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SOME CHARACTERIZATIONS OF KENMOTSU
MANIFOLDS ADMITTING A QUARTER-SYMMETRIC

METRIC CONNECTION

Uday Chand DE1, Dhananjoy MANDAL2 and Krishanu MANDAL3

Abstract

In this paper we study certain curvature properties of Kenmotsu mani-
folds with respect to the quarter-symmetric metric connection. First we in-
vestigate Weyl projective symmetric Kenmotsu manifolds with respect to the
quarter-symmetric metric connection. Next, we study Kenmotsu manifolds
satisfying the curvature condition P̃ ·S̃ = 0, where P̃ and S̃ are the projective
curvature tensor and Ricci tensor respectively with respect to the quarter-
symmetric metric connection. Further, we discuss about pseudoprojectively
flat and φ-projectively semisymmetric Kenmotsu manifolds with respect to
the quarter-symmetric metric connection. Finally, we give an example of
a 5-dimensional Kenmotsu manifold admitting a quarter-symmetric metric
connection for illustration.
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1 Introduction

In a Riemannian manifold M a linear connection ∇̃ is called a quarter sym-
metric connection [8] if the torsion tensor T of the connection ∇̃

T (X,Y ) = ∇̃XY − ∇̃YX − [X,Y ] (1)

satisfies
T (X,Y ) = η(Y )φX − η(X)φY, (2)
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where η is a 1-form and φ is a (1, 1) tensor field. Moreover, a linear connection ∇̃
is said to be a metric connection of M if

(∇̃Xg)(Y,U) = 0, (3)

where X,Y, U ∈ χ(M), where χ(M) is the set of all differentiable vector fields
on M . A linear connection ∇̃ satisfying both (2) and (3) is said to be a quarter-
symmetric metric connection [8]. If we change φX by X, then the connection
is known as semi-symmetric metric connection [29]. Thus the notion of quarter-
symmetric connection generalizes the notion of the semi-symmetric connection.
Semi-symmetric metric connections have been studied by several authors such
as Barman [1], De [5], Özgür and Sular [16], Ozen et al [17, 18], Prvanovic [20],
Prvanovic and Pušić [21], Smaranda and Andonie [24], Singh and Pandey [25] and
many others.

Let M be an n-dimensional Riemannian manifold. If there exists a one-to-
one correspondence between each coordinate neighborhood of M and a domain in
Euclidean space such that any geodesic of the Riemannian manifold corresponds
to a straight line in the Euclidean space, then M is said to be locally projectively
flat. For n ≥ 3, M is locally projectively flat if and only if the well-known
projective curvature tensor P vanishes. Here P is defined by [26]

P (X,Y )Z = R(X,Y )Z − 1

n− 1
[S(Y,Z)X − S(X,Z)Y ], (4)

for all X,Y, Z ∈ χ(M), where R is the curvature tensor and S is the Ricci tensor of
type (0, 2). In fact, M is projectively flat if and only if it is of constant curvature.
Thus the projective curvature tensor is the measure of the failure of a Riemannian
manifold to be of constant curvature.

A Riemannian manifold (M, g) is called locally symmetric if its curvature
tensor R is parallel (that is, ∇R = 0). The notion of semisymmetric, a proper
generalization of locally symmetric manifold, is defined by R(X,Y ) ·R = 0, where
R(X,Y ) acts on R as a derivation. A complete intrinsic classification of these
manifolds was given by Szabo in [28]. A Riemannian manifold is said to be Weyl
projective semisymmetric if the curvature tensor P satisfies R(X,Y ) · P = 0,
where R(X,Y ) acts on P as a derivation.
We define endomorphisms R(X,Y ) and X ∧A Y by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

(X ∧A Y )Z = A(Y, Z)X −A(X,Z)Y,

respectively, where X,Y, Z ∈ χ(M), χ(M), A is the symmetric (0, 2)-tensor and
∇ is the Levi-Civita connection.

