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η-RICCI SOLITONS IN (LCS)n-MANIFOLD

Kanak Kanti BAISHYA∗1 and Partha Roy CHOWDHURY2

Abstract

The object of the present paper is to bring out curvature conditions for
which η -Ricci solitons in (LCS)n-manifolds are sometimes shrinking or ex-
panding and some other time remain steady. Finally, the existence of shrink-
ing and expanding η-Ricci solitons in such manifolds are ensured by examples.
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1 Introduction

The notion of Lorentzian concircular structure manifolds (briefly (LCS)n -
manifolds) has been initiated by Shaikh [24]. Thereafter, a lot of study has been
carried out. For details we refer [25], [26], [27], [28] and the references therein.
Recently, in tune with Yano and Sawaki [33], the present authors [20] have intro-
duced and studied generalized quasi-conformal curvature tensor W, in the context
of N(k, µ) -manifold. The generalized quasi-conformal curvature tensor is defined
for n-dimensional manifold as

W(X,Y )Z =
n− 1

n
[{1 + (n− 1)a− b} − {1 + (n− 1)(a+ b)}c]C(X,Y )Z

+[1− b+ (n− 1)a]E(X,Y )Z + (n− 1)(b− a)P (X,Y )Z

+
n− 1

n
(c− 1){1 + (n− 1)(a+ b)}Ĉ(X,Y )Z (1)

for all X, Y & Z ∈ χ(M) , the set of all vector field of the manifold M ,
where the scalers triples (a,b,c) being real constants and the symbols C, Ĉ, E, P
stand for Conformal, Conharmonic, Concircular and Projective curvature tensor
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respectively. The beauty of such curvature tensor lies in the fact that it has the
flavour of Riemann curvature tensor R if (a, b,c) ≡ (0, 0, 0), Conformal curvature
tensor C [12] if (a, b,c) ≡ (− 1

n−2 ,−
1

n−2 , 1), Conharmonic curvature tensor Ĉ [15] if

(a, b,c) ≡ (− 1
n−2 ,−

1
n−2 , 0), Concircular curvature tensor E ([2], p. 84) if (a, b,c) ≡

(0, 0, 1), Projective curvature tensor P ([2], p. 84) if (a, b,c) ≡ (− 1
n−1 , 0, 0) and m-

Projective curvature tensor H [21], if (a, b,c) ≡ (− 1
2n−2 ,−

1
2n−2 , 0). The equation

(1) can also be written as

W(X,Y )Z = R(X,Y )Z + a[S(Y,Z)X − S(X,Z)Y ]

+b[g(Y,Z)QX − g(X,Z)QY ]

−cr
n

(
1

n− 1
+ a+ b

)
[g(Y,Z)X − g(X,Z)Y ] (2)

where, S, Q, r being Ricci tensor, Ricci operator and scalar curvature respectively.
The study of the Ricci solitons in contact geometry has begun with the work

of Ramesh Sharma ([23], [13]). Ricci solitons in contact metric manifolds are
also extensively studied by Mukut Mani Tripathi [32], Cornelia Livia Bejan and
Mircea Crasmareanu ([7], [6]) and the references therein. Ricci solitons are defined
as triples (g, V, λ), where (M, g) is a Riemannian manifold and V is a vector field
(the potential vector field) so that the following equation is satisfied

1

2
£V g + S + λg = 0 (3)

where £ denotes the Lie derivative, S is the Ricci tensor and λ a constant on
M . A Ricci soliton is said to be shrinking, steady or expanding according to λ
negative, zero and positive respectively. A Ricci soliton with V zero is reduced to
Einstein equation.

During the last two decades, the geometry of Ricci solitons has been the focus
of attention of many mathematicians ([11], [5]). It has become more important
after Grigory Perelman applied Ricci solitons to solve the long standing Poincaré
conjecture posed in 1904.

η -Ricci solitons (M, g, λ, µ) is the generalization of Ricci solitons (M, g, λ)
which is defined as

Lξg + 2S + 2λg + 2µη ⊗ η = 0, (4)

where Lξ is the Lie derivative operator along the vector field ξ, S is the Ricci
curvature tensor field of the metric g, λ and µ are real constants.

