-22

[7] Demange, M. and Monnot, J., An introduction to inverse combinatorial prob-
lems, In: Paradigms of Combinatorial Optimization (Problems and New ap-
proaches, Wiley, London-Hoboken (UK-USA), Vangelis Th. Paschos (2010)
547-586.

[8] Güler, Ç. and Hamacher, H. W., Capacity inverse minimum cost flow prob-
lem, J. Comb. Optim. 19 (2010), 43-59.

[9] C. Heuberger, Inverse optimization: A survey on problems, methods, and
results, Journal of Combinatorial Optimization 8 (2004) 329-361.

[10] Jiang, Y., Liu., Wuc, B. and Yao, E., Inverse minimum cost flow problems
under the weighted Hamming distance, European Journal of Operational Re-
search 207 (2010), 50-54.

[11] Tarantola, A., Inverse problem theory: methods for Data Fitting and model
parameter estimation, Elsevier, Amsterdam, recovering linearly correlated
costs, Mathematical Programming 63 (1987), 1-22.

[12] Tayyebi, J. and Aman, M., Note on Inverse minimum cost flow problems
under the weighted Hamming distance, European Journal of Operational Re-
search 234 (2014), 916-920.

[13] Tayyebi, J. and Aman, M., Capacity inverse minimum cost flow problem
under the Hamming distances, Iranian Journal of Operations Research, In
press (2016).

[14] Tayyebi, J. and Aman, M., On inverse linear programming problems under
the bottleneck-type weighted Hamming distance, Discrete Applied Mathemat-
ics, (2015) DOI: 10.1016/j.dam.2015.12.017.

[15] Zhang, J. and Liu, Z., Calculating some inverse linear programming problems,
Journal of Computational and Applied Mathematics 72 (1996), 261-273.



110 M. Aman, H. Hassanpour and J. Tayyebi


