
Bulletin of the Transilvania University of Braşov • Vol 9(58), No. 1 - 2016

Series III: Mathematics, Informatics, Physics, 111-118

WAVE ALGORITHM FOR MAXIMUM FLOW IN
SEMI-BIPARTITE NETWORKS

Laura CIUPALĂ1

Abstract

In this paper we develop a new algorithm for solving the maximum flow
problem in semi-bipartite networks. This algorithm is a specific implementa-
tion of the generic algorithm described in [4], obtained by performing passes
through the active nodes. During such a pass, all the active nodes are exam-
ined in nonincreasing order of their exact distance labels, and their excesses
are, partially or totally, moved closer to the sink node. After O(n2

1) passes,
all the active node excesses are moved to the sink node or back to the source
node and a maximum flow is obtained.

2000 Mathematics Subject Classification: 90B10, 90C90.
Key words: network flow, network preflow, semi-bipartite network, max-

imum flow.

1 Introduction

Among the most studied network optimization problems an impotant place
is reserved to the network flow problems since the middle of the last century.
A reason for this is, certainly, the fact that these problems arise when solving
practical problems from very different domains.

The network flow problems on which the researchers were focused in the last
six decades include the maximum flow problems. There are many algorithms,
divided in two classes: augmenting path algorithms and preflow algorithms, for
determining a maximum flow in a network. In the last decades, the research
contributions consisted mostly in improving the computational time of the maxi-
mum flow algorithms by using enhanced data structures, techniques of scaling the
problem data etc ([1], [3], [6], [7], [8], [9]).

An alternative way to improve the computational time of an algorithm is to
use the particularities of the problem or, in our case, of the network ([2]). In this
paper, we will focus on semi-bipartite networks, a particular case of networks. This

1Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail:
laura ciupala@yahoo.com

112 Laura Ciupală

type of networks is useful when modelling several problems arising in a variety of
domains.

In this paper, we develop a wave algorithm for establishing a maximum flow
in a semi-bipartite network, as a special implementation of the generic preflow
algorithm for semi-bipartite networks developed in [4]. The wave preflow algo-
rithm has some common features with the FIFO preflow algorithm described in
[5]. But unlike this algorithm, it examines the active nodes in nonincreasing order
of their distance labels. As in the execution of the FIFO preflow algorithm, the
node examination terminates when either the node excess becomes zero or the
node is relabeled. The wave preflow algorithm determines a maximum flow in a
semi-bipartite network in O(n2

1n) time.

2 Notation and definition

Let G = (N,A) be a directed graph, defined by a set N of n nodes and a set A
of m arcs. Each arc (x, y) ∈ A has a nonnegative capacity c(x, y). In the directed
network G = (N,A, c, s, t), two special nodes are specified: s is the source node
and t is the sink node.

Let X and Y be two subsets of the node set N . We define the set of arcs
(X,Y) = {(x, y)|(x, y) ∈ A, x ∈ X, y ∈ Y }.

For any function g : N ×N → R+ and for any function h : N → R+ we define

g(X,Y) =
∑
(X,Y)

g(x, y)

and
h(X) =

∑
X

h(x).

If X = {x} or Y = {y} then we will use g(x, Y) or g(X, y) instead of g(X,Y).
A flow from the source node s to the sink node t in the directed network

G = (N,A, c, s, t) is a function f : A→ R+ which meets the follwing conditions:

f(x,N)− f(N, x) =

v, x = s

0, x 6= s, t
−v, x = t

(1)

0 ≤ f(x, y) ≤ c(x, y), ∀(x, y) ∈ A. (2)

We refer to v as the value of the flow f . A flow whose value is maximum is a
maximum flow.

A preflow is a function f : A → R+ satisfying relations (2) and the next
conditions:

f(x,N)− f(N, x) ≥ 0, ∀x ∈ N\{s, t}. (3)

Let f be a preflow. We define the excess of a node x ∈ N in the following
manner:

Wave algorithm 113

e(x) = f(x,N)− f(N, x)

Thus, for any preflow f , we have e(x) ≥ 0,∀x ∈ N\{s, t}. We say that a node
x ∈ N\{s, t} is active if e(x) > 0 and balanced if e(x) = 0. A preflow f for which
e(x) = 0, ∀x ∈ N\{s, t} is a flow. Consequently, a flow is a particular case of
preflow.

Let f be a flow from the source node s to the sink node t in the directed
network G = (N,A, c, s, t). The residual capacity of the arc (x, y) corresponding
to the flow f is defined as r(x, y) = c(x, y)−f(x, y)+f(y, x) and it is the maximum
amount of additional flow that can be sent from x to y using both arcs (x, y) and
(y, x). By convention, if an arbitrary arc (x, y) /∈ A, then we can add (x, y) to A
and we will consider that c(x, y) = 0.

The residual network G(f) = (N,A(f)) corresponding to flow f contains all
those arcs with strictly positive residual capacity.

A network G = (N,A) is called bipartite if its node set N can be partitioned
into two subsets N1 and N2 , such that all arcs have one endpoint in N1 and the
other in N2.