Our paper is structured as follows. Section 2 is concerned with (LCS)n-
manifolds and some known results. η-Ricci solitons in (LCS)n-manifold satisfying
W(ξ,X)· S = 0 has been studied in section 3. It is observed that Ricci soliton of
such manifold is expanding, steady or shrinking according to α2 T ρ for each of

C̃(ξ,X)· S = 0, P (ξ,X)· S = 0 and H(ξ,X)· S = 0 provided µ 6= −α.
In section 4, η-Ricci solitons in (LCS)n-manifolds admitting (ξ ∧S X)·W = 0

have been investigated. It is also determined that Ricci soliton of such manifold
is either expanding, steady or shrinking according to α2 T ρ or µ+3α ≶ 0 for each
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of (ξ ∧S X)·C̃ = 0, (ξ ∧S X)·P = 0 and (ξ ∧S X)·H = 0. Finally, the existence
of shrinking and expanding η-Ricci solitons in such manifolds are ensured by
examples.

2 (LCS)n-manifolds and some known results

An ndimensionally Lorentzian manifold M is a smooth connected paracom-
pact Hausdorff manifold with a Lorentzian metric g, that is, M admits a smooth
symmetric tensor field g of type (0, 2) such that for each point p ∈M , the tensor
gp : TpM×TpM → R is a non-degenerate inner product of signature (−,+, ...,+),
where TpM denotes the tangent vector space of M at p and R is the real number
space. A non-zero vector v ∈ TpM is said to be timelike (resp., non-spacelike,
null, spacelike) if it satisfies gp(U,U) < 0 (resp, ≤ 0, = 0, > 0)[18]. The category
into which a given vector falls is called its causal character.

Let Mn be a Lorentzian manifold admitting a unit timelike concircular vector
field ξ, called the characteristic vecotor field of the manifold. Then we have

g(ξ, ξ) = −1. (5)

Since ξ is a unit concircular vector field, there exists a non-zero 1-form η such
that for

g(X, ξ) = η(X) (6)

the equation of the following form holds

(∇Xη)(Y ) = α{g(X,Y ) + η(X)η(Y )} (α 6= 0) (7)

η for all vector fields X, Y where ∇ denotes the operator of covariant differenti-
ation with respect to the Lorentzian metric g and α is a non-zero scalar function
satisfying

∇Xα = (Xα) = α(X) = ρη(X), (8)

ρ being a certain scalar function. If we put

φX =
1

α
∇Xξ, (9)

then from (7) and (9), we have

φX = X + η(X)ξ, (10)

from which it follows that φ is a symmetric (1, 1) tensor. Thus the Lorentzian
manifold Mntogether with the unit timelike concircular vector field ξ, its asso-
ciated 1-form η and (1,1) tensor field φ is said to be a Lorentzian concircular
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structure manifold (briefly (LCS)n-manifold) [5]. In an (LCS)n-manifold, the
following relations hold [24]:

η(ξ) = −1, φ ◦ ξ = 0, (11)

η(φX) = 0, g(φX, φY ) = g(X,Y ) + η(X)η(Y ), (12)

η(R(X,Y )Z) = (ρ− α2)[g(Y,Z)η(X)− g(X,Z)η(Y )], (13)

R(X,Y )ξ = (ρ− α2)[η(Y )X − η(X)Y ], (14)

for any vector fields X,Y, Z.

Let (M,φ, ξ, η, g) be a (LCS)n manifold satisfying (4). Writing Lξg in terms
of the Levi-Civita connection ∇, we obtain from (4) that,

2S(X,Y ) = −g(∇Xξ, Y )− g(X,∇Y ξ)− 2λg(X,Y )− 2µη(X)η(Y ), (15)

for any X,Y ∈ χ(M). As a consequence of (9) and (10), the above equation
becomes

S(X,Y ) = −(λ+ α)g(X,Y )− (µ+ α)η(X)η(Y ). (16)

Thus, for (LCS)n-manifold with η-Ricci solution the generalized quasi-conformal
curvature tensor W takes the form

W(X,Y )Z = R(X,Y )Z −
[
(λ+ α)(a+ b) +

cr

n

(
1

n− 1
+ a+ b

)]
[g(Y, Z)X − g(X,Z)Y ]−a(µ+ α)η(Z){η(Y )X − η(X)Y }
−b(µ+ α){g(Y,Z)η(X)− g(X,Z)ηY }ξ. (17)

In particular, replacing Y = ξ in (16), we have

S(X, ξ) = [µ− λ]η(X). (18)

