A CERTAIN CLASS OF ANALYTIC FUNCTIONS ASSOCIATED WITH A DIFFERENTIAL OPERATOR

Dorina RĂDUCANU ${ }^{1}$

Abstract

For $0 \leq \mu \leq \lambda, 0 \leq \alpha<1,-\pi / 2<\beta<\pi / 2$ and $m \in \mathbb{N} \cup\{0\}$, a new class $R^{m}(\lambda, \mu, \alpha, \beta)$ of analytic functions defined by means of the differential operator $D_{\lambda \mu}^{m}$ is introduced. Basic properties of the class $R^{m}(\lambda, \mu, \alpha, \beta)$ are investigated. Connections with previous known results are also pointed out.

2000 Mathematics Subject Classification: 30C45 Key words: analytic functions, differential operator, coefficient estimates, Hadamard product .

1 Introduction

Let \mathcal{H} be the class of analytic functions in the unit disk $\mathcal{U}=\{z \in \mathbb{C}:|z|<1\}$. Denote by \mathcal{A} the class of functions f in \mathcal{H} of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad z \in \mathcal{U} \tag{1}
\end{equation*}
$$

Let \mathcal{R} denote the family of functions $f \in \mathcal{A}$ which satisfy the condition

$$
\begin{equation*}
\Re\left(f^{\prime}(z)+z f^{\prime \prime}(z)\right)>0, \quad z \in \mathcal{U} . \tag{2}
\end{equation*}
$$

The class \mathcal{R} was introduced and investigated by P. N. Chichra [4] and R. Sing and S. Sing [12].

Later, H. Silverman [11] investigated the class $\mathcal{R}(\alpha)(0 \leq \alpha<1)$ of all functions $f \in \mathcal{A}$ which satisfy the inequality

$$
\begin{equation*}
\Re\left(f^{\prime}(z)+z f^{\prime \prime}(z)\right)>\alpha, \quad z \in \mathcal{U} \tag{3}
\end{equation*}
$$

In [4], [11] and [12] lower bounds for $\Re f^{\prime}(z)$ and $\Re \frac{f(z)}{z}$ were obtained for functions belonging to the classes \mathcal{R} and $\mathcal{R}(\alpha)$ respectively.

[^0]Let $\mathcal{P}_{\alpha, \beta}$ be the class of functions $p \in \mathcal{H}$ with $p(0)=1$ such that

$$
\begin{equation*}
\Re\left(e^{i \beta} p(z)\right)>\alpha \cos \beta, \quad z \in \mathcal{U} \tag{4}
\end{equation*}
$$

Here and through the rest of the paper we suppose that α, β are real numbers with $0 \leq \alpha<1$ and $|\beta|<\frac{\pi}{2}$.

Note that for $\alpha=\beta=0$ the class $\mathcal{P}_{\alpha, \beta}$ reduces to the well known Carathéodory class of functions

$$
\mathcal{P}=\{p \in \mathcal{H}, p(0)=1 \text { and } \Re p(z)>0\}
$$

It is easy to see that a function $p \in \mathcal{H}$ belongs to the class $\mathcal{P}_{\alpha, \beta}$ if and only if

$$
\begin{equation*}
\frac{e^{i \beta} p(z)-(\alpha \cos \beta+i \sin \beta)}{(1-\alpha) \cos \beta} \in \mathcal{P} \tag{5}
\end{equation*}
$$

The function

$$
\begin{equation*}
p_{\alpha, \beta}(z)=\frac{1+e^{-i \beta}\left(e^{-i \beta}-2 \alpha \cos \beta\right) z}{1-z}, \quad z \in \mathcal{U} . \tag{6}
\end{equation*}
$$

maps the open unit disk onto the half-plane $\left.H_{\alpha, \beta}=\left\{z \in \mathbb{C}: \Re\left(e^{i \beta} z\right)>\alpha \cos \beta\right)\right\}$. If

$$
\begin{equation*}
p_{\alpha, \beta}(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n} \tag{7}
\end{equation*}
$$

then

$$
\begin{equation*}
p_{n}=2 e^{-i \beta}(1-\alpha) \cos \beta, \quad n \geq 1 . \tag{8}
\end{equation*}
$$

Herglotz' representation formula for the class \mathcal{P} (see [6]) together with (5) shows that a function $p \in \mathcal{H}$ belongs to the class $\mathcal{P}_{\alpha, \beta}$ if and only if there exists a Borel probability measure μ on the unit circle $T=\{x \in \mathbb{C}:|x|=1\}$ such that

$$
\begin{equation*}
p(z)=\int_{|x|=1} \frac{1+e^{-i \beta}\left(e^{-i \beta}-2 \alpha \cos \beta\right) x z}{1-x z} d \mu(x), \quad z \in \mathcal{U} . \tag{9}
\end{equation*}
$$