Quarter-symmetric metric connection in a Riemannian manifold have been
studied by several authors such as Mandal and De [14], Rastogi [22, 23], Yano and
Imai [30], Mukhopadhyay, Roy and Barua [15], Han et al [9], Biswas and De [3]
and many others. Recently, Sular, Özgür and De [27] studied quarter-symmetric
metric connection in a Kenmotsu manifold.
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Motivated by these circumstances in this paper we study some curvature con-
ditions in a Kenmotsu manifold admitting a quarter-symmetric metric connection.
The paper is organized as follows: In section 2, we present a brief account of Ken-
motsu manifolds. In section 3, we discuss the curvature tensor and the Ricci tensor
of a Kenmotsu manifold with respect to the quarter-symmetric metric connection.
In the next section we study Weyl projective symmetric Kenmotsu manifolds with
respect to the quarter-symmetric metric connection and prove that the manifold is
an Einstein manifold with respect to the Levi-Civita connecction. In section 5, we
prove that a Kenmotsu manifold satisfies the curvature condition P̃ · S̃ = 0, where
P̃ and S̃ are the projective curvature tensor and the Ricci tensor respectively with
respect to the quarter-symmetric metric connection, if and only if the manifold is
an Einstein manifold with respect to the quarter-symmetric metric connection. In
the next two sections we study pseudoprojectively flat Kenmotsu manifolds and
φ-projectively semisymmetric Kenmotsu manifolds with respect to the quarter-
symmetric metric connection, respectively and both the cases the manifold is an
Einstein manifold with respect to the Levi-Civita connection. Finally, we give an
example of a 5-dimensional Kenmotsu manifold admitting a quarter-symmetric
metric connection to verify some results.

2 Kenmotsu manifolds

Let M be an n (= 2m+1)-dimensional almost contact metric manifold carries
an almost contact metric structure (φ, ξ, η, g), where φ is a (1, 1)-tensor field, ξ
associated vector field, η a 1-form and g the Riemannian metric satisfying the
following conditions [2]:

φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η(φX) = 0, (5)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), (6)

g(φX, Y ) = −g(X,φY ), g(X, ξ) = η(X), (7)

for all X,Y ∈ χ(M). If an almost contact metric manifold satisfies

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX, (8)

where ∇ denotes the Levi-Civita connection of g, then M is said to be a Kenmotsu
manifold [12]. In a Kenmotsu manifold the following relations hold [12, 27, 11]:

∇Xξ = X − η(X)ξ, (9)

(∇Xη)Y = g(X,Y )− η(X)η(Y ). (10)

R(X,Y )ξ = η(X)Y − η(Y )X, (11)

R(ξ,X)Y = η(Y )X − g(X,Y )ξ, (12)

S(X, ξ) = −(n− 1)η(X), (13)
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where R is the curvature tensor, S the Ricci tensor. From (9) we see that divξ =
n− 1, for what a Kenmotsu manifold is not compact. It is well known [12] that a
Kenmotsu manifold M2m+1 is locally a warped product I×f N

2m where N2m is a
Kähler manifold, I is an open interval with coordinate t and the warping function
f , defined by f = cet for some positive constant c.
A Kenmotsu manifold M is said to be an η-Einstein manifold if the Ricci tensor
S satisfies the following equation

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where a and b are some scalars. For b = 0, the manifold M is an Einstein manifold.
Kenmotsu manifolds have been studied by several authors such as Calin [4],

De and Pathak [7], Jun, De and Pathak [11], Pitis [19], Kirichenko [13], Hong et
al [10] and many others.

3 Curvature tensor of a Kenmotsu manifold with re-
spect to the quarter-symmetric metric connection

In a Kenmotsu manifold the quarter-symmetric metric connection ∇̃ and the
Levi-Civita connection ∇ are related by [27]

∇̃XY = ∇XY − η(X)φY, (14)

for all vector fields X,Y on M .
Let R̃ and R be the Riemannian curvature tensor with respect to the quarter-
symmetric metric connection and Levi-Civita connection respectively of a Ken-
motsu manifold. Then R̃ and R are related by [27]

R̃(X,Y )Z = R(X,Y )Z + η(X)g(φY,Z)ξ − η(Y )g(φX,Z)ξ

−η(X)η(Z)φY + η(Y )η(Z)φX. (15)

Contracting (15) we have [27]

S̃(Y, Z) = S(Y,Z) + g(φY,Z), (16)

where S̃ and S are the Ricci tensor with respect to the quarter-symmetric metric
connection and Levi-Civita connection, respectively. Moreover, for a Kenmotsu
manifold with respect to the quarter-symmetric metric connection the following
relations hold [27]:

