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BENCHMARK SOLUTIONS FOR STOKES FLOWS IN
CYLINDRICAL AND SPHERICAL GEOMETRY
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Abstract

Benchmark analytic solutions are obtained for systems of the Stokes and
continuity equations with variable viscosity and density for cylindrical and
spherical geometries. These particular analytic solutions can be used for test-
ing computational algorithms. Examples of such implementations to bench-
marking of the multigrid method are presented.
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1 Introduction

Mathematical models and computational schemes for geophysical problems
are, usually, complicated [1, 2]. To be sure in the computational results, it is
necessary to verify the model and the algorithm. Comparison with direct ex-
perimental result is impossible in many cases. Geophysicists, usually, compare
results of different computational approaches [3, 4]. Benchmarking, i.e. compar-
ison with known analytical result in a particular situation, is preferable. For the
Cartesian geometry, a few analytical particular solutions for different situations
are known (see, e.g., [5, 6, 9, 10]. As for the cylindrical and spherical geometry,
the corresponding examples are rare [11, 12]. At the same time, this case is the
most difficult for computing. It is interesting that the same mathematical prob-
lem appears in the theory of flows through nanostructures, e.g., nanotubes [7, 8].
In the present paper we obtain a series of analytical solutions for the Stokes and
continuity equations in spherical and cylindrical geometry. For the case of varying
viscosity and density, it has the form:

∇ · σ = −ρG, (1)

∇(ρv) = 0. (2)

Herevis velocity, ηis a dynamic viscosity,σis the total stress tensor,pis a pressure,Gis
a gravitational force.
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2 Problem solution in cylindrical coordinate system

We consider equations (1), (2) in cylindrical coordinates (r, ϕ, z)and construct
a solution for the case when the functions depend only on the radius r. Let
vr = vr(r), vϕ = vϕ(r), vz = vz(r), P = P (r), η = η(r), ρ = ρ(r), G = G(r).
Then, equations (1) transform to the form:

2ηr−1v,r + 2η′v,r + 2ηv,,r − 2ηr−2vr − P ′ = −ρGr,
η′v,φ − r

−1η′vφ + ηv,,φ + r−1ηv,φ − ηr
−2v,φ = −ρGφ,

ηr−1v,z + η′v,z + ηv,,z = −ρGz.

Equation (2) takes the form:

ρr−1vr + ρ′vr + ρv,r = 0

Integration gives us expressions for velocity component and pressure:

vr = c(rρ)−1,

vφ = c1f(r) + c2r + C1(r)f(r) + C2(r)r, (3)

vz = −
r∫

1

(ηr2)
−1(

r2∫
1

r1ρGzdr1 + c1)dr2 + c2,

and

P (r) =

∫
(ρGr+2ηr−1v,r + 2η′v,r + 2ηv,,r − 2ηr−2vr)dr. (4)

where

f(r) = exp(

r∫
1

(
1

r2
+

1

ηr32
(

r2∫
1

1

ηr31
dr1 + C)−1)dr2),

C1(r) =

∫
rρGφ

η(f − f ′r)
dr,

C2(r) = −
∫

fρGφ
η(f − f ′r)

dr

3 Problem solution in spherical coordinate system

We seek particular solutions such that P = P (r), vr = vr(r), vθ = vθ(r, θ),
vφ = vφ(r, θ) , ρ = ρ(r), η = η(r),G = Gr(r). In this case, equations (1),(2)
simplify considerably. Equation (1) takes the form:

