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TYPES OF INTEGER HARMONIC NUMBERS (II)
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Abstract

In the first part of this paper we obtained several bi-unitary harmonic
numbers which are higher than 109, using the Mersenne prime numbers. In
this paper we investigate bi-unitary harmonic numbers of some particular
forms: 2k · n, pqt2, p2q2t, with different primes p, q, t and a squarefree inte-
ger n.
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1 Introduction

The harmonic numbers introduced by O. Ore in [8] were named in this way
by C. Pomerance in [11]. They are defined as positive integers for which the
harmonic mean of their divisors is an integer. O. Ore linked the perfect numbers
with the harmonic numbers, showing that every perfect number is harmonic. A
list of the harmonic numbers less than 2 · 109 is given by G. L. Cohen in [1],
finding a total of 130 of harmonic numbers, and G. L. Cohen and R. M. Sorli in
[2] have continued to this list up to 1010.

The notion of harmonic numbers is extended to unitary harmonic numbers by
K. Nageswara Rao in [7] and then to bi-unitary harmonic numbers by J. Sándor
in [12].

Our paper is inspired by [12], where J. Sándor presented a table containing
all the 211 bi-unitary harmonic numbers up to 109. We extend the J. Sándors’s
study, looking for other bi-unitary harmonic numbers, greater than 109. In the
first part of our paper, [9], we start with some Mersenne primes and we found
new bi-unitary harmonic numbers, different from those on the Sándor’s list.

In this paper, after a brief revision of basic notions and results about bi-unitary
numbers in Section 2, we study bi-unitary harmonic numbers of certain forms.
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2Transilvania University of Braşov, 500091 Iuliu Maniu Street, Braşov, Romania, e-mail:
minculeten@yahoo.com



68 Adelina Manea and Nicuşor Minculete

Section 3 is dedicated to bi-unitary harmonic numbers of the form 2kp1p2...pr,
with p1, p2, ..., pr different primes and k ≤ 10, r ≤ 7. We investigate how many
bi-unitary harmonic numbers exist for a fixed k. For example, we obtain that any
bi-unitary harmonic number of the form 2kp1p2...pr with k ∈ {3, 4, 7, 8, 9} does
not exist, since there is only one bi-unitary harmonic number, 25 · 3 · 7, for k = 5
and there are 17 bi-unitary harmonic numbers of the form 210p1p2...pr with r ≤ 7.
We also obtain new bi-unitary harmonic numbers greater than 109.

In the last section we study bi-unitary harmonic numbers with another partic-
ular factorization into prime numbers. We prove that the only even number that
is also a perfect number and bi-unitary harmonic number is 6. We also obtain
that there are only two bi-unitary harmonic numbers of the form pqt2: 60 and 90,
since 52 · 72 · 13 is the only bi-unitary harmonic number with prime factorization
p2q2t.

2 Preliminaries

We briefly recall the notion of bi-unitary harmonic numbers. Let n be a
positive integer and 1 = d1 < d2 < ... < ds = n all its natural divisors.

We denote by σ(n) and τ(n) the sum of divisors of n and the number of
divisors of n, respectively. The harmonic mean of divisors H(n) can be written
as

H(n) =
nτ(n)

σ(n)
, (1)

Therefore, we remark that H(n) is an integer if and only if σ(n)|nτ(n). These
numbers were studied by O. Ore in [8].

A number n satisfying the condition σ(n)|nτ(n) is called, [11], harmonic num-
ber. It is proved, [8], that every perfect number is harmonic.

A divisor d of a positive integer n is called, [7], unitary divisor of n if
(
d, nd

)
= 1.

Let us denote by σ∗(n), τ∗(n) the sum and the number of unitary divisors of n,
respectively.

A positive integer n is called, [7], unitary harmonic number when σ∗(n)|nτ∗(n).
This definition shows that a unitary perfect number n, which means it satisfies
σ∗(n) = 2n, is also a unitary harmonic number.

The notion of unitary divisor was extended to bi-unitary divisors. We recall
that a divisor d of n is called bi-unitary divisor if the largest unitary common
divisor of d and n

d is 1. We denote by σ∗∗(n) the sum of bi-unitary divisors of n.

In [13], Ch. Wall introduces the concept of bi-unitary perfect numbers, in the
following way. A number n is called bi-unitary perfect number if σ∗∗(n) = 2n. It
is proved that the only bi-unitary perfect numbers are 6, 60 and 90.