R̃(X,Y )ξ = η(X)Y − η(Y )X − η(X)φY + η(Y )φX, (17)

R̃(X, ξ)Y = g(X,Y )ξ − η(Y )X − g(φX, Y )ξ + η(Y )φX, (18)

R̃(ξ,X)ξ = X − η(X)ξ − φX, (19)

S̃(X, ξ) = S(X, ξ) = −(n− 1)η(X). (20)
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Further, it is noted that [27] the Ricci tensor S̃ with respect to the quarter-
symmetric metric connection is not symmetric.
Applying (15) and (16) in (4) gives

P̃ (X,Y )Z = R(X,Y )Z + η(X)g(φY,Z)ξ − η(Y )g(φX,Z)ξ

−η(X)η(Z)φY + η(Y )η(Z)φX

− 1

n− 1
[S(Y,Z)X + g(φY,Z)X − S(X,Z)Y − g(φX,Z)Y ].(21)

Making use of (11)-(13) in (21), we obtain

P̃ (ξ, Y )Z = g(φY,Z)ξ − g(Y,Z)ξ − η(Z)φY

− 1

n− 1
[S(Y,Z)ξ + g(φY,Z)ξ], (22)

P̃ (X,Y )ξ = η(Y )φX − η(X)φY, (23)

P̃ (ξ, Y )ξ = −φY. (24)

It should be note that
P̃ (X,Y )Z = −P̃ (Y,X)Z, (25)

for all X,Y and Z ∈ χ(M).

4 Weyl projective symmetric Kenmotsu manifolds with
respect to the quarter-symmetric metric connection

In this section we study Weyl projective symmetric Kenmotsu manifolds with
respect to the quarter-symmetric metric connection ∇̃. At first we prove the
following:

Theorem 1. Let M be an n(= 2m + 1)-dimensional Kenmotsu manifold. If M
is Weyl projective symmetric Kenmotsu manifolds with respect to the quarter-
symmetric metric connection, then M is an Einstein manifold with respect to the
Levi-Civita connection.

Proof. Assume that M is an n(= 2m+1)-dimensional Weyl projective symmetric
Kenmotsu manifolds with respect to the quarter-symmetric metric connection.
Therefore we have (R̃(X,Y ) · P̃ )(U, V ) = 0 for all X,Y, U and V ∈ χ(M). This is
equivalent to

R̃(X,Y )P̃ (U, V )W − P̃ (R̃(X,Y )U, V )W

−P̃ (U, R̃(X,Y )V )W − P̃ (U, V )R̃(X,Y )W = 0, (26)

where X,Y, U, V,W ∈ χ(M).
Substituting X = U = ξ in the above equation gives

R̃(ξ, Y )P̃ (ξ, V )W − P̃ (R̃(ξ, Y )ξ, V )W

−P̃ (ξ, R̃(ξ, Y )V )W − P̃ (ξ, V )R̃(ξ, Y )W = 0. (27)
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Making use of (18) and (19) in (27) we have

η(P̃ (ξ, V )W )Y − g(Y, P̃ (ξ, V )W )ξ − η(P̃ (ξ, V )W )φY

+g(φY, P̃ (ξ, V )W )ξ − P̃ (Y, V )W + η(Y )P̃ (ξ, V )W

+P̃ (φY, V )W − η(V )P̃ (ξ, Y )W + η(V )P̃ (ξ, φY )W

−η(W )P̃ (ξ, V )Y + g(Y,W )P̃ (ξ, V )ξ + η(W )P̃ (ξ, V )φY

−g(φY,W )P̃ (ξ, V )ξ = 0. (28)

Using (21), (22) and (24) in (28) and then taking inner product with arbitrary
vector field Z, we obtain

g(φV,W )g(Y, Z)− g(V,W )g(Y,Z)− g(φV,W )η(Y )η(Z)

+g(φV, Y )η(W )η(Z)− g(φV,W )g(φY,Z) + g(V,W )g(φY,Z)

−g(R(Y, V )W,Z)− g(φY,W )η(V )η(Z) + g(V, Y )η(W )η(Z)