A network G = (N,A) is called semi-bipartite if its node set N can be par-
titioned into two subsets N1 and N2, such that no arc has both its endpoints in
N2. Thus, a semi-bipartite network can contain arcs having both their endpoints
in N1. Consequently, as its name implies, the notion of semi-bipartite network is
less restrictive than the notion of bipartite network.

We consider a semi-bipartite capacitated network G = (N,A, c, s, t). We dis-
tinguish two special nodes in network G: a source node s and a sink node t. We
assume without loss of generality that s ∈ N2. If s ∈ N1, then we could create a
new source node s′ ∈ N2 and add a new arc (s′, s) with sufficiently large capacity.

Let n = |N |, n1 = |N1|, n2 = |N2|, m = |A| and C =max{c(i, j)|(i, j) ∈ A}.
In the residual network G(f), the distance function d : N → N with respect to

a given preflow f is a function from the set of nodes to the nonnegative integers.
We say that a distance function is valid if it satisfies the following conditions:

d(t) = 0

d(i) ≤ d(j) + 1, for every arc(i, j) ∈ A(f).

We refer to d(i) as the distance label of node i.

We say that the distance labels are exact if, for each node i, d(i) equals the
length of the shortest path from node s to node i in the residual network.

We refer to an arc (i, j) from the residual network as an admissible arc if
d(j) = d(i) + 1; otherwise it is inadmissible.

Let G = (N,A, c, s, t) be a semi-bipartite directed network, N = N1∪N2. Any
path in the network G or in the residual network G(f), that is also a semi-bipartite
network, can have at most 4n1 arcs. Consequently, if we set d(s) = 4n1+1 then the

114 Laura Ciupală

residual network will never contain an admissible directed path from the source
node s to the sink node t.

Lemma 1. [4] In the semi-bipartite directed network G = (N,A, c, s, t), for any
node i ∈ N , d(i) < 4n1 + 1.

When elaborating an algorithm for solving a given problem, there is always a
quite difficult task consisting in establishing an equilibrium between its generality
and its efficiency. An algorithm that can be applied only to a particular type of
networks should be, of course, more efficient than one applicable to any network.
In this paper, we will develop a wave algorithm for maximum flow in semi-bipartite
networks, which are networks meeting the additional constraint that there are no
arcs with both endpoints in the node set N2, but, as their name implies, they are
not so restrictive as the bipartite networks.

In the generic preflow algorithm for maximum flow in semi-bipartite networks
developed in [4], the only nodes that are allowed to become active are those from
the node set N1. In order to do this, this algorithm pushes flow on individual
admissible arcs having both endpoint in N1 or along admissible paths of length
two having both the starting node and the ending node in N1. The generic
preflow algorithm for maximum flow in semi-bipartite networks runs in O(n2

1m)
time. Because it is a generic algorithm, this algorithm doesn’t specify any rule
for selecting the active node from N1 from which it performs a push if possible or
a relabel operation otherwise. We can impose different rules for the active node
selection, each of them yielding different specific implementations of the generic
preflow algorithm. One of these is the algorithm described in the next section.

3 Wave preflow algorithm for maximum flow in semi-
bipartite networks

The generic preflow algorithm for a maximum flow in a semi-bipartite network
[4] starts by saturating all the successors of the source node s. In this way these
nodes become active. The existance of an active node means that the preflow
isn’t a flow. So, the the main step of the generic preflow algorithm is to select,
without a specified rule, an active node, say node i, and to diminuate or eliminate
its excess by pushing it closer to the sink node t. This closeness is measured using
the exact distance labels. Consequently, the flow is pushed only along admissible
arcs and only to nodes in the node set N1, because only these nodes are allowed to
become active. If node i remains active after such a push, it isn’t compulsory for
the algorithm to select it again in the next iteration. This process is continuated
until there are no more active nodes, which means that the preflow became a flow.
Moreover, it became a maximum flow.

We can establish the following rule: if during an iteration the algorithm selects
an active node, say i, and it performs a push after that the node remains active,

Wave algorithm 115

then it is mandatory that the algorithm selects the node i in the following iteration.
These succesive selections of an active node i until either it becomes inactive,
either it is relabelled, constitute an active node examination.

The wave preflow algorithm for maximum flow in semi-bipartite networks is a
specific implementation of the generic preflow algorithm described above. After
saturating the outcoming arcs from the source node s and, consequently, creating
excesses in the successor nodes of s, the wave algorithm performs passes over the
active nodes. In each pass, the active nodes are examined in nonincreasing order
of their exact distance labels. In order to do this, two priority queues L and
L1 are maintained, both of them having the priority d. The nodes that become
active during saturating the outcoming arcs from the source node s are added to
the queue L. While this queue isn’t empty, the algorithm removes the highest
priority node, say i, from it. If there is an admissible arc outgoing from i, whose
head node is in N1 or an admissible path of length two from i to a node in N1,
then the algorithm pushes flow from i and, if in this way a new node becomes
active, it adds it to the queue L1. If there isn’t an admissible arc outgoing from
i, whose head node is in N1 nor an admissible path of length two from i to a
node in N1, then the node i is relabeled and added to the queue L1. When the
queue L becomes empty, a pass through the active node is completed and all the
nodes from L1 are moved to L. The algorithm repeats the same process until
both queues L and L1 are empty, which means that the preflow became a flow.
Moreover, it became a maximum flow.