We remark that the function σ∗∗(n) is multiplicative and we have

σ∗∗(pa) =

{
σ(pa) = pa+1−1

p−1 , for a odd

σ(pa)− p
a
2 = pa+1−1

p−1 − p
a
2 , for a even

(2)
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We denote by τ∗∗(n) the number of bi-unitary divisors of n and it is easy to
see that if n = pa11 p

a2
2 ...p

ar
r > 1, is the prime factorization of n, then

τ∗∗(n) =
∏

ai=even

ai
∏

ai=odd

(ai + 1) . (3)

Definition 1. A natural number n is called bi-unitary harmonic number if, [12]:

σ∗∗(n)|nτ∗∗(n).

Remark 1. In [14] there are all unitary harmonic numbers with at most 4 primes
in their factorization, since in [12] there are all bi-unitary harmonic numbers
smaller than 109. From these, we can remark that there are unitary harmonic
numbers which are not bi-unitary harmonic numbers, for example 23 · 33 · 5 · 7,
and there are bi-unitary harmonic numbers which are not unitary harmonic, for
example 23 · 33 · 54 · 7.

Every bi-unitary perfect number is also a bi-unitary harmonic number, [12].
In the same paper it is also proved that if n has the prime decomposition n =
pa11 p

a2
2 ...p

ar
r > 1 with all exponents {ai }i=1,r odd numbers, then n is a bi-unitary

harmonic number if and only if n is harmonic. It is also proved that bi-unitary
harmonic numbers are not of the following forms: pq4, p3q2 and p3q4, and the only
number 5 · 32 is bi-unitary harmonic number in form pq2, where p, q are primes.

3 Bi-unitary harmonic numbers 2kn, with n an odd
squarefree number and k ≤ 10

In this section we search the even bi-unitary harmonic numbers n which have
the primes factorisation

n = 2kp1p2...pr, (4)

with 1 ≤ k ≤ 10 and 1 ≤ r ≤ 7.

Proposition 1. Number 6 is the only bi-unitary harmonic number of the form
(4) with k = 1.

Proof. Let n = 2p1p2...pr be a bi-unitary harmonic number with odd primes
p1 < p2 < ... < pr. From (2) and (3) we compute

σ∗∗(n) = (1 + 2)(1 + p1)(1 + p2)...(1 + pr), τ∗∗(n) = 2r+1,

and from Definition 1 we have

3(1 + p1)(1 + p2)...(1 + pr)|2r+2p1p2...pr.

It follows that p1 = 3 and the above relation becomes

12(1 + p2)...(1 + pr)|12 · 2rp2...pr. (5)
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For r = 1 we find n = 6.
For r ≥ 2 we write (5) as it follows

1 + p2
2

1 + p3
2

...
1 + pr

2
|2p2...pr.

Let d be a prime divisor of the integer 1+p2
2 . Then d ≤ 1+p2

2 < p2 which means

that d = 2 and that 1+p2
2 could not have another prime divisor. Then 1+p2

2 has
to be 2, hence p2 = 3 which is not true from condition p1 < p2. We obtained that
6 is the only bi-unitary harmonic number n = 2p1p2...pr.

Proposition 2. Numbers 22 · 3 · 5, 22 · 3 · 5 · 7 and 22 · 3 · 5 · 7 · 13 are the only
bi-unitary harmonic numbers of the form (4) with k = 2.

Proof. Let n = 22p1p2...pr be a bi-unitary harmonic number. From (2) and (3)
we compute

σ∗∗(n) = (1 + 22)(1 + p1)(1 + p2)...(1 + pr), τ∗∗(n) = 2r+1,

and from Definition 1 we have

5(1 + p1)(1 + p2)...(1 + pr)|2r+3p1p2...pr.

It follows that p1 = 5 and the above relation becomes

30(1 + p2)...(1 + pr)|10 · 2r+2p2...pr.

It follows that p2 = 3 and

12(1 + p3)...(1 + pr)|12 · 2rp3...pr (6)

For r = 2 we obtain n = 22 · 3 · 5.
For r ≥ 3, let us suppose p3 < p4 < ... < pr and we write (6) as it follows:

1 + p3
2

1 + p4
2

...
1 + pr

2
|22p3...pr. (7)

If d is a prime divisor of 1+p3
2 , so smaller than p3, it could be only d = 2. We obtain

1+p3
2 = 2m and let d′ be a prime divisor of m. Since we also have d′|m|2p3...pr

and d′ < p3, hence d′ = 2 and we don’t have other values for it. It results p3 = 3
(if m = 1) or p3 = 7. But p3 > 5, then p3 = 7.

For r = 3 we have a solution n = 22 · 3 · 5 · 7.
For r ≥ 4, relation (7) becomes

4
1 + p4

2
...