If $f \in \mathcal{A}$ is given by (1.1) and $g \in \mathcal{A}$ is given by

$$
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}
$$

then the Hadamard product (or convolution) of the functions f and g is defined by

$$
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}=(g * f)(z), \quad z \in \mathcal{U} .
$$

For a function $f \in \mathcal{A}$ we consider the following differential operator introduced by Răducanu and Orhan in [8]:

$$
\begin{align*}
D_{\lambda \mu}^{0} f(z) & =f(z) \\
D_{\lambda \mu}^{1} f(z) & =D_{\lambda \mu} f(z)=\lambda \mu z^{2} f^{\prime \prime}(z)+(\lambda-\mu) z f^{\prime}(z)+(1-\lambda+\mu) f(z) \\
D_{\lambda \mu}^{m} f(z) & =D_{\lambda \mu}\left(D_{\lambda \mu}^{m-1} f(z)\right) \tag{10}
\end{align*}
$$

where $0 \leq \mu \leq \lambda$ and $m \in \mathbb{N}:=\{1,2, \ldots\}$.
Note that, if $f \in \mathcal{A}$ is given by (1), then

$$
\begin{equation*}
D_{\lambda \mu}^{m} f(z)=z+\sum_{n=2}^{\infty} A_{n}(\lambda, \mu, m) a_{n} z^{n} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}(\lambda, \mu, m)=[1+(\lambda \mu n+\lambda-\mu)(n-1)]^{m} \quad n \geq 2 \tag{12}
\end{equation*}
$$

It should be remarked that the operator $D_{\lambda \mu}^{m}$ generalizes two other differential operators considered earlier:
(i) $D_{10}^{m} f(z)=D^{m} f(z)$, the operator introduced by Sălăgean in [10]
(ii) $D_{\lambda 0}^{m} f(z)=D_{\lambda}^{m} f(z)$, the operator studied by Al-Oboudi in [1].

In view of (11) the operator $D_{\lambda \mu}^{m} f(z)$ can be written in terms of convolution as

$$
\begin{equation*}
D_{\lambda \mu}^{m} f(z)=\left(f * g_{\lambda \mu}\right)(z), \quad z \in U \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{\lambda \mu}(z)=z+\sum_{n=2}^{\infty} A_{n}(\lambda, \mu, m) z^{n}, \quad z \in \mathcal{U} . \tag{14}
\end{equation*}
$$

Define the function $g_{\lambda \mu}^{(-1)}(z)$ such that

$$
\begin{equation*}
\left(g_{\lambda \mu}^{(-1)} * g_{\lambda \mu}\right)(z)=\frac{z}{1-z}, \quad z \in \mathcal{U} \tag{15}
\end{equation*}
$$

It is easy to observe that

$$
\begin{equation*}
f(z)=\left(g_{\lambda \mu}^{(-1)} * D_{\lambda \mu}^{m} f\right)(z), \quad z \in \mathcal{U} \tag{16}
\end{equation*}
$$

Making use of the differential operator $D_{\lambda \mu}^{m} f$, we define the following class of functions.

Definition 1. We say that a function $f \in \mathcal{A}$ is in the class $R^{m}(\lambda, \mu, \alpha, \beta)$ if $\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime}+z\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime \prime} \in \mathcal{P}_{\alpha, \beta}$, that is

$$
\begin{equation*}
\Re\left\{e^{i \beta}\left[\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime}+z\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime \prime}\right]\right\}>\alpha \cos \beta \tag{17}
\end{equation*}
$$

for $0 \leq \alpha<1, \beta \in \mathbb{R}$ with $|\beta|<\frac{\pi}{2}, 0 \leq \mu \leq \lambda$ and $m \in \mathbb{N} \cup\{0\}$.

The class $R^{m}(\lambda, \mu, \alpha, \beta)$ contains as particular cases the following classes of functions:
(i) $R^{0}(\lambda, \mu, 0,0)=\mathcal{R}$, the class investigated by P. N. Chichra in [4] and R. Sing and S . Sing in [12].
(ii) $R^{0}(\lambda, \mu, \alpha, 0)=\mathcal{R}(\alpha)$, the class studied by Silverman in [11].