The wave preflow algorithm for maximum flow in semi-bipartite networks is
the following:

Wave Preflow Algorithm;
Begin

f = 0;
determine the residual network G(f);
compute the exact distance labels d in the residual network G(f);
L = ∅;
for each arc (s, i) ∈ A do
begin

f(s, i) = c(s, i);
if (e(i) > 0) and (i 6= t) then

add i to the queue L with priority d(i);
end;

end;
d(s) = 4n1 + 1;
L1 = ∅ ;
while (L 6= ∅) and (L1 6= ∅) do
begin

if L = ∅ then
begin

L = L1;

116 Laura Ciupală

L1 = ∅;
end;

remove node i with the highest priority from L;
push/relabel(i);

end
end.

procedure push/relabel(i);
begin

B = false;
repeat
if there is an admissible arc (i, j) in G(f) then

if j ∈ N1 then begin
push g =min{e(i), r(i, j)} units of flow on the arc (i, j);
if (j /∈ L1) and (j 6= s) and (j 6= t) then

add j to queue L1 with priority d(j);
end;
else

if there is an admissible arc (j, k) in G(f) then begin
push g =min{e(i), r(i, j), r(j, k)} units of flow along the
path i− j − k;
if (k /∈ L1) and (k 6= s) and (k 6= t) then

add k to queue L1 with priority d(k);
end;
else d(j) =min{d(k)|(j, k) ∈ A(f)}+ 1;

else begin
d(i) =min{d(j)|(i, j) ∈ A(f)}+ 1;
B = true;

end
until e(i) = 0 or B;
if e(i) > 0 then

add i to queue L1 with priority d(i);
end;

Theorem 1. (
¯

Correctness theorem) The wave preflow algorithm computes cor-
rectly a maximum flow in the semi-bipartite network G = (N, A, c, s, t).

Proof. The correctness of the wave preflow algorithm follows from the correctness
of the generic preflow algorithm for maximum flow in semi-bipartite networks
([4]), whose specific implementation it is.

Theorem 2. The wave preflow algorithm for maximum flow in semi-bipartite
networks performs O(n2

1) passes over active nodes.

Wave algorithm 117

Proof. To determine an upper bound of the number of passes performed by the
algorithm we will use the potential function Φ = max{d(i)|i is an active node}.
The initial value of Φ is at most 4n1. During an arbitrary pass over the active
node, one of the following 3 cases might appear:

1. The algorithm performs at least one relabel of an active node. In this case
Φ increases. The total increase in Φ caused by relabelling active nodes is,
considering Lemma 1, at most 4n2

1.

2. The algorithm doesn’t relabel any active node, but performs at least one
relabel of an inactive node. In this case the value of Φ doesn’t change.

3. The algorithm doesn’t relabel any (active or inactive) node. In this case the
value of Φ decreases by at least 1 because the excess of every active node is
moved closer to the sink along paths of length 1 or 2.

Combining these 3 cases, it follows that the algorithm performs O(n2
1) passes

over active nodes.

An important consequence of this theorem is the following:

Theorem 3. (
¯

Complexity theorem) The wave preflow algorithm runs in O(n2
1n)

time.

References

[1] Ahuja, R., Magnanti, T., Orlin, J., Network Flow. Theory, Algorithms and
Applications, Prentice Hall, New Jersey, 1993.

[2] Ahuja, R., Orlin, J., Stein, C., Tarjan, R., Improved Algorithms for Bipartite
Network Flow, SIAM Journal on Computing 23 (1994), no.5, 906-933.

[3] Bang-Jensen, J., Gutin, G., Digraphs, Theory, Algorithms and Applications,
Springer-Verlag, London, 2001.

[4] Ciupală, L., A generic preflow algorithm for maximum flow in semi-bipartite
networks, Bulletin of the Transilvania University of Braşov 7(56) (2014),
no. 1, 103-108.

[5] Ciupală, L., FIFO preflow algorithm for maximum flow in semi-bipartite net-
works, Bulletin of the Transilvania University of Braşov 8(57) (2015), no.
1, 117-122.

[6] S. Fujishige, A maximum flow algorithm using MA ordering, Operation Re-
search Letters 31(3) (2003), 176-178.

118 Laura Ciupală

[7] S. Fujishige, S. Isotani, New maximum flow algorithms by MA orderings and
scaling, Journal of the Operational Research Society of Japan 46(3) (2003),
243-250.

[8] S. Kumar, P. Gupta, An incremental algorithm for the maximum flow prob-
lem, Journal of Mathematical Modelling and Algorithms 2(1) (2003), 1-16.

[9] A. Schrijver, On the history of the transportation and maximum flow prob-
lems, Mathematical Programming 91(3) (2002), 437-445.