1 + pr
2
|22 · 7p4...pr. (8)

We obtain in this case 1+p4
2 = 7, so p4 = 13.

For r = 4, the solution is n = 22 · 3 · 5 · 7 · 13.
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For r ≥ 5, relation (7) is

7
1 + p5

2
...

1 + pr
2
|7 · 13p5...pr.

By a similar reasoning with the above one, we obtain 1+p5
2 = 13, so p5 = 25 which

is not prime. It follows that bi-unitary harmonic numbers n = 22p1p2...pr with
r ≥ 5 do not exist.

Proposition 3. Bi-unitary harmonic numbers of the form (4) with k ∈ {3, 4, 7, 8, 9}
do not exist .

Proof. For k = 3, let n = 23p1p2...pr a bi-unitary harmonic number. We compute

σ∗∗(n) = (1 + 2 + 22 + 23)(1 + p1)(1 + p2)...(1 + pr), τ∗∗(n) = 2r+2,

and from Definition 1 we have

15(1 + p1)(1 + p2)...(1 + pr)|2r+5p1p2...pr.

It follows that p1 = 3, p2 = 5 and the above relation becomes

4 · 6(1 + p3)...(1 + pr)|2r+2p3...pr.

It follows that 3|2r+2p3...pr with primes p3, ..., pr greater than 3, which is imposi-
ble. So, any bi-unitary harmonic number of the form n = 23p1p2...pr does not
exist.

In the following we use this: for any odd prime p we have

2kp1p2...pr 6= pa · b, ∀a ≥ 2, (9)

where b is a positive integer.
Now, let k = 4 and n = 24p1p2...pr be a bi-unitary harmonic number. We

compute

σ∗∗(n) = (1 + 2 + 23 + 24)(1 + p1)(1 + p2)...(1 + pr), τ∗∗(n) = 2r+2,

and from Definition 1 we have

27(1 + p1)(1 + p2)...(1 + pr)|2r+5p1p2...pr.

It follows that

33|2r+2p3...pr,

which is false from relation (9). Hence, any bi-unitary harmonic number of the
form n = 24p1p2...pr doesn’t exist.

For k = 7 and n = 27p1p2...pr a bi-unitary harmonic number. We compute

σ∗∗(n) = (1+2+22+23+24+25+26+27)(1+p1)(1+p2)...(1+pr), τ∗∗(n) = 2r+3,
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and from Definition 1 we have

255(1 + p1)(1 + p2)...(1 + pr)|2r+10p1p2...pr.

It follows that p1 = 3, p2 = 5, p3 = 17, then

4 · 6 · 18(1 + p4)...(1 + pr)|2r+10p4p5...pr,

which gives us
33|2r+2p4...pr,

which is false from relation (9). Hence, any bi-unitary harmonic number of the
form n = 27p1p2...pr does not exist.

For k = 8, let n = 28p1p2...pr a bi-unitary harmonic number. We compute

σ∗∗(n) = (1 + 2 + 22 + 23)(1 + 25)(1 + p1)(1 + p2)...(1 + pr), τ∗∗(n) = 2r+3,

and from Definition 1 we have

15 · 33(1 + p1)(1 + p2)...(1 + pr)|2r+3p1p2...pr.

It follows that 32|2r+3p1p2p3...pr, which is false from relation (9). Hence, any
bi-unitary harmonic number of the form n = 28p1p2...pr does not exist.

For k = 9, let n = 29p1p2...pr be a bi-unitary harmonic number. We compute

σ∗∗(n) = (210 − 1)(1 + p1)(1 + p2)...(1 + pr), τ∗∗(n) = 10 · 2r,

and from Definition 1 we have

3 · 11 · 31(1 + p1)(1 + p2)...(1 + pr)|2r+11 · 5p1p2...pr.

It follows that p1 = 3, p2 = 11, p3 = 31 and the above relation becomes

4 · 12 · 32(1 + p4)...(1 + pr)|2r+11 · 5p4...pr.

It follows that 3|2r+1p4...pr with primes p4, ..., pr greater than 3, which is imposi-
ble. So, any bi-unitary harmonic number of the form n = 29p1p2...pr does not
exist.

Proposition 4. There is only one bi-unitary harmonic number, 25 · 3 · 7, of the
form (4) with k = 5.

Proof. Let n = 25p1p2...pr be a bi-unitary harmonic number and we compute

σ∗∗(n) = (1 + 2 + 22 + 23 + 24 + 25)(1 + p1)(1 + p2)...(1 + pr), τ∗∗(n) = 2r · 6.

From Definition 1 we have

63(1 + p1)(1 + p2)...(1 + pr)|2r+5 · 6p1p2...pr.