From (13) and (18) one can easily bring out

[µ− λ] = (n− 1)(ρ− α2). (19)

Also, from (16) we have

r = µ− nλ− 2nα. (20)

3 η-Ricci solitons in (LCS)n-manifold satisfying
W(ξ,X) · S = 0

In this section we consider an (LCS)n-manifold satisfying W (ξ,X)· S = 0.
Hence, we have

S(W(ξ,X)Y, Z) + S(Y,W(ξ,X)Z) = 0, (21)

for any X,Y, Z ∈ χ(M).
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In view of the expression (14), (16) and (17) we get

−(µ+ α)

{
α2 − ρ+ λ(a+ b) +

cr

n

(
1

n− 1
+ a+ b

)}
[2η(X)η(Y )η(Z) + g(X,Z)η(Y ) + g(X,Y )η(Z)] = 0, (22)

which yields for Y = ξ

(µ+ α)
[
α2 − ρ+ λ(a+ b) +

cr

n

(
1

n− 1
+ a+ b

)]
×

×
[
η(X)η(Z) + g(X,Z)

]
= 0

⇒ (µ+ α)
[
α2 − ρ+ λ(a+ b)

+
c{µ− nλ− (n− 1)α}

n

(
1

n− 1
+ a+ b

)]
g(φX, φY ) = 0. (23)

for any X, Y ∈ χ(M). This leads to the following

Theorem 1. Let Mn(φ, ξ, η, g) be an (LCS)n-manifold bearing an η-Ricci soliton
satisfying W(ξ,X)· S = 0. Then

Curvature condition The values of λ & µ

R(ξ,X)· S = 0 µ = −α
C(ξ,X)· S = 0 µ = −α or λ = (n− 1)(α2 − ρ) + (n−1)α−µ

2(n−1)
C̃(ξ,X)· S = 0 µ = −α or λ = (n− 1)(α2 − ρ)

E(ξ,X)· S = 0 µ = −α or λ = (n− 1)(α2 − ρ) + µ−(n−1)α
n

P (ξ,X)· S = 0 µ = −α or λ = (n− 1)(α2 − ρ)

H(ξ,X)· S = 0 µ = −α or λ = (n− 1)(α2 − ρ)

Theorem 2. Let Mn(φ, ξ, η, g) be an (LCS)n-manifold bearing an η-Ricci soliton.
Then the η-Ricci soliton of such manifold is expanding, steady or shrinking ac-
cording to α2 T ρ for each of C̃(ξ,X)· S = 0, P (ξ,X)· S = 0 and H(ξ,X)· S = 0
provided µ 6= −α.

Theorem 3. Let Mn(φ, ξ, η, g) be an (LCS)n-manifold bearing an η-Ricci soliton.
Then the η-Ricci soliton of such a manifold is expanding, steady or shrinking
according as (n − 1)(α2 − ρ) + (n−1)α−µ

2(n−1) T 0 for each of C(ξ,X)· S = 0 and

E(ξ,X)· S = 0 provided µ 6= −α.

4 (LCS)n-manifold satisfying ((ξ,∧SX) ·W) = 0

Let Mn(φ, ξ, η, g)(n > 1), be an (LCS)n-manifold satisfying the condition

((ξ,∧SX) ·W)( Y,Z)U = 0, (24)
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which is equivalent to

S(X,W(Y,Z)U)ξ − S(ξ,W(Y, Z)U)X − S(X,Y )W(ξ, Z)U

+S(ξ, Y )W(X,Z)U − S(X,Z)W(Y, ξ)U + S(ξ, Z)W(Y,X)U

−S(X,U)W(Y, Z)ξ + S(ξ, U)W(Y, Z)X = 0. (25)

Taking the inner product with ξ, we have

0 = −S(X,W(Y, Z)U)− S(ξ,W(Y,Z)U)η(X)− S(X,Y )η(W(ξ, Z)U)

+S(ξ, Y )η(W(X,Z)U)− S(X,Z)η(W(Y, ξ)U) + S(ξ, Z)η(W(Y,X)U)

+S(X,U)η(W(Y,Z)ξ) + S(ξ, U)η(W(Y,Z)X). (26)

In view of (16) and (18), we get{
ρ−α2 − λ(a+ b)− cr

n

(
1

n− 1
+ a+ b

)}
[(λ+ α){2g(X,Y )g(Z,U)