+g(φV,Z)η(W )η(Y ) + g(R(φY, V )W,Z) + g(Y,W )η(V )η(Z)

+g(φY,W )g(φV,Z)− g(Y,W )g(φV,Z)

+
1

n− 1
{S(φY,W )g(V,Z)− S(Y,W )g(V,Z)− g(φY,W )g(V,Z)

−g(Y,W )g(V,Z) + g(V,Z)η(Y )η(W ) + S(Y,W )η(V )η(Z)

+g(φY,W )η(V )η(Z)− S(φY,W )η(V )η(Z) + g(Y,W )η(V )η(Z)

+S(V, Y )η(W )η(Z) + g(φV, Y )η(W )η(Z)− S(V, φY )η(W )η(Z)

−g(V, Y )η(W )η(Z)} = 0. (29)

Substituting V = W = ei in (29), where {ei}(1 ≤ i ≤ n) is an orthonormal basis
of the tangent space at any point of the manifold Mn, we have

−ng(Y,Z) + ng(φY,Z)− S(Y, Z) + S(φY,Z)− g(φY,Z)

−g(Y,Z) + η(Y )η(Z) +
1

n− 1
{S(φY,Z) + η(Y )η(Z)

−g(Y, Z)− S(Y,Z)− g(φY,Z)} = 0. (30)

Replacing Y by φY in (30) yields

−ng(φY,Z)− ng(Y, Z)− S(φY,Z)− S(Y,Z)− η(Y )η(Z)

+g(Y, Z)− g(φY,Z) +
1

n− 1
{g(Y,Z)− S(φY,Z)− η(Y )η(Z)

−S(Y,Z)− g(φY,Z)} = 0. (31)

Adding (30) and (31), it follows that

S(Y, Z) + g(φY,Z) = −(n− 1)g(Y,Z). (32)

Interchanging Y and Z in (32) gives

S(Z, Y ) + g(φZ, Y ) = −(n− 1)g(Z, Y ). (33)
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Adding (32) and (33) and then applying (7) we get

S(Y, Z) = −(n− 1)g(Y,Z),

which shows that the manifold is an Einstein manifold with respect to the Levi-
Civita connection. Thus our theorem is proved.

5 Kenmotsu manifolds satisfying the curvature condi-
tion P̃ · S̃ = 0

In this section we consider a Kenmotsu manifold satisfying the curvature con-
dition

(P̃ (X,Y ) · S̃)(U, V ) = 0,

which is equivalent to

S̃(P̃ (X,Y )U, V ) + S̃(U, (P̃ (X,Y )V ) = 0. (34)

Substituting X = U = ξ in the above equation we have

S̃(P̃ (ξ, Y )ξ, V ) + S̃(ξ, (P̃ (ξ, Y )V ) = 0. (35)

Using (24) and (20) in (35) we obtain

S̃(φY, V ) + (n− 1)η(P̃ (ξ, Y )V ) = 0. (36)

Making use of (16) and (22) in (36) it follows that

S(φY, V ) + η(Y )η(V )− ng(Y, V )

+(n− 1)g(φY, V )− S(Y, V )− g(φY, V ) = 0. (37)

Putting Y = φY in the above equation yields

−S(Y, V )− ng(φY, V )− (n− 1)g(Y, V )

−S(φY, V ) + g(Y, V )− η(Y )η(V ) = 0. (38)

Adding (37) and (38) we get

S(Y, V ) + g(φY, V ) + (n− 1)g(Y, V ) = 0. (39)

Applying (16) in (39) gives

S̃(Y, V ) = −(n− 1)g(Y, V ), (40)

from which it follows that the manifold is an Einstein manifold with respect to
the quarter-symmetric metric connection.
Conversely, if the manifold is an Einstein manifold of the form (40), then it is
obvious that S̃(P̃ (X,Y )U, V ) + S̃(U, (P̃ (X,Y )V ) = 0, for any X,Y, U, V ∈ χ(M),
that is, P̃ · S̃ = 0. By the above discussions we have the following:
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Theorem 2. An n(= 2m+ 1)-dimensional Kenmotsu manifold satisfies the cur-
vature condition P̃ · S̃ = 0 if and only if the manifold is an Einstein manifold with
respect to the quarter-symmetric metric connection.