Types of integer harmonic numbers (II) 73

It follows that p1 = 3, p2 = 7 and the above relation becomes

4 · 8(1 + p3)...(1 + pr)|2r+6p3...pr. (10)

For r = 2, we obtain the solution n = 25 · 3 · 7.
For r ≥ 3, we rewrite:

1 + p3
2

1 + p4
2

...
1 + pr

2
|23p3...pr,

and suppose that p3 < p4 < ... < pr.
If d is a prime divisor of the integer 1+p3

2 , obviously smaller than p3 > 5, then

d = 2. Then, for a prime divisor d′ of 1+p3
22

we also obtain d′ = 2. Once again,

we take a prime divisor d′′ of 1+p3
23

and there is only solution d′′ = 2. Moreover,
1+p3
23

doesn’t have another divisor. Hence, p3 could be only 3, 7 or 15, which is
impossible.

It results that the unique solution is n = 25 · 3 · 7.

Proposition 5. There are only three bi-unitary harmonic numbers of the form
(4) with k = 6: 26 · 3 · 7 · 17, 26 · 3 · 7 · 17 · 31, 26 · 3 · 7 · 17 · 31 · 61.

Proof. Let n = 26p1p2...pr be a bi-unitary harmonic number and we compute

σ∗∗(n) = (1 + 2 + 22)(1 + 24)(1 + p1)(1 + p2)...(1 + pr), τ∗∗(n) = 2r · 6.

From Definition 1 we have

7 · 17(1 + p1)(1 + p2)...(1 + pr)|2r+7 · 3p1p2...pr.

It follows that p1 = 7, p2 = 17 and the above relation becomes

8 · 18(1 + p3)...(1 + pr)|2r+7 · 3p3...pr.

Then p3 = 3 and we have

4(1 + p4)...(1 + pr)|2r+3 · p4...pr. (11)

For r = 3, we obtain the solution n = 26 · 3 · 7 · 17.
For r ≥ 4, we rewrite:

1 + p4
2

1 + p5
2

...
1 + pr

2
|24p4...pr,

and suppose that p4 < p5 < ... < pr. We obtain for 1+p4
2 the possible values

2, 4, 8, 16 and there is only a prime solution for p4, 31.
Hence, for r = 4 we have n = 26 · 3 · 7 · 17 · 31.
For r ≥ 5, the relation

1 + p5
2

1 + p6
2

...
1 + pr

2
|31p5...pr,
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gives us p5 = 61 and another solution, n = 26 · 3 · 7 · 17 · 31 · 61.

For r ≥ 6, it results

1 + p6
2

1 + p7
2

...
1 + pr

2
|61p6...pr,

and a prime divisor d of 1+p6
2 could be only 61, because d ≤ 1+p6

2 < p6 < p7 < ... <
pr. But the solution p6 = 121 isn’t a prime number, so there are not bi-unitary
harmonic numbers of the form 26p1p2...pr with r > 5.

Proposition 6. There are 17 bi-unitary harmonic numbers of the form (4) with
k = 10 and r ≤ 7.

Proof. Let n = 210p1p2...pr be a bi-unitary harmonic number and we compute

σ∗∗(n) = (1+2+22 +23 +24)(1+26)(1+p1)(1+p2)...(1+pr), τ∗∗(n) = 2r+1 ·5.

From Definition 1 we have

31 · 5 · 13(1 + p1)(1 + p2)...(1 + pr)|2r+11 · 5p1p2...pr.

It follows that p1 = 13, p2 = 31 and the above relation becomes

14 · 32(1 + p3)...(1 + pr)|2r+11 · p3...pr.

Then p3 = 7 and we have

8(1 + p4)...(1 + pr)|2r+5 · p4...pr. (12)

For r = 3, we obtain the solution n = 210 · 7 · 13 · 31.

For r ≥ 4, we rewrite:

1 + p4
2

1 + p5
2

...
1 + pr

2
|25p4...pr,

and suppose that p4 < p5 < ... < pr. We obtain for 1+p4
2 the possible values

2, 4, 8, 16, 32 and there is only a prime solution for p4, different from p1, p2, p3,
that is p4 = 3.

Hence, for r = 4 we have n = 210 · 3 · 7 · 13 · 31.

For r ≥ 5, the relation

1 + p5
2

1 + p6
2

...
1 + pr

2
|24 · 3p5...pr,

gives us p5 ∈ {5, 11, 23, 47} and, for r = 5, four other solutions: 210 ·3 ·5 ·7 ·13 ·31,
210 · 3 · 7 · 11 · 13 · 31, 210 · 3 · 7 · 13 · 23 · 31, 210 · 3 · 7 · 13 · 31 · 47.