1

r2
∂

∂r
(r22η

∂vr
∂r

) +
1

r sin θ

∂

∂θ
(ηr

∂

∂r
(
vθ
r

) sin θ)−

−1

r
2η(

1

r

∂vθ
∂θ

+
vr
r

)− 1

r
2η(

vr
r

+
vθ
r
cotθ)− ∂P

∂r
= −ρGr,
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1

r2
∂

∂r
(r2ηr

∂

∂r
(
vθ
r

)) +
1

r sin θ

∂

∂θ
(2η(

1

r

∂vθ
∂θ

+
vr
r

) sin θ) +

+
1

r
η(r

∂

∂r
(
vθ
r

))− 1

r
2η(

vr
r

+
vθ
r
cotθ)cotθ − 1

r

∂P

∂θ
= 0,

1

r2
∂

∂r
(r3η

∂

∂r
(
vφ
r

)) +
1

r sin θ

∂

∂θ
(η(

sin θ

r

∂

∂θ
(
vφ

sin θ
)) sin θ) +

+η
∂

∂r
(
vφ
r

) + η(
sin θ

r2
∂

∂θ
(
vφ

sin θ
))cotθ − 1

r sin θ

∂P

∂φ
= 0.

The continuity equation (2) transforms into the following one:

1

r2
∂

∂r
(ρr2vr) +

1

r sin θ

∂

∂θ
(ρvθ sin θ) = 0.

For case η = brα, we obtain the following solutions of the equations:

vr =
1

ρr2

∫
ρrvθ1dr, vθ = vθ1 cot θ, vφ = r(c1

∫
1

ηr4
dr + c2) sin θ, (5)

P (r) =

∫
(ρGr +

1

r2
∂

∂r
(r22η

∂vr
∂r

)− η ∂
∂r

(
vθ1
r

)− 4η
vr
r2

+ 2η
1

r2
vθ1)dr. (6)

Here b, α are constants,vθ1 = ArC1 + rC2 , C1,2 = 1
2(−(α+ 1)±

√
(α+ 1)2 + 4α),

α ≤ −3− 2
√

2 or α ≥ −3 + 2
√

2.

4 Multigrid method and numerical convergence tests

The scheme for solving the Stokes equations by multigrid method in Carte-
sian coordinates is described in book [1]. We derive similar schemes for cylindri-
cal and spherical geometries.As usual, an algorithm of multigrid method contains
smoothing, restriction and prolongation operations. Cylindrical coordinates are
orthogonal coordinates. So, the implementation of the prolongation and restric-
tion operations in our method is not different from that in the case of Cartesian
coordinates. Smoothing operation can be implemented on the basis of the Gauss-
Seidel iterations with pressure updates computed from local divergence scaled to
local viscosity.

This scheme for cylindrical coordinates has been tested by comparing with
the analytical solutions of (1), (2). The scheme of algorithm testing is as follows.
Consider some particular analytical solution (3), (4):vr = r−1,vφ = r + r−2,vz =
r−1,P (r) = 2r−1in the domain 1 ≤ r ≤ 2,0 ≤ φ ≤ 1,0 ≤ z ≤ 1 (ρ = const,G =
0,η = ar). We calculate the values for velocity and pressure given by our analytical
solution and take these values as the boundary conditions for numerical algorithm.
The deviation of the numerical solution values from the analytical solution is
related with the error of the multigrid scheme. The dependence of the relative
errorε on the grid stepd (in logarithmic scale) for multigrid scheme is shown in
Figure.1. Positive slope means the convergence of the algorithm.

In the same way, we test the scheme for spherical geometry. Consider a ?ow
in a parallelepiped (in spherical coordinates): 1 ≤ r ≤ 2,0.5 ≤ θ ≤ 1.5,0 ≤ φ ≤ 1.
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Figure 1: Error norm via the grid resolution in logarithmic scale for L2-error:
solid line- pressure, dashed line- vr , dotted line- vφ , dash-dot line- vz.

We take Gr = 10,Gθ = 0,Gφ = 0,ρ = const(ρ = 5), η = cr3(c = 1). Benchmark
solution (6) has the following form:

vr = r
√
7−2/
√

7, vθ = r
√
7−2 cot(θ), vφ = r−5 sin(θ), P (r) = 1.176r

√
7 + ρGrr.

Correspondingly, the error norms convergence is characterized by the following
picture (Figure.2) showing the relative errorε dependence on the grid stepd (in
logarithmic scale).
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Figure 2: Error norm via the grid resolution in logarithmic scale for L2-error:
solid line–pressure, dashed line –vr, dotted line –vθ, dash-dot line –vφ.
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