Again interchanging Y and V in (39) we obtain

S(V, Y ) + g(φV, Y ) + (n− 1)g(V, Y ) = 0. (41)

Adding (39) and (41) and also using (7) we have

S(Y, V ) = −(n− 1)g(Y, V ),

that is, the manifold is an Einstein manifold with respect to the Levi-Civita
connection. Hence, we can state the following:

Corollary 1. If an n(= 2m + 1)-dimensional Kenmotsu manifold satisfies the
curvature condition P̃ · S̃ = 0, then the manifold is an Einstein manifold with
respect to the Levi-Civita connection.

6 Pseudoprojectively flat Kenmotsu manifolds with
respect to the quarter-symmetric metric connection

This section is devoted to study pseudoprojectively flat Kenmotsu manifolds
with respect to the quarter-symmetric metric connection.

A Kenmotsu manifold is said to be pseudoprojectively flat [6] if the following
condition holds

g(P (φX, Y )Z, φW ) = 0, (42)

for all X,Y, Z and W ∈ χ(M).
Therefore we have

g(P̃ (φX, Y )Z, φW ) = 0. (43)

Making use of (21) and (43) we obtain

g(R(φX, Y )Z, φW ) =
1

n− 1
[S(Y,Z)g(φX, φW ) + g(φY,Z)g(φX, φW )

−S(φX,Z)g(Y, φW ) + g(X,Z)g(Y, φW )

−η(X)η(Z)g(Y, φW )] + η(Y )η(Z)g(X,φW ). (44)

Replacing X by φX and W by φW in (44) implies

g(R(φ2X,Y )Z, φ2W ) =
1

n− 1
[S(Y,Z)g(φ2X,φ2W ) + g(φY,Z)g(φ2X,φ2W )

−S(φ2X,Z)g(Y, φ2W ) + g(φX,Z)g(Y, φ2W )]

+η(Y )η(Z)g(φX, φ2W ). (45)



Quarter-symmetric metric connection 47

Making use of (5) we get

g(R(φ2X,Y )Z, φ2W )

= g(R(X,Y )Z,W )− η(W )g(R(X,Y )Z, ξ)

−η(X)g(R(ξ, Y )Z,W ) + η(X)η(W )g(R(ξ, Y )Z, ξ). (46)

Applying (5) and the above equation in (45) gives

g(R(X,Y )Z,W )− η(W )g(R(X,Y )Z, ξ)

−η(X)g(R(ξ, Y )Z,W ) + η(X)η(W )g(R(ξ, Y )Z, ξ)

=
1

n− 1
[S(Y, Z)g(X,W )− S(Y,Z)η(X)η(W ) + g(φY,Z)g(X,W )

−g(φY,Z)η(X)η(W )− S(X,Z)g(Y,W ) + S(X,Z)η(Y )η(W )

−(n− 1)g(Y,W )η(X)η(Z) + (n− 1)η(X)η(Y )η(Z)η(W )

−g(φX,Z)g(Y,W ) + g(φX,Z)η(Y )η(W )] + g(X,φZ)η(Y )η(Z). (47)

Putting X = W = ei in (47), where {ei}(1 ≤ i ≤ n) is an orthonormal basis of
the tangent space at any point of the manifold Mn, we get

S(Y,Z)− g(R(ξ, Y )Z, ξ) =
n− 2

n− 1
[S(Y,Z) + g(φY,Z)]− η(Y )η(Z). (48)

Using (12) and (48) we obtain

S(Y, Z) = (n− 2)g(φY,Z)− (n− 1)g(Y,Z). (49)

Interchanging Y and Z in (49) yields

S(Z, Y ) = (n− 2)g(φZ, Y )− (n− 1)g(Z, Y ). (50)

Adding (49) and (50), we have S(Y,Z) = −(n − 1)g(Y,Z), for all Y,Z ∈ χ(M).
Thus we see that the manifold is an Einstein manifold with respect to the Levi-
Civita connection. This leads to the following:

Theorem 3. An n(= 2m+1)-dimensional pseudoprojectively flat Kenmotsu man-
ifold with respect to the quarter-symmetric metric connection is an Einstein man-
ifold with respect to the Levi-Civita connection.