Remark 2. All bi-unitary harmonic numbers of the form 2kp1p2...pr found until
now are smaller than 109 so they are also given in [12].
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For r ≥ 6 and p5 = 5, it results

1 + p6
2

1 + p7
2

...
1 + pr

2
|24 · 5p6...pr,

and we find p6 ∈ {19, 79, 179} and we have three new solutions, from which only
the first one is smaller than 109: 210 · 3 · 5 · 7 · 13 · 19 · 31, 210 · 3 · 5 · 7 · 13 · 31 · 79,
210 · 3 · 5 · 7 · 13 · 31 · 179.

For r ≥ 6 and p5 = 11, it results

1 + p6
2

1 + p7
2

...
1 + pr

2
|23 · 11p6...pr,

and we find p6 ∈ {43, 87} and we have two new solutions, both greater than 109:
210 · 3 · 7 · 11 · 13 · 31 · 43, 210 · 3 · 7 · 11 · 13 · 31 · 87.

For r ≥ 6 and p5 = 23 or p5 = 47 we didn’t find solutions.

For r ≥ 7, p5 = 5 and p6 = 19, we have

1 + p7
2

1 + p8
2

...
1 + pr

2
|23 · 19p7...pr.

Hence p7 ∈ {37, 151} and the new solutions are: 210 · 3 · 5 · 7 · 13 · 19 · 31 · 37,
210 · 3 · 5 · 7 · 13 · 19 · 31 · 151.

For r ≥ 7, p5 = 5 and p6 = 79, we have

1 + p7
2

1 + p8
2

...
1 + pr

2
|2 · 79p7...pr.

Hence p7 ∈ {157, 317} and two new solutions are: 210 · 3 · 5 · 7 · 13 · 31 · 79 · 157,
210 · 3 · 5 · 7 · 13 · 31 · 79 · 317.

For r ≥ 7, p5 = 5 and p6 = 179, we have

1 + p7
2

1 + p8
2

...
1 + pr

2
|179p7...pr,

and no solution for p7.

For r ≥ 7, p5 = 11, and p6 = 43, it results

1 + p7
2

1 + p8
2

...
1 + pr

2
|4 · 43p7...pr,

with no solution for p7.

Finally, for r ≥ 7, p5 = 11, and p6 = 87, it results

1 + p7
2

1 + p8
2

...
1 + pr

2
|2 · 87p7...pr.

We find p7 ∈ {173, 347}, so other bi-unitary harmonic numbers are 210 · 3 · 7 · 11 ·
13 · 31 · 87 · 173, 210 · 3 · 7 · 11 · 13 · 31 · 87 · 347.
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In conclusion, we find some new bi-unitary harmonic numbers, different from
those in [12], of the form 2kp1p2...pr, with k ≤ 10 and r ≤ 7. These new numbers
are:

n = 210 · 3 · 5 · 7 · 13 · 31 · 79,
n = 210 · 3 · 5 · 7 · 13 · 31 · 179,
n = 210 · 3 · 7 · 11 · 13 · 31 · 43,
n = 210 · 3 · 7 · 11 · 13 · 31 · 87,
n = 210 · 3 · 5 · 7 · 13 · 19 · 31 · 37,
n = 210 · 3 · 5 · 7 · 13 · 19 · 31 · 151,
n = 210 · 3 · 5 · 7 · 13 · 31 · 79 · 157,
n = 210 · 3 · 5 · 7 · 13 · 31 · 79 · 317
n = 210 · 3 · 7 · 11 · 13 · 31 · 87 · 173,
n = 210 · 3 · 7 · 11 · 13 · 31 · 87 · 347.

4 Some bi-unitary harmonic numbers of particular forms

In this section we search for bi-unitary harmonic numbers with the prime
factorization of some particular forms.

O. Ore shows in [8], that if n is a perfect number, then this is harmonic. Below
we show that the only even number that is also a perfect number and bi-unitary
harmonic number is 6.

Proposition 7. If an even number n is at the same time a perfect and a bi-
unitary harmonic number then n = 6.