+2η(X)η(Y )g(Z,U) + 2η(U)η(Y )g(X,Z)− 2g(X,U)η(Z)η(Y )}
+(µ+ α){2η(X)η(Y )η(Z)η(U) + 2η(Z)η(Y )g(X,U) + g(X,Z)η(Y )η(U)

−g(X,Y )η(Z)η(U)}] = 0, (27)

which yields for U = ξ that{
ρ−α2 − λ(a+ b)− cr

n

(
1

n− 1
+ a+ b

)}
[2(λ+ α) + (µ+ α)][g(X,Y )η(Z)− g(X,Z)η(Y )] = 0, (28)

which leads to

λ = −(µ+ 3α)

2
or, λ =

n(n− 1)(α2 − ρ) + c{µ− (n− 1)α}[1 + (n− 1)(a+ b)]

(c− a− b)[1 + (n− 1)(a+ b)]
.

(29)

Theorem 4. Let Mn(φ, ξ, η, g) be an (LCS)n-manifold bearing an η-Ricci soliton
and (ξ ∧S X)· W = 0. Then

Curvature condition The values of λ & µ

(ξ∧SX)·R = 0 λ = − (µ+3α)
2

(ξ ∧S X)·C = 0 λ = − (µ+3α)
2 or λ = (n− 1)(α2 − ρ) + (n−1)α−µ

2(n−1)

(ξ ∧S X)·C̃ = 0 λ = − (µ+3α)
2 or λ = (n− 1)(α2 − ρ)

(ξ ∧S X)·E = 0 λ = − (µ+3α)
2 or λ = (n− 1)(α2 − ρ) + µ−(n−1)α

n

(ξ ∧S X)·P = 0 λ = − (µ+3α)
2 or λ = (n− 1)(α2 − ρ)

(ξ ∧S X)·H = 0 λ = − (µ+3α)
2 or λ = (n− 1)(α2 − ρ)

Theorem 5. Let Mn(φ, ξ, η, g) be an (LCS)n-manifold bearing an η-Ricci soliton.
The η-Ricci soliton of such a manifold is either expanding, steady or shrinking
according to α2 T ρ or µ+ 3α ≶ 0 for each of (ξ ∧S X)·C̃ = 0, (ξ ∧S X)·P = 0
and (ξ ∧S X)·H = 0.
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Theorem 6. Let Mn(φ, ξ, η, g) be an (LCS)n-manifold bearing an η-Ricci soliton.
The η-Ricci soliton of such a manifold is either expanding, steady or shrinking
according to the Ricci soliton of such manifold is expanding, shrinking or steady
according as (n−1)(α2−ρ)+ (n−1)α−µ

2(n−1) T 0 or µ+3α ≶ 0 for each of (ξ∧SX)·C = 0

and (ξ ∧S X)·E(ξ,X) S = 0.

5 Existence of expanding and shrinking η-Ricci soli-
ton

Example 1. Let us consider a 4dimensional manifold M = {(x1, x2, x3, x4) ∈ R4

: x4 6= 0, where (x1, x2, x3, x4) being standard coordinates in R4. Let {e1, e2, e3, e4}
be a linearly independent global frame on M given by

e1 = cosh
∂

∂x1
, e2 = coshx4

∂

∂x2
, e3 = coshx4

∂

∂x3
, e4 =

∂

∂x4
.

Let g be the Lorentzian metric defined by g( ∂
∂x1

, ∂
∂x1

) = g( ∂
∂x2

, ∂
∂x2

) = g( ∂
∂x3

, ∂
∂x3

) =

sech2x4, g( ∂
∂x4

, ∂
∂x4

) = −1 and g( ∂
∂xi

, ∂
∂xj

) = 0 for i 6= j = 1, 2, 3, 4. Let η be
the 1-form defined by η(U) = g(U, e4) for any U ∈ χ(M). Let φ be a tensor
field of type (1, 1), defined by φe1 = e1, φe2 = e2, φe3 = e3 φe4 = 0. Then
using the linearity of φ and g we have η(e4) = −1, φ2U = U + η(U) e4 and
g(φU, φW ) = g(U,W ) + η(U)η(W ) for any U,W ∈ χ(M). Thus for e4 = ξ,
(φ, ξ, η, g) defines a Lorentzian paracontact structure on M .