7 φ-projectively semisymmetric Kenmotsu manifolds
with respect to the quarter-symmetric metric con-
nection

A Kenmotsu manifold is said to be φ-projectively semisymmetric if P (X,Y ) ·
φ = 0 holds on M , for any X,Y ∈ χ(M). In this section we consider M be an
n(= 2m+ 1)-dimensional φ-projectively semisymmetric Kenmotsu manifold with
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respect to the quarter-symmetric metric connection. Therefore P̃ (X,Y ) · φ = 0
implies

(P̃ (X,Y ) · φ)Z = P̃ (X,Y )φZ − φP̃ (X,Y )Z = 0, (51)

for any X,Y and Z ∈ χ(M).
Substituting X = ξ in (51) we have

(P̃ (ξ, Y ) · φ)Z = P̃ (ξ, Y )φZ − φP̃ (ξ, Y )Z = 0. (52)

Applying (22) in (52) we obtain

g(Y,Z)ξ − g(Y, φZ)ξ − 1

n− 1
S(Y, φZ)ξ

− 1

n− 1
g(Y, Z)ξ +

1

n− 1
η(Y )η(Z)ξ − η(Z)Y = 0. (53)

Taking inner product of (53) with ξ yields

(n− 2)g(Y, Z)− (n− 1)g(Y, φZ)− S(Y, φZ)− (n− 2)η(Y )η(Z) = 0. (54)

Setting Z = φZ in (54) gives

S(Y,Z) + (n− 2)g(Y, φZ) + (n− 1)g(Y,Z) = 0. (55)

Interchanging Y and Z in (55) we obtain

S(Z, Y ) + (n− 2)g(Z, φY ) + (n− 1)g(Z, Y ) = 0. (56)

Adding (55) and (56), we have S(Y,Z) = −(n − 1)g(Y,Z), which implies that
the manifold is an Einstein manifold with respect to the Levi-Civita connection.
Therefore we can state the following:

Theorem 4. An n(= 2m + 1)-dimensional φ-projectively semisymmetric Ken-
motsu manifold with respect to the quarter-symmetric metric connection is an
Einstein manifold with respect to the Levi-Civita connection.

8 Example of a 5-dimensional Kenmotsu manifold ad-
mitting a quarter-symmetric metric connection

We consider the 5-dimensional manifold M = {(x, y, z, u, v) ∈ R5}, where
(x, y, z, u, v) are the standard coordinates in R5.
We choose the vector fields

e1 = e−v ∂

∂x
, e2 = e−v ∂

∂y
, e3 = e−v ∂

∂z
, e4 = e−v ∂

∂u
, e5 =

∂

∂v
,

which are linearly independent at each point of M.
Let g be the Riemannian metric defined by

g(ei, ej) = 0, i 6= j, i, j = 1, 2, 3, 4, 5
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and
g(e1, e1) = g(e2, e2) = g(e3, e3) = g(e4, e4) = g(e5, e5) = 1.

Let η be the 1-form defined by

η(Z) = g(Z, e5),

for any Z ∈ χ(M).
Let φ be the (1, 1)-tensor field defined by

φe1 = e3, φe2 = e4, φe3 = −e1, φe4 = −e2, φe5 = 0.

Using the linearity of φ and g, we have

η(e5) = 1,

φ2(Z) = −Z + η(Z)e5

and
g(φZ, φU) = g(Z,U)− η(Z)η(U),

for any U,Z ∈ χ(M). Thus, for e5 = ξ, M(φ, ξ, η, g) defines an almost contact
metric manifold. The 1-form η is closed.

We have

Ω(
∂

∂x
,
∂

∂z
) = g(

∂

∂x
, φ

∂

∂z
) = g(

∂

∂x
,− ∂

∂x
) = −e2v.

Hence, we obtain Ω = −e2vdx ∧ dz. Thus, dΩ = −2e2vdv ∧ dx ∧ dz = 2η ∧ Ω.
Therefore, M(φ, ξ, η, g) is an almost Kenmotsu manifold. It can be seen that
M(φ, ξ, η, g) is normal. So, it is a Kenmotsu manifold.