Proof. According to Euler-Euclid theorem [6, 10], an even number n is perfect if
and only if n = 2k(2k+1 − 1), where k ≥ 1 and p = 2k+1 − 1 is prime. For k = 1,
we obtain n = 6, so 6 is a perfect number, and

H∗∗(6) =
6τ∗∗(6)

σ∗∗(6)
= 2,

so 6 is bi-unitary harmonic number.
Let k ≥ 2. As p is a prime number greater than or equal to 5, then k + 1 is

odd, it follows k is even and we write k = 2m. Therefore, we rewrite n as:

n = 22m(22m+1 − 1),

with m ≥ 1. Assume that n is a bi-unitary harmonic number, so σ∗∗(n)|nτ∗∗(n)
and

σ∗∗(22m)σ∗∗(22m+1 − 1)|22m(22m+1 − 1)τ∗∗(22m)τ∗∗(22m+1 − 1)

which is equivalent to

(2m − 1)(22m+1 − 1)22m+1|22m+2(22m+1 − 1) ·m.

But
((2m − 1), 2(22m+1 − 1)) = 1,
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we deduce that (2m − 1)|m, which is false, because 2m − 1 > m, for m ≥ 2. For
m = 1, we obtain n = 22 · 7, which is not bi-unitary harmonic, because

H∗∗(22 · 7) =
22 · 7 · 22

5 · 23
=

14

5
,

is not an integer number. In conclusion, the only even number that is also a
perfect number and a bi-unitary harmonic number is 6.

Proposition 8. If a number n is bi-unitary harmonic with the form pqt2, then
n = 60 or n = 90.

Proof. Let n = pqt2, where p, q, t are different prime numbers, we have

σ∗∗(n) = (1 + p)(1 + q)(1 + t2),

and nτ∗∗(n) = 23pqt2. If n is a bi-unitary harmonic number, then σ∗∗(n)|nτ∗∗(n),
which implies

(1 + p)(1 + q)(1 + t2)|23pqt2 (13)

I. If number n is even, then one of p, q or t is equal to 2.
I.1. Let p = 2. From relation (13), we deduce that 3|24qt2, so q = 3 or t = 3.

For q = 3, we have 3 · 4 · (1 + t2)|24 · 3 · t2, (1 + t2)|22 · t2, so (1 + t2)|22 which is
false. For t = 3, we have 2 · 3 · 5 · (1 + q)|24 · 32 · q, 5 · (1 + q)|23 · 3 · q, so 5|q , we
deduce q = 5. Consequently, we obtain the solution n = 2 · 32 · 5 = 90.

I.2. Consider the case t = 2 and relation (13) becomes 5(1+p)(1+q)|25 ·pq,
so 5|pq that p = 5 or q = 5. For p = 5, it follows 2 · 3 · 5 · (1 + q)|25 · 5 · q, that 3|q,
therefore q = 3, we deduce the solution n = 22 · 3 · 5 = 60.

II. If number n is odd, then p, q and t are odd prime. Let p < q and p′ be the
greatest prime divisor of p+ 1. As follows (1 + p)(1 + q)(1 + t2)|23pqt2, p′|23pqt2
we have the following situations:

II.1. If p′ = 2, then p + 1 = 22 or p + 1 = 23 that p = 3 or p = 7. This
implies a contradiction, because it would mean that 2|qt2 which is false.

II.2. If p′ 6= 2, then p′|pqt2, which means p′|t2, that p′ = t. So p+ 1 = 2tav.
Assume that a ≥ 3 result t|pq, which is false. For a = 2, we have the relation
v(1 + q)(1 + t2)|22pq. If number v has a prime divisor, then it must be p or q
which is impossible, so v = 1.

II.2.1. For p + 1 = 2t2, we obtain (1 + q)(1 + t2)|22pq. Let q′ be the
greatest prime divisor of q + 1, q′ = 2 that q = 3 which is false, or q′|p so q′ = p.
Therefore 1 + q = 2p, and it is impossible for q+ 1 to have another prime divisor.

As discussed before, we deduce that (1 + t2)|2q, and 1 + t2 = 2q. So we have,
1 + t2 = 2q = 4p− 2 = 8t2 − 6, and t = 1, which is false.

II.2.2. For p+ 1 = 2t, we obtain (1 + q)(1 + t2)|22pq. If q′ is the greatest
prime divisor of q+1, we have q′ = 2 that q = 3 which is false, or q′|pt so q′ = p or
q′ = t. Therefore 1 + q = 2p, and it is impossible for q + 1 to have another prime
divisor. Version 1 + q = 2t, does not agree because it would mean that p = q,
which is a contradiction. Therefore, we conclude that (1 + t2)|2qt, and 1 + t2 = 2q
and as above we arrive at a false conclusion.
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Remark 3. In the following the remark that for a prime p we could not have
1+p
2 = p · a, for any positive integer a will be usefull. Indeed, if the above relation

holds, then from a ≥ 1 we have 1+p
2 ≥ p, hence p ≤ 1, which is false.

Proposition 9. If the bi-unitary harmonic number n is of the form p2q2t, then
it is 52 · 72 · 13.