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g
and R be the curvature tensor of g. Then we have

[e1, e2] = − coshx4e2, [e1, e3] = − coshx4e3, [e1, e4] = − tanhx4e1,

[e2, e4] = − tanhx4e2, [e3, e4] = − tanhx4e3.

Taking e4 = ξ and using Koszul formula for the Lorentzian metric g, we can easily
calculate

∇e1e4 = − tanhx4e1, ∇e2e4 = − tanhx4e2, ∇e3e4 = − tanhx4e3,

∇e1e1 = − tanhx4e4, ∇e2e1 = coshx4e2, ∇e3e1 = coshx4e3,

∇e2e2 = − tanhx4e4 − coshx4e1, ∇e3e3 = − tanhx4e1 − coshx4e1,

∇e1e3 = 0, ∇e4e1 = 0, ∇e1e2 = 0, ∇e3e2 = 0,

∇e4e2 = 0, ∇e4e3 = 0, ∇e4e4 = 0, ∇e2e3 = 0.

From the above, it can be easily seen that (φ, ξ, η, g) is an (LCS)4 structure on
M . Consequently M4(φ, ξ, η, g) is an (LCS)4-manifold with α = − tanhx4e4 6= 0
and ρ = sech2x4.
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Using the above relations, we can easily calculate the non-vanishing compo-
nents of the curvature tensor as follows :

R(e2, e3)e2 = (cosh2 x4 − tanh2 x4)e3, R(e2, e3)e3 = (tanh2 x4 − cosh2 x4)e2,

R(e1, e3)e1 = (cosh2 x4 − tanh2 x4)e1, R(e1, e3)e3 = (tanh2 x4 − cosh2 x4)e1,

R(e3, e4)e4 = (sech2x4 − tanh2 x4)e3, R(e3, e4)e3 = (sech2x4 − tanh2 x4)e4,

R(e1, e2)e2 = (tanh2 x4 − cosh2 x4)e1, R(e1, e2)e1 = (cosh2 x4 − tanh2 x4)e2,

R(e1, e4)e1 = (sech2x4 − tanh2 x4)e4, R(e1, e4)e4 = (sech2x4 − tanh2 x4)e1,

R(e2, e4)e2 = (sech2x4 − tanh2 x4)e4, R(e2, e4)e4 = (sech2x4 − tanh2 x4)e2,

The non-vanishing components of the Ricci tensor in (LCS)4 manifold under
consideration satisfying η- Ricci solution are

S(e1, e1) = S(e2, e2) = S(e3, e3) = tanhx4 − λ,

S(e4, e4) = λ− µ.

Using the above relations, we can easily calculate the non-vanishing components
as follows

(W(e4, ei)· S)(e4, ei) = −(λ− tanhx4)
[

sech2x4 − tanh2x4 − a(λ− µ)

−b(µ− tanhx4)− c

4
(µ− 4λ+ 8 tanhx4)

(
1

3
+ a+ b

)]
−(µ− λ)

[
sech2x4 − tanh2x4 − a(λ− tanhx4)

+b(µ− tanhx4)− c

4
(µ− 4λ+ 8 tanhx4)

(
1

3
+ a+ b

)]
for i = 1, 2, 3 and the components which can be obtained from these by the sym-
metric properties. Using the above relation we can easily bring out the following
:

Theorem 7. There exists an (LCS)4-manifold bearing an η-Ricci soliton where
the Ricci soliton is expanding or shrinking according to sinh2 T 1 for each of

C̃(ξ,X)· S = 0, P (ξ,X)· S = 0 and H(ξ,X)· S = 0 provided µ 6= tanhx4.

Theorem 8. There exists an (LCS)4-manifold bearing an η-Ricci soliton where
the Ricci soliton is expanding or shrinking according to 3(tanh2 x4 − sech2x4) T
3 tanhx4+sech2x4

6 for each of C(ξ,X)· S = 0 and E(ξ,X)· S = 0 provided µ 6=
tanhx4.