Then we have

[e1, e2] = [e1, e3] = [e1, e4] = [e2, e3] = 0, [e1, e5] = e1,

[e4, e5] = e4, [e2, e4] = [e3, e4] = 0, [e2, e5] = e2, [e3, e5] = e3.

The Levi-Civita connection ∇ of the metric tensor g is given by Koszul’s
formula which is given by

2g(∇XY, Z) = Xg(Y, Z) + Y g(X,Z)− Zg(X,Y )

−g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).

Taking e5 = ξ and using the above formula we obtain the following:

∇e1e1 = −e5, ∇e1e2 = 0, ∇e1e3 = 0, ∇e1e4 = 0, ∇e1e5 = e1,

∇e2e1 = 0, ∇e2e2 = −e5, ∇e2e3 = 0, ∇e2e4 = 0, ∇e2e5 = e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = −e5, ∇e3e4 = 0, ∇e3e5 = e3,
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∇e4e1 = 0, ∇e4e2 = 0, ∇e4e3 = 0, ∇e4e4 = −e5, ∇e4e5 = e4,

∇e5e1 = 0, ∇e5e2 = 0, ∇e5e3 = 0, ∇e5e4 = 0, ∇e5e5 = 0.

Further we obtain the following:

∇̃e1e1 = −e5, ∇̃e1e2 = 0, ∇̃e1e3 = 0, ∇̃e1e4 = 0, ∇̃e1e5 = e1,

∇̃e2e1 = 0, ∇̃e2e2 = −e5, ∇̃e2e3 = 0, ∇̃e2e4 = 0, ∇̃e2e5 = e2,

∇̃e3e1 = 0, ∇̃e3e2 = 0, ∇̃e3e3 = −e5, ∇̃e3e4 = 0, ∇̃e3e5 = e3,

∇̃e4e1 = 0, ∇̃e4e2 = 0, ∇̃e4e3 = 0, ∇̃e4e4 = −e5, ∇̃e4e5 = e4,

∇̃e5e1 = −e3, ∇̃e5e2 = −e4, ∇̃e5e3 = e1, ∇̃e5e4 = e2, ∇̃e5e5 = 0.

By the above results, we can easily obtain the non-vanishing components of
the curvature tensors as follows:

R(e1, e2)e2 = R(e1, e3)e3 = R(e1, e4)e4 = R(e1, e5)e5 = −e1,

R(e1, e2)e1 = e2, R(e1, e3)e1 = R(e5, e3)e5 = R(e2, e3)e2 = e3,

R(e2, e3)e3 = R(e2, e4)e4 = R(e2, e5)e5 = −e2,R(e3, e4)e4 = −e3,

R(e2, e5)e2 = R(e1, e5)e1 = R(e4, e5)e4 = R(e3, e5)e3 = e5,

R(e1, e4)e1 = R(e2, e4)e2 = R(e3, e4)e3 = R(e5, e4)e5 = e4

and

R̃(e1, e2)e2 = R̃(e1, e3)e3 = R̃(e1, e4)e4 = −e1,

R̃(e1, e2)e1 = e2, R̃(e1, e3)e1 = R̃(e2, e3)e2 = e3,

R̃(e2, e3)e3 = R̃(e2, e4)e4 = −e2, R̃(e2, e5)e5 = e4 − e2,

R̃(e3, e4)e4 = −e3, R̃(e2, e5)e2 = R̃(e1, e5)e1 = R̃(e4, e5)e4 = e5,

R̃(e3, e5)e3 = e5, R̃(e1, e4)e1 = R̃(e2, e4)e2 = R̃(e3, e4)e3 = e4,

R̃(e1, e5)e5 = e3 − e1, R̃(e3, e5)e5 = −e1 − e3, R̃(e4, e5)e5 = −e2 − e4.

Making use of the above results we obtain the Ricci tensors as follows:

S(e1, e1) = S(e2, e2) = S(e3, e3) = S(e4, e4) = S(e5, e5) = −4

and

S̃(e1, e1) = S̃(e2, e2) = S̃(e3, e3) = S̃(e4, e4) = S̃(e5, e5) = −4.

It can be easily verified that the manifold is an Einstein manifold with respect to
the quarter-symmetric metric connection. Therefore Theorem 2 is verified.
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