Proof. Let n = p2q2t be a bi-unitary harmonic number (obviously, p, q, t are
different primes). We compute

σ∗∗(n) = (1 + p2)(1 + q2)(1 + t), τ∗∗(n) = 8,

and, by definition 1, we have

(1 + p2)(1 + q2)(1 + t)|8p2q2t. (14)

I. If n is an even number, then p = 2 or q = 2 or t = 2. Because the cases
p = 2 and q = 2 are the same, we shall study only p = 2 and t = 2.

I.1. For p = 2, relation (14) becomes

5(1 + q2)(1 + t)|8 · 4q2t,

which means q = 5 or t = 5.
I.1.1. If q = 5, we have 26(1 + t)|32 · 5 · t, so t = 13. But for t = 13, the

above relation is 26 · 14|32 · 5 · 13 which is false. Hence, p = 2 and q = 5 is not a
solution.

I.1.2. If t = 5, we have (1 + q2) · 6|32q2, so q = 3. But the above relation
is now 10 · 6|32 · 9 which is not true.

I.2. For t = 2, relation (14) becomes

3(1 + p2)(1 + q2)|16p2q2,

which implies p = 3 (or, the same, q = 3). Then we obtain 3 ·10 · (1+q2)|16 ·9 ·q2,
so q = 5. But 30 · 26|16 · 9 · 25 is false, so there is no solution in this case.

That means that there are not even bi-unitary harmonic numbers of the form
p2q2t.

II. If n is an odd number, then primes p, q, t are also odd. In this case relation
(14) could be written:

1 + p2

2

1 + q2

2

1 + t

2
|p2q2t. (15)

Taking into account Remark 3, 1+p2

2 ∈ {q, q2, t, qt, q2t}.
II.1. If 1+p2

2 = q, then

1 + q2

2

1 + t

2
|p2qt,

hence, from Remark 3, 1+q2

2 ∈ {p, p2, t, pt, p2t}.
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II.1.1. For 1+q2

2 = p we obtain the equation p4 + 2p2 − 8p + 5 = 0, with
no prime solution.

II.1.2. For 1+q2

2 = p2 we obtain the equation p4 − 6p2 + 5 = 0, with no
prime solution.

II.1.3. For 1+q2

2 = pt we obtain

1 + t

2
|pq,

so 1 + t ∈ {2p, 2q, 2pq}.
II.1.3.a) If 1 + t = 2p, from 1 + q2 = 2pt and 1 + p2 = 2q results

1 + q2 = t(1 + t) and 4 + (1 + t)2 = 8q. Then we obtain the equation t4 + 4t3 −
50t2 − 44t+ 89 = 0, with no prime solution.

II.1.3.b) If 1 + t = 2q, from 1 + q2 = 2pt and 1 + p2 = 2q it results
p2 = t which means that t is not prime (false).

II.1.3.c) If 1 + t = 2pq, from 1 + q2 = 2pt and 1 + p2 = 2q it results
4 + (1 + p2)2 = 8pt. Then we obtain the equation 7p4 + 6p2− 8p− 5 = 0, with no
prime solution.

II.1.4 For 1+q2

2 = t we obtain

1 + t

2
|p2q,

so 1 + t ∈ {2p, 2p2, 2q, 2pq, 2p2q}.
II.1.4.a) If 1 + t = 2p, then, from 1 + q2 = 2t and 1 + p2 = 2q we have

the equation p4 + 2p2 − 16p+ 13 = 0, with no prime solution.
II.1.4.b) If 1 + t = 2p2, then, from 1 + q2 = 2t and 1 + p2 = 2q we have

the equation 63q2 − 160q + 99 = 0, with no prime solution.
II.1.4.c) If 1 + t = 2q, then, from 1 + q2 = 2t and 1 + p2 = 2q we obtain

t = p2 which is false because t is prime.
II.1.4.d) If 1+t = 2pq, then, from 1+q2 = 2t and 1+p2 = 2q we obtain

the equation p4 − 8p3 + 2p2 − 8p+ 13 = 0, with no prime solution.
II.1.4.e) If 1 + t = 2p2q, then, from 1 + q2 = 2t and 1 + p2 = 2q we

obtain the equation 8p4 + 6p2 − 13 = 0, with no prime solution.

II.1.5. For 1+q2

2 = p2t we obtain

1 + t

2
|q,

so 1 + t = 2q. But we also have 1 + p2 = 2q, so t = p2, which is false because t is
prime.

II.2. For 1 + p2 = 2q2, relation (15) becomes

1 + q2

2

1 + t

2
|p2t,

hence, from Remark 3, 1+t
2 ∈ {p, p

2}.