Example 2. Let us consider a 4dimensional manifold M = {(x1, x2, x3, x4) ∈ R4

: x4 6= 0, where (x1, x2, x3, x4) being standard coordinates in R4. Let {e1, e2, e3, e4}
be a linearly independent global frame on M given by

e1 = x1x4
∂

∂x1
, e2 = x4

∂

∂x2
, e3 = x4

∂

∂x3
, e4 = (x4)3

∂

∂x4
.
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Let g be the Lorentzian metric defined by g( ∂
∂x1

, ∂
∂x1

) =
(

1
x1x4

)2
, g( ∂

∂x2
∂
∂x2

) =

= g( ∂
∂x3

, ∂
∂x3

) =
(

1
x4

)2
, g( ∂

∂x4
, ∂
∂x4

) = −
(

1
x4

)6
and g( ∂

∂xi
, ∂
∂xj

) = 0 for i 6= j =
1, 2, 3, 4. Let η be the 1-form defined by η(U) = g(U, e4) for any U ∈ χ(M). Let
φ be the (1, 1) tensor field defined by φe1 = e1, φe2 = e2, φe3 = e3 φe4 = 0.
Then using the linearity of φ and g we have η( e4) = −1, φ2U = U + η(U) e4
and g(φU, φW ) = g(U,W ) + η(U)η(W ) for any U,W ∈ χ(M). Thus for e4 = ξ,
(φ, ξ, η, g) defines a Lorentzian paracontact structure on M .

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g
and R be the curvature tensor of g. Then we have

[e1, e2] = −x4e2, [e1, e4] = −
(
x4
)2
e1, [e2, e4] = −

(
x4
)2
e2, [e3, e4] = −

(
x4
)2
e3.

Taking e4 = ξ and using Koszul formula for the Lorentzian metric g, we can easily
calculate

∇e1e4 = −
(
x4
)2
e1, ∇e2e4 = −

(
x4
)2
e2, ∇e3e4 = −

(
x4
)2
e3,

∇e1e1 = −
(
x4
)2
e4, ∇e2e1 = x4e2, ∇e3e3 = −

(
x4
)2
e4,

∇e2e2 = −
(
x4
)2
e4 − x4e1, ∇e4e1 = 0, ∇e3e2 = 0,

∇e1e3 = 0, ∇e1e2 = 0, ∇e3e1 = 0,

∇e4e2 = 0, ∇e4e3 = 0, ∇e4e4 = 0.

From the above it can be easily seen that (φ, ξ, η, g) is an (LCS)4 structure on

M . Consequently M4(φ, ξ, η, g) is an (LCS)4-manifold with α = −
(
x4
)2 6= 0 and

ρ = 2
(
x4
)2

. Using the above relations, we can easily calculate the non-vanishing
components of the curvature tensor as follows :

R(e2, e3)e2 = −
(
x4
)4
e3, R(e2, e3)e3 =

(
x4
)4
e2, R(e1, e4)e1 =

(
x4
)4
e4,

R(e1, e3)e1 = −
(
x4
)4
e3, R(e1, e4)e4 =

(
x4
)4
e1, R(e2, e4)e2 =

(
x4
)4
e4,

R(e1, e3)e3 =
(
x4
)4
e1, R(e3, e4)e4 =

(
x4
)4
e3, R(e3, e4)e3 =

(
x4
)4
e4,

R(e1, e2)e2 =
(
x4
)4
e1 −

(
x4
)2
e1, R(e2, e4)e4 =

(
x4
)4
e4,

R(e1, e2)e1 = −
(
x4
)4
e2 +

(
x4
)2
e2

and the components which can be obtained from these by the symmetric proper-
ties.

The non-vanishing components of the Ricci tensor in (LCS)4 manifold under
consideration satisfying η- Ricci solution are

S(e1, e1) = S(e2, e2) = S(e3, e3) =
(
x4
)2 − λ

S(e4, e4) = − (µ− λ)
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As a consequence of the above, one can easily bring out the non-vanishing com-
ponents as follows

((e4,∧Sei) ·W)( ei, e2)e4 = Le2

((e4,∧Sei) ·W)( ei, e3)e4 = Le3

((e4,∧Sei) ·W)( ei, e4)e4 = Le4

for i = 1, 2, 3, where

L= [2
(
x4
)2− (

x4
)4 − λ(a+ b)− c

n

(
µ− nλ+ 2n

(
x4
)2)(

1

n− 1
+ a+ b

)
][2λ− 3

(
x4
)2

+ µ)].

This motivates

Theorem 9. There exists an (LCS)4-manifold bearing an η-Ricci soliton where

the Ricci soliton is expanding or shrinking according to
(
x4
)2

T 2 or µ ≶

3
(
x4
)2

for each of (ξ ∧S X)·C̃ = 0, (ξ ∧S X)·P = 0 and (ξ ∧S X)·H = 0.

Theorem 10. There exists an (LCS)4-manifold bearing an η-Ricci soliton where

the Ricci soliton is expanding or shrinking according to 3(
(
x4
)4 − 2

(
x4
)2

) T

3(x4)
2
+µ

6 0 or µ ≶ 3
(
x4
)2

for each of (ξ∧SX)·C = 0 and (ξ∧SX)·E(ξ,X) S = 0.
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References

[1] Blaga, A. M., Eta-Ricci solitons on para-Kenmotsu manifolds, Balkan J.
Geom. Appl., 20 (2015), no. 1, 1-13.

[2] Yano, K., and Bochner, S., Curvature and Betti numbers, Annals of Mathe-
matics Studies 32, Princeton University Press, 1953.

[3] Bagewadi, C. S., Ingalahalli, G., Ricci solitons in Lorentzian -Sasakian man-
ifolds, Acta Math. Academiae Paedagogicae Ny regyh aziensis 28, (2012),
no. 1, 59-68.

[4] Bagewadi, C. S., Ingalahalli, G., Ashoka, S. R., A Study on Ricci Solitons in
Kenmotsu Manifolds, ISRN Geometry, Article ID 412593, 2013, (2013).

[5] Bagewadi, C. S., and Ingalahalli, G., Ricci solitons in Lorentzian α-Sasakian
manifolds, Acta Mathematica, 28, (2012), no. 1, 59– 68,



η-Ricci solitons in (LCS)n-manifold 11

[6] Barua, B., and De, U. C., Characterizations of a Riemannian manifold ad-
mitting Ricci solitons. Facta Universitatis(NIS)Ser. Math. Inform. 28 (2013),
no. 2, 127-132.

[7] Bejan, C. L., and Crasmareanu, M., Ricci solitons in manifolds with quasi-
constant curvature, Publ. Math. Debrecen, 78 (2011), no. 1, 235-243.

[8] Cho, J. T., Kimura, M., Ricci solitons and real hypersurfaces in a complex
space form, Tohoku Math. J. 61 (2009), no. 2, 205-212.

[9] Chow, B., Lu, P., and Ni, L., Hamilton’s Ricci Flow, Graduate Studies in
Mathematics, vol. 77, American Mathematical Society, Providence, RI, USA,
2006.

[10] Deshmukh, S., Al-Sodais, H., Alodan, H., A note on Ricci solitons, Balkan
J. Geom. Appl. 16 (2011), no. 1, 48-55.

[11] De, U. C., Matsuyama, Y., Ricci solitons and gradient Ricci solitons in a
Kenmotsu manifolds. Southeast Asian Bull. Math. 37 (2013), no. 5, 691–
697.

[12] Eisenhart, L. P., Riemannian Geometry, Princeton University Press, 1949.

[13] Ghosh, A., Sharma, R., and Cho, J. T., Contact metric manifolds with η-
parallel torsion tensor, Ann. Global Anal. Geom., 34 (2008), no. 3, 287-299.

[14] He, C., Zhu, M., The Ricci solitons on Sasakian manifolds,
arxiv:1109.4407v2.2011.

[15] Ishii, Y., On conharmonic transformations, Tensor(N.S.), 7 (1957), 73-80.

[16] Ingalahalli, G., Bagewadi, C. S., Ricci solitons in α-Sasakian manifolds,
ISRN Geometry, Article ID 421384, 2012 (2012), 13 pages.

[17] Nagaraja, H. G., Premalatha, C. R., Ricci solitons in Kenmotsu manifolds,
J. Math. Anal. 3, 2 (2012), 18-24.

[18] O’Neill, B., Semi-Riemannian Geometry, Academic Press, Inc, New York
(1983).

[19] Ashoka, S. R., Bagewadi, C. S., and Ingalahalli, G., A Geometry on Ricci
solitons in (LCS)n manifolds, Diff. Geom. Dynamical Systems, 16 (2014),
50-62.

[20] Baishya, K. K., & Chowdhury, P. R., On generalized quasi-conformal N(k, µ)-
manifolds, Commun. Korean Math. Soc., 31 (2016), no. 1, 163-176.

[21] Pokhariyal, G. P., & Mishra, R. S., Curvatur tensors ′and their relativistics
significance I, Yokohama Mathematical Journal, 18 (1970), 105-108.



12 K. K. Baishya and P. R. Chowdhury
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