ON THE EXISTENCE OF POSITIVE WEAK SOLUTIONS FOR A CLASS OF CHEMICALLY REACTING SYSTEMS WITH SIGN-CHANGING WEIGHTS

S. H. RASOULI ${ }^{* 1}$ and B. SALEHI ${ }^{2}$

Abstract

We study the existence of positive weak solutions for a class of nonlinear systems $$
\begin{cases}-\Delta_{p} u=\lambda a(x)\left(f(v)-\frac{1}{u^{\alpha}}\right), & x \in \Omega \\ -\Delta_{q} v=\lambda b(x)\left(g(u)-\frac{1}{v^{\beta}}\right), & x \in \Omega \\ u=v=0, & x \in \partial \Omega\end{cases}
$$ where $\Delta_{s} z=\operatorname{div}\left(|z|^{s-2} \nabla z\right), s>1, \lambda$ is a positive parameter and Ω is a bounded domain with smooth boundary, $\alpha \beta \in(0,1)$. Here $a(x)$ and $b(x)$ are C^{1} sign-changing functions that maybe negative near the boundary and f, g are C^{1} nondecreasing functions such that $f, g:(0, \infty) \rightarrow(0, \infty) ; f(s)>0$, $g(s)>0$ for $s>0$ and $\lim _{s \rightarrow \infty} \frac{f\left(M g(s)^{\frac{1}{q}-1}\right)}{s^{p-1}}=0$. We discuss the existence of positive weak solutions when $f, g, a(x)$ and $b(x)$ satisfy certain additional conditions. We use the method of sub-supersolution to establish our results.

2010 Mathematics Subject Classification: 35J55, 35J65.
Key words: positive solutions, chemically reacting systems, sub-supersolutions.

1 Introduction

In this paper, we consider the existence of positive solutions for the nonlinear system

$$
\begin{cases}-\Delta_{p} u=\lambda a(x)\left(f(v)-\frac{1}{u^{\alpha}}\right), & x \in \Omega \tag{1}\\ -\Delta_{q} v=\lambda b(x)\left(g(u)-\frac{1}{v^{\beta}}\right), & x \in \Omega \\ u=v=0, & x \in \partial \Omega\end{cases}
$$

[^0]where $\Delta_{s} z=\operatorname{div}\left(|z|^{s-2} \nabla z\right), s>1, \lambda$ is a positive parameter and Ω is a bounded domain with smooth boundary, $\alpha \beta \in(0,1)$. Here $a(x)$ and $b(x)$ are C^{1} signchanging functions that maybe negative near the boundary and f, g are C^{1} nondecreasing functions such that $f, g:(0, \infty) \rightarrow(0, \infty) ; f(s)>0, g(s)>0$ for $s>0$.

Systems of singular equations like (1) are the stationary counterpart of general evolutionary problems of the form

$$
\begin{cases}u_{t}=\eta \Delta_{p} u+\lambda\left(f(v)-\frac{1}{u^{\alpha}}\right), & x \in \Omega, \\ v_{t}=\delta \Delta_{q} v+\lambda\left(g(u)-\frac{1}{v^{\beta}}\right), & x \in \Omega, \\ u=v=0, & x \in \partial \Omega,\end{cases}
$$

where η and δ are positive parameters. This system is motivated by an interesting application in chemically reacting systems, where u represents the density of an activator chemical substance and v is an inhibitor. The slow diffusion of u and the fast diffusion of v is translated into the fact that η is small and δ is large (see [1]).

Also, systems of the form (1) arise in several context in biology and engineering. It provides a simple model to describe, for instance, the interaction of two diffusing biological species. u, v represent the densities of two species. See [6] for more results on the physical models involving more general elliptic problems.

Recently, such infinite problems have been studied in [3, 4, 5]. Also in [5], the authors have studied the existence results for system (1) in the case $a \equiv 1, b \equiv 1$. Here we focus on further extending the study in [4] to system (1). In fact, we study the existence of positive solution to the system (1) with sign-changing weight functions $a(x), b(x)$. Due to these weight functions, the extensions are challenging and nontrivial. Our approach is based on the method of sub-super solutions (see [7]).

To precisely state our existence result we consider the eigenvalue problem

$$
\begin{cases}-\Delta_{r} \phi=\lambda|\phi|^{r-2} \phi, & x \in \Omega \tag{2}\\ \phi=0, & x \in \partial \Omega\end{cases}
$$

Let $\phi_{1, r}$ be the eigenfunction corresponding to the first eigenvalue $\lambda_{1, r}$ of (2) such that $\phi_{1, r}(x)>0$ in Ω, and $\left\|\phi_{1, r}\right\|_{\infty}=1$ for $r=p, q$ (see [2].) Let $m, \mu, \delta>0$ be such that

$$
\begin{equation*}
\mu \leq \phi_{1, r} \leq 1, \quad x \in \Omega-\overline{\Omega_{\delta}}, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\left(1-\frac{s r}{r-1+s}\right)\left|\nabla \phi_{1, r}\right|^{r} \geq m, \quad x \in \overline{\Omega_{\delta}}, \tag{4}
\end{equation*}
$$

for $r=p, q$, and $s=\alpha, \beta$, where $\overline{\Omega_{\delta}}:=\{x \in \Omega \mid d(x, \partial \Omega) \leq \delta\}$. This is possible since $\left|\nabla \phi_{1, r}\right| \neq 0$ on $\partial \Omega$ while $\phi_{1, r}=0$ on $\partial \Omega$ for $r=p, q$. We will also consider the unique solution $e_{r} \in W_{0}^{1, r}(\Omega)$ (for $r=p, q$) of the boundary value problem

$$
\begin{cases}-\Delta_{r} e_{r}=1, & x \in \Omega \\ e_{r}=0, & x \in \partial \Omega\end{cases}
$$

to discuss our existence result, it is known that $e_{r}>0$ in Ω and $\frac{\partial e_{r}}{\partial n}<0$ on $\partial \Omega$.
Here we assume that the weight functions $a(x)$ and $b(x)$ take negative values in $\overline{\Omega_{\delta}}$, but require $a(x)$ and $b(x)$ be strictly positive in $\Omega-\overline{\Omega_{\delta}}$. To be precise we assume that there exist positive constants a_{0}, a_{1}, b_{0} and b_{1} such that $a(x) \geq-a_{0}$, $b(x) \geq-b_{0}$ on $\overline{\Omega_{\delta}}$ and $a(x) \geq a_{1}, b(x) \geq b_{1}$ on $\Omega-\overline{\Omega_{\delta}}$.

2 Existence result

In this section, we shall establish our existence result by constructing a positive weak subsolution