In this paper we investigate some properties of the class $R^{m}(\lambda, \mu, \alpha, \beta)$. In particular, for this class, we derive inclusion results, membership characterization, integral formula, coefficient estimates and also convolution property. Connections with previous known results are also pointed out.

2 Inclusion results

In order to obtain our results, we shall need the following two lemmas.
Lemma 1. ([5], [9]) Let $\left\{c_{n}\right\}_{n=1}^{\infty}$ be a convex decreasing sequence, i.e

$$
c_{n}-2 c_{n+1}+c_{n+2} \geq 0 \text { and } c_{n+1}-c_{n+2} \geq 0, \quad n \in \mathbb{N} .
$$

Then

$$
\Re\left\{\sum_{n=1}^{\infty} c_{n} z^{n-1}\right\}>\frac{1}{2}, \quad z \in \mathcal{U}
$$

The next lemma follows from Herglotz' representation formula for the class \mathcal{P} (see [6]).

Lemma 2. Let $P(z)$ be analytic in \mathcal{U} with $P(0)=1$ and $\Re P(z)>\frac{1}{2}$ in \mathcal{U}. Then, for any analytic function F in \mathcal{U}, the function $F * P$ takes values in the convex hull of $F(U)$.

Theorem 1. Let $\lambda \geq 0$ and $\mu \geq 0$ such that $\lambda \geq \mu+1$. Then

$$
R^{m+1}(\lambda, \mu, \alpha, \beta) \subset R^{m}(\lambda, \mu, \alpha, \beta), \quad m \in \mathbb{N} \cup\{0\}
$$

Proof. Let f given by (1) be in $R^{m+1}(\lambda, \mu, \alpha, \beta)$. It follows that

$$
\Re\left\{e^{i \beta}\left[\left(D_{\lambda \mu}^{m+1} f(z)\right)^{\prime}+z\left(D_{\lambda \mu}^{m+1} f(z)\right)^{\prime \prime}\right]\right\}>\alpha \cos \beta
$$

or, making use of (11) and (12)

$$
\Re\left\{e^{i \beta}\left[1+\sum_{n=2}^{\infty} n^{2}[1+(\lambda \mu n+\lambda-\mu)(n-1)]^{m+1} a_{n} z^{n-1}\right]\right\}>\alpha \cos \beta, \quad z \in \mathcal{U} .
$$

We have

$$
\begin{aligned}
\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime}+z\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime \prime}= & 1+\sum_{n=2}^{\infty} n^{2}[1+(\lambda \mu n+\lambda-\mu)(n-1)]^{m} a_{n} z^{n-1} \\
= & \left\{1+\sum_{n=2}^{\infty} n^{2}[1+(\lambda \mu n+\lambda-\mu)(n-1)]^{m+1} a_{n} z^{n-1}\right\} \\
& *\left\{1+\sum_{n=2}^{\infty} \frac{z^{n-1}}{1+(\lambda \mu n+\lambda-\mu)(n-1)}\right\}
\end{aligned}
$$

Let

$$
P(z)=1+\sum_{n=2}^{\infty} \frac{1}{1+(\lambda \mu n+\lambda-\mu)(n-1)} z^{n-1}
$$

and consider the sequence

$$
c_{1}=1 \text { and } c_{n}=\frac{1}{1+(\lambda \mu n+\lambda-\mu)(n-1)}, \quad n \geq 2 .
$$

After lengthy but elementary calculations, we obtain that for $\lambda \geq \mu+1$, the sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ is convex decreasing. Therefore, from Lemma 1 we have $\Re P(z)>\frac{1}{2}$ for all $z \in \mathcal{U}$. Now, our result follows as an application of Lemma 2.

Making use of Lemma 1 and Lemma 2 we obtain the next result.
Theorem 2. Let $f \in R^{m}(\lambda, \mu, \alpha, \beta)$. Then
(i) $\Re\left\{e^{i \beta}\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime}\right\}>\alpha \cos \beta, \quad z \in \mathcal{U}$;
(ii) $\Re\left\{e^{i \beta}\left(\frac{D_{\lambda \mu}^{m} f(z)}{z}\right)\right\}>\alpha \cos \beta, \quad z \in U$.