80 Adelina Manea and Nicuşor Minculete

II.2.1. For 1 + t = 2p we have

1 + q2

2
|pt,

hence 1 + q2 ∈ {2p, 2t, 2pt}.
II.2.1.a) If 1 + q2 = 2p, then t = q2, which is false because t is prime.
II.2.1.b) If 1+q2 = 2t, then, from 1+ t = 2p and 1+p2 = 2q2 we obtain

the equation t2 − 14t+ 13 = 0, with the prime root t = 13.
It results p = 7, q = 5, hence we have a bi-unitary harmonic number 72 ·52 ·13.

II.2.1.c) If 1 + q2 = 2pt, then, from 1 + t = 2p and 1 + p2 = 2q2 we
obtain 3 + p2 = 4pt. Then p|3, so p = 3, which gives q2 = 5, with no integer
solution.

II.2.2. For 1 + t = 2p2 we have

1 + q2

2
|t,

hence 1 + q2 = 2t. We obtain t = 1 which is not a solution.
II.3. For 1 + p2 = 2qt, relation (15) becomes

1 + q2

2

1 + t

2
|p2q,

hence, from Remark 3, 1+q2

2 ∈ {p, p2}.
II.3.1. For 1 + q2 = 2p we have

1 + t

2
|pq,

hence 1 + t ∈ {2p, 2q, 2pq}.
II.3.1.a) If 1 + t = 2p, then, from 1 + q2 = 2p, it results t = q2 which is

false because t is prime.
II.3.1.b) If 1 + t = 2q, then, from 1 + q2 = 2p and 1 + p2 = 2qt, the

following equation q4 − 14q2 + 8q + 5 = 0 results, with no prime solution.
II.3.1.c) If 1 + t = 2pq, then, from 1 + q2 = 2p and 1 + p2 = 2qt, the

following equation 7q4 + 6q2 − 8q − 5 = 0 results, with no prime solution.
II.3.2. For 1 + q2 = 2p2 we have

1 + t

2
|q,

hence 1 + t = 2q. It follows 7q2 − 4q − 3 = 0 which has no prime root.
II.4. For 1 + p2 = 2q2t, relation (15) is

1 + q2

2

1 + t

2
|p2,

hence, since 1+q2

2 6= 1, 1+t
2 6= 1, we have 1 + q2 = 1 + t = 2p. But t = q2 is

impossible because t is prime.
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II.5. For 1 + p2 = 2t, relation (15) becomes

1 + q2

2

1 + t

2
|p2q2,

hence, from Remark 3, 1+q2

2 ∈ {p, p2}.
II.5.1. For 1 + q2 = 2p, we obtain

1 + t

2
|pq2,

so 1 + t ∈ {2p, 2q, 2q2, 2pq, 2pq2}.
II.5.1.a) If 1 + t = 2p, then, from 1 + q2 = 2p it results t = q2 which is

false because t is prime.
II.5.1.b) If 1 + t = 2q, then, from 1 + q2 = 2p and 1 + p2 = 2t the

equation q4 + 2q2 − 16q + 13 = 0 results, with no prime root.
II.5.1.c) If 1 + t = 2q2, then, from 1 + q2 = 2p and 1 + p2 = 2t the

equation p2−8p+7 = 0 results, with p = 7 a prime root. We obtain t = 25 which
is not prime.

II.5.1.d) If 1 + t = 2pq, then, from 1 + q2 = 2p and 1 + p2 = 2t the
equation q4 − 8q3 + 2q2 − 8q + 13 = 0 results, with no prime root.

II.5.1.e) If 1 + t = 2pq2, then, from 1 + q2 = 2p and 1 + p2 = 2t the
equation 7q4 + 6q2 − 13 = 0 results, with no prime root.

II.5.2. For 1 + q2 = 2p2, we obtain

1 + t

2
|q2,

so 1 + t ∈ {2q, 2q2}.
II.5.2.a) If 1 + t = 2q, then, from 1 + q2 = 2p2 and 1 + p2 = 2t the

equation q2 − 8q + 7 = 0 results, with q = 7 prime root. We obtain p = 5, t = 13
and the already found solution 52 · 72 · 13.

II.5.2.b) If 1+ t = 2q2, then, from 1+q2 = 2p2 and 1+p2 = 2t it results
t = 1, so we don’t have a solution in this case.

We investigated all the values possible, so we can conclude that there is only
one bi-unitary harmonic number of the form p2q2t and this is 52 · 72 · 13.

Other types of integer harmonic numbers may be entered using the exponential
and infinitary divisors [4].
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