Proof. Let $f \in R^{m}(\lambda, \mu, \alpha, \beta)$. It follows that

$$
\Re\left\{e^{i \beta}\left[\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime}+z\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime \prime}\right]\right\}>\alpha \cos \beta
$$

or equivalently

$$
\Re\left\{e^{i \beta}\left[1+\sum_{n=2}^{\infty} n^{2}[1+(\lambda \mu n+\lambda-\mu)(n-1)]^{m} a_{n} z^{n-1}\right]\right\}>\alpha \cos \beta
$$

(i) The sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ defined by $c_{1}=1$ and $c_{n}=\frac{1}{n}, n \geq 2$ is a convex decreasing sequence and in view of Lemma 1 , we have

$$
\Re\left\{1+\sum_{n=2}^{\infty} \frac{1}{n} z^{n-1}\right\}>\frac{1}{2}, \quad z \in \mathcal{U} .
$$

Writing $\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime}$ as

$$
\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime}=\left\{1+\sum_{n=2}^{\infty} n^{2}[1+(\lambda \mu n+\lambda-\mu)(n-1)]^{m} a_{n} z^{n-1}\right\} *\left\{1+\sum_{n=2}^{\infty} \frac{1}{n} z^{n-1}\right\}
$$

and making use of Lemma 2, we conclude that $\Re\left\{e^{i \beta}\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime}\right\}>\alpha \cos \beta, \quad z \in$ U.
(ii) We observe that the sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ given by $c_{1}=1$ and $c_{n}=\frac{1}{n^{2}}, n \geq 2$ is a convex decreasing sequence. It follows, from Lemma 1 that

$$
\Re\left\{1+\sum_{n=2}^{\infty} \frac{1}{n^{2}} z^{n-1}\right\}>\frac{1}{2}, \quad z \in U .
$$

Since

$$
\frac{D_{\lambda \mu}^{m} f(z)}{z}=\left\{1+\sum_{n=2}^{\infty} n^{2}[1+(\lambda \mu n+\lambda-\mu)(n-1)]^{m} a_{n} z^{n-1}\right\} *\left\{1+\sum_{n=2}^{\infty} \frac{1}{n^{2}} z^{n-1}\right\}
$$

we obtain our result as an application of Lemma 2.
Letting $m=0$ and $\alpha=\beta=0$ in Theorem 2 (i), we have the next result due to Chichra [4].

Corollary 1. If $\Re\left\{f^{\prime}(z)+z f^{\prime \prime}(z)\right\}>0, z \in \mathcal{U}$, then $\Re f^{\prime}(z)>0, z \in \mathcal{U}$ and thus, the function f is univalent in \mathcal{U}.

Letting $m=0$ in Theorem 2, we obtain the following result.
Corollary 2. If $\Re\left\{e^{i \beta}\left(f^{\prime}(z)+z f^{\prime \prime}(z)\right)\right\}>\alpha \cos \beta, z \in \mathcal{U}$, then
(i) $\Re e^{i \beta} f^{\prime}(z)>\alpha \cos \beta, z \in \mathcal{U}$;
(ii) $\Re\left\{e^{i \beta}\left[\frac{f(z)}{z}\right]\right\}>\alpha \cos \beta, z \in U$.

3 Membership characterization

A necessary and sufficient condition for a function $f \in \mathcal{A}$ to be in the class $R^{m}(\lambda, \mu, \alpha, \beta)$, in terms of convolution, is given in the following theorem.

Theorem 3. Let $0 \leq \alpha<1,|\beta|<\frac{\pi}{2}$ and $0 \leq \mu \leq \lambda, m \in \mathbb{N}$. Then, $f \in \mathcal{A}$ belongs to the class $R^{m}(\lambda, \mu, \alpha, \beta)$ if and only if $\left(f * H_{\lambda \mu \theta}\right)(z) / z \neq 0$ in \mathcal{U}, where

$$
\begin{equation*}
H_{\lambda \mu \theta}(z)=\left(h_{\lambda \mu} * h_{\theta}\right)(z) \tag{18}
\end{equation*}
$$

with $h_{\lambda \mu}(z)$ and $h_{\theta}(z)$ defined by

$$
\begin{equation*}
h_{\lambda \mu}(z)=z+\sum_{n=2}^{\infty} n^{2} A_{n}(\lambda, \mu, m) z^{n} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{\theta}(z)=\frac{z}{1-z}\left\{1-\frac{1+e^{-i \beta}\left(e^{-i \beta}-2 \alpha \cos \beta\right) e^{i \theta}}{e^{i \theta}\left[1+e^{-i \beta}\left(e^{-i \beta}-2 \alpha \cos \beta\right)\right]} z\right\}, \quad 0<\theta<2 \pi, z \in \mathcal{U} . \tag{20}
\end{equation*}
$$

Proof. Let $p(z)=\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime}+z\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime \prime}=\left[z\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime}\right]^{\prime}$. Since $p \in \mathcal{P}_{\alpha}, \beta$ if and only if $p \prec p_{\alpha, \beta}$ and noting that the function $p_{\alpha, \beta}$ given by (6) is univalent, we have that $p(z) \in \mathcal{P}_{\alpha, \beta}$ if and only if

$$
p(z) \neq \frac{1+e^{-i \beta}\left(e^{-i \beta}-2 \alpha \cos \beta\right) e^{i \theta}}{1-e^{i \theta}}, \quad 0<\theta<2 \pi, z \in \mathcal{U}
$$

or

$$
\left(1-e^{i \theta}\right) p(z)-\left\{1+e^{-i \beta}\left(e^{-i \beta}-2 \alpha \cos \beta\right) e^{i \theta}\right\} \neq 0, \quad 0<\theta<2 \pi, z \in \mathcal{U}
$$

Further, using the convolution, we obtain

$$
\begin{gathered}
\left(1-e^{i \theta}\right) p(z)-\left\{1+e^{-i \beta}\left(e^{-i \beta}-2 \alpha \cos \beta\right) e^{i \theta}\right\} \\
=\left(1-e^{i \theta}\right)\left[\frac{1}{1-z} * p(z)\right]-\left\{1+e^{-i \beta}\left(e^{-i \beta}-2 \alpha \cos \beta\right) e^{i \theta}\right\} * p(z) \\
=\left\{\frac{1-e^{i \theta}}{1-z}-\left[1+e^{-i \beta}\left(e^{-i \beta}-2 \alpha \cos \beta\right) e^{i \theta}\right]\right\} * p(z) \neq 0 .
\end{gathered}
$$

Consider the function $q_{\theta}(z)$ defined by

$$
q_{\theta}(z)=\frac{\frac{1-e^{i \theta}}{1-z}-\left[1+e^{-i \beta}\left(e^{-i \beta}-2 \alpha \cos \beta\right) e^{i \theta}\right]}{-e^{i \theta}\left[1+e^{-i \beta}\left(e^{-i \beta}-2 \alpha \cos \beta\right)\right]}
$$

or

$$
\begin{equation*}
q_{\theta}(z)=\frac{1}{1-z}\left\{1-\frac{1+e^{-i \beta}\left(e^{-i \beta}-2 \alpha \cos \beta\right) e^{i \theta}}{e^{i \theta}\left[1+e^{-i \beta}\left(e^{-i \beta}-2 \alpha \cos \beta\right)\right]} z\right\}, 0<\theta<2 \pi, z \in \mathcal{U} \tag{21}
\end{equation*}
$$

It follows that $p(z) \in \mathcal{P}_{\alpha, \beta}$ if and only if $\left(q_{\theta} * p\right)(z) \neq 0$. Since

$$
z p(z)=z\left[z\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime}\right]^{\prime}=\left(f * h_{\lambda \mu}\right)(z)
$$

and $z q_{\theta}(z)=h_{\theta}(z)$, we obtain that $p(z) \in \mathcal{P}_{\alpha, \beta}$ if and only if $\left(f * h_{\lambda \mu} * h_{\theta}\right)(z) / z \neq 0$.
Consequently, we have that $f \in R^{m}(\lambda, \mu, \alpha, \beta)$ if and only if $\left(f * H_{\lambda \mu \theta}\right)(z) / z \neq 0$ in \mathcal{U}, where $H_{\lambda \mu \theta}$ is given by (18).

Theorem 4. The coefficients H_{n} of the function $H_{\lambda \mu \theta}(z)$ defined by (3.1) satisfy the inequality

$$
\left|H_{n}\right| \leq \frac{n^{2} A_{n}(\lambda, \mu, m)}{(1-\alpha) \cos \beta}, \quad n \geq 2
$$

where $A_{n}(\lambda, \mu, m)$ is given by (12).
Proof. In view of (18), (19) and (20) we have

$$
H_{\lambda \mu \theta}(z)=z+\sum_{n=2}^{\infty} \frac{e^{i \theta}-1}{\left[1+e^{-i \beta}\left(e^{-i \beta}-2 \alpha \cos \beta\right)\right] e^{i \theta}} n^{2} A_{n}(\lambda, \mu, m) z^{n}
$$

or

$$
H_{\lambda \mu \theta}(z)=z+\sum_{n=2}^{\infty} H_{n} z^{n}
$$

where

$$
H_{n}=\frac{e^{i \theta}-1}{2 e^{i(\theta-\beta)}(1-\alpha) \cos \beta} n^{2} A_{n}(\lambda, \mu, m), \quad n \geq 2 .
$$

It is easy to check that

$$
\left|H_{n}\right| \leq \frac{n^{2} A_{n}(\lambda, \mu, m)}{(1-\alpha) \cos \beta}, \quad n \geq 2
$$

and thus, our theorem is proved.
Theorem 4 enables us to show that the function class $R^{m}(\lambda, \mu, \alpha, \beta)$ is nonempty.

Corollary 3. Let $f(z)=z+a z^{n}$. If

$$
|a| \leq \frac{(1-\alpha) \cos \beta}{n^{2} A_{n}(\lambda, \mu, m)}
$$

then, $f \in R^{m}(\lambda, \mu, \alpha, \beta)$.
Proof. Since

$$
\left|\frac{\left(f * H_{\lambda \mu \theta}\right)(z)}{z}\right|=\left|1+a H_{n} z^{n-1}\right| \geq 1-|a|\left|H_{n}\right||z| \geq 1-|z|>0, \quad z \in U
$$

it follows that $f \in R^{m}(\lambda, \mu, \alpha, \beta)$.

4 Integral representation

Making use of the integral representation of the functions in $\mathcal{P}_{\alpha, \beta}$, given by (9), we obtain an integral representation for the class $R^{m}(\lambda, \mu, \alpha, \beta)$.

Theorem 5. A function $f \in \mathcal{A}$ is in the class $R^{m}(\lambda, \mu, \alpha, \beta)$ if and only if it can be expressed as

$$
\begin{equation*}
f(z)=g_{\alpha \beta}^{(-1)}(z) * \int_{|x|=1}\left[z+2(1-\alpha) e^{-i \beta} \cos \beta \bar{x} \sum_{n=2}^{\infty} \frac{(x z)^{n}}{n^{2}}\right] d \mu(x) \tag{22}
\end{equation*}
$$

where $\mu(x)$ is a Borel probability measure on $T=\{x \in \mathbb{C}:|x|=1\}$ and $g_{\alpha \beta}^{(-1)}(z)$ is given by (15).

Proof. In view of the definition of the class $R^{m}(\lambda, \mu, \alpha, \beta)$, we have that $f \in$ $R^{m}(\lambda, \mu, \alpha, \beta)$ if and only if

$$
\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime}+z\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime \prime} \in \mathcal{P}_{\alpha, \beta} .
$$

Making use of (9), we obtain

$$
\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime}+z\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime \prime}=\int_{|x|=1} \frac{1+e^{-i \beta}\left(e^{-i \beta}-2 \alpha \cos \beta\right) x z}{1-x z} d \mu(x)
$$

or

$$
\left[z\left(D_{\lambda, \mu}^{m} f(z)\right)^{\prime}\right]^{\prime}=\int_{|x|=1} \frac{1+e^{-i \beta}\left(e^{-i \beta}-2 \alpha \cos \beta\right) x z}{1-x z} d \mu(x) .
$$

Integrating the above equality, we have

$$
z\left(D_{\lambda, \mu}^{m} f(z)\right)^{\prime}=\int_{|x|=1}\left[\int_{0}^{z} \frac{1+e^{-i \beta}\left(e^{-i \beta}-2 \alpha \cos \beta\right) x \zeta}{1-x \zeta} d \zeta\right] d \mu(x)
$$

which is equivalent to

$$
\left(D_{\lambda, \mu}^{m} f(z)\right)^{\prime}=\int_{|x|=1}\left[1+2(1-\alpha) e^{-i \beta} \cos \beta \sum_{n=1}^{\infty} \frac{(x z)^{n}}{n+1}\right] d \mu(x)
$$

Integrating again this equality, we obtain

$$
\begin{equation*}
D_{\lambda, \mu}^{m} f(z)=\int_{|x|=1}\left[z+2(1-\alpha) e^{-i \beta} \cos \beta \bar{x} \sum_{n=2}^{\infty} \frac{(x z)^{n}}{n^{2}}\right] d \mu(x) . \tag{23}
\end{equation*}
$$

Equality (22) follows easily from (16) and (23).
Since this deductive process can be converse, we have proved our theorem.

5 Coefficient estimates

The first result on coefficient estimates for the class $R^{m}(\lambda, \mu, \alpha, \beta)$ is the following.

Theorem 6. If $f \in R^{m}(\lambda, \mu, \alpha, \beta)$ is given by (1), then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{2(1-\alpha) \cos \beta}{n^{2} A_{n}(\lambda, \mu, m)}, n \geq 2 \tag{24}
\end{equation*}
$$

where $A_{n}(\lambda, \mu, m)$ is given by (12).
Proof. Let $f \in R^{m}(\lambda, \mu, \alpha, \beta)$. Then

$$
p(z)=\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime}+z\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime \prime} \in \mathcal{P}_{\alpha, \beta} .
$$

Since

$$
p(z)=1+\sum_{n=2}^{\infty} n^{2} A_{n}(\lambda, \mu, m) a_{n} z^{n-1},
$$

in view of (8), we have

$$
\left|n^{2} A_{n}(\lambda, \mu, m) a_{n}\right| \leq 2(1-\alpha) \cos \beta, n \geq 2
$$

that is

$$
\left|a_{n}\right| \leq \frac{2(1-\alpha) \cos \beta}{n^{2} A_{n}(\lambda, \mu, m)}, n \geq 2
$$

In order to obtain our next result on coefficient estimates, we need the following lemma.

Lemma 3. ([y]) Let $w(z)=c_{1} z+c_{2} z^{2}+\ldots$ be an analytic function with $|w(z)|<1$ in U. Then, for any complex number ν

$$
\begin{equation*}
\left|c_{2}-\nu c_{1}^{2}\right| \leq \max \{1,|\nu|\} . \tag{25}
\end{equation*}
$$

The equality is attained for $w(z)=z^{2}$ and $w(z)=z$.
Theorem 7. Let $f \in R^{m}(\lambda, \mu, \alpha, \beta)$ be given by (1) and let δ be a complex number. Then

$$
\begin{equation*}
\left|a_{3}-\delta a_{2}^{2}\right| \leq \frac{2(1-\alpha) \cos \beta}{9 A_{3}(\lambda, \mu, m)} \max \{1,|\nu|\} \tag{26}
\end{equation*}
$$

where

$$
\nu=\frac{9(1-\alpha) e^{-i \beta} \cos \beta A_{3}(\lambda, \mu, m) \delta-8 A_{2}(\lambda, \mu, m)^{2}}{8 A_{2}(\lambda, \mu, m)^{2}}
$$

and

$$
A_{2}(\lambda, \mu, m)=(2 \lambda \mu+\lambda-\mu+1)^{m}, \quad A_{3}(\lambda, \mu, m)=(6 \lambda \mu+2(\lambda-\mu)+1)^{m}
$$

The result is sharp.

Proof. Suppose $f \in R^{m}(\lambda, \mu, \alpha, \beta)$. Then $\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime}+z\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime \prime} \in \mathcal{P}_{\alpha, \beta}$. It follows from (6), that there exists an analytic function $w(z)=\sum_{n=1}^{\infty} c_{n} z^{n}$, with $|w(z)|<1$ in \mathcal{U} such that

$$
\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime}+z\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime \prime}=\frac{1+e^{-i \beta}\left(e^{-i \beta}-2 \alpha \cos \beta\right) w(z)}{1-w(z)}
$$

which is equivalent to

$$
\begin{equation*}
(1-w(z))\left[\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime}+z\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime \prime}\right]=1+e^{-i \beta}\left(e^{-i \beta}-2 \alpha \cos \beta\right) w(z) . \tag{27}
\end{equation*}
$$

Equating the coefficients of z and z^{2} on both sides of (27), we obtain

$$
\begin{equation*}
a_{2}=\frac{(1-\alpha) e^{-i \beta} \cos \beta}{2 A_{2}(\lambda, \mu, m)} c_{1} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{3}=\frac{2(1-\alpha) e^{-i \beta} \cos \beta}{9 A_{3}(\lambda, \mu, m)}\left(c_{2}+c_{1}^{2}\right) . \tag{29}
\end{equation*}
$$

From (28) and (29), it follows that

$$
a_{3}-\delta a_{2}^{2}=\frac{2(1-\alpha) e^{-i \beta} \cos \beta}{9 A_{3}(\lambda, \mu, m)}\left[c_{2}-\nu c_{1}^{2}\right]
$$

where

$$
\nu=\frac{9(1-\alpha) e^{-i \beta} \cos \beta A_{3}(\lambda, \mu, m) \delta-8 A_{2}(\lambda, \mu, m)^{2}}{8 A_{2}(\lambda, \mu, m)^{2}} .
$$

Applying Lemma 3, we get

$$
\begin{aligned}
\mid a_{3} & \left.-\delta a_{2}^{2}\left|=\frac{2(1-\alpha) \cos \beta}{9 A_{3}(\lambda, \mu, m)}\right| c_{2}-\nu c_{1}^{2} \right\rvert\, \\
& \leq \frac{2(1-\alpha) \cos \beta}{9 A_{3}(\lambda, \mu, m)} \max \{1,|\nu|\}
\end{aligned}
$$

The sharpness of (26) follows from the sharpness of inequality (25).

6 Convolution property

Making use of Lemma 2, we obtain a convolution property for the class $R^{m}(\lambda, \mu, \alpha, \beta)$.

Theorem 8. The class $R^{m}(\lambda, \mu, \alpha, \beta)$ is closed under the convolution with a convex function. That is, if $f \in R^{m}(\lambda, \mu, \alpha, \beta)$ and g is convex in \mathcal{U}, then $f * g \in R^{m}(\lambda, \mu, \alpha, \beta)$.

Proof. It is known that, if g is a convex function in \mathcal{U}, then

$$
\begin{equation*}
\Re \frac{g(z)}{z}>\frac{1}{2} . \tag{30}
\end{equation*}
$$

Suppose $f \in R^{m}(\lambda, \mu, \alpha, \beta)$. Making use of the convolution properties, we have

$$
z\left[D_{\lambda \mu}^{m}(f * g)(z)\right]^{\prime}=z\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime} * g(z)
$$

and thus

$$
\begin{align*}
& \left(D_{\lambda \mu}^{m}(f * g)(z)\right)^{\prime}+z\left(D_{\lambda \mu}^{m}(f * g)(z)\right)^{\prime \prime} \\
= & {\left[\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime}+z\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime \prime}\right] * \frac{g(z)}{z} . } \tag{31}
\end{align*}
$$

Since

$$
\Re\left\{e^{i \beta}\left[\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime}+z\left(D_{\lambda \mu}^{m} f(z)\right)^{\prime \prime}\right]\right\}>\alpha \cos \beta,
$$

the desired result follows immediately from (30), (31) and Lemma 2.
Corollary 4. The class $R^{m}(\lambda, \mu, \alpha, \beta)$ is invariant under Bernardi integral operator (see [3]) defined by

$$
F_{c}(f)(z)=\frac{1+c}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t, \Re c>0
$$

that is, if $f \in R^{m}(\lambda, \mu, \alpha, \beta)$, then $F_{c}(f) \in R^{m}(\lambda, \mu, \alpha, \beta)$.
Proof. Assume $f \in R^{m}(\lambda, \mu, \alpha, \beta)$. It is easy to check that $F_{c}(f)(z)=(f * g)(z)$, where

$$
g(z)=\sum_{n=1}^{\infty} \frac{1+c}{n+c} z^{n} .
$$

Since the function g is convex (see [2]), by applying Theorem 8, the result follows.

References

[1] Al-Oboudi, F. M., On univalent functions defined by a generalized Sălăgean operator, Internat. J. Math. Math. Sci., 27 (2004), 1429-1436.
[2] Barnard, R. W., Kellogg, C., Applications of convolution operators to problems in univalent function theory, Michigan Math. J., 27 (1980), no. 1, 81-94.
[3] Bernardi,S. D., Convex and starlike functions, Trans. Amer. Math. Soc., 135 (1969), 429-446.
[4] Chichra,P. N., New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Soc., 62 (1977), no. 1, 37-43.
[5] Fejér, L., Untersuchungen über Potenzreichen mit mehrfach monotoner koeffizientenfolge, Acta Lit. Sci., 8 (1936), 89-115.
[6] Goodman, A. W., Univalent functions, vol. I, Mariner Publishing Company, Inc., 1983.
[7] Keogh, F. R., Merkes, E. P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12.
[8] Răducanu, D., Orhan, H., Subclasses of analytic functions defined by a generalized differential operator, Int. Journ. Math. Anal., 4 (2010), no. 1-4, 1-16.
[9] Ruscheweyh, St., Convolutions in geometric function theory, Les Presses de l'Univ. de Montreal, 1982.
[10] Sălăgean, G. S., Subclasses of univalent functions, Complex Analysis 5th Romanian-Finnish Seminar, Part. I (Bucharest, 1981), Lect. Notes Math., 1013, Springer-Verlag, (1983), 362-372.
[11] Silverman, H., A class of bounded starlike functions, Internat. J. Math. Math. Sci., 17 (1994), no. 2, 249-252.
[12] Singh, R., Singh, S., Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc., 106 (1989), no. 1, 145-152.

Dorina Răducanu

[^0]: ${ }^{1}$ Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail: draducanu@unitbv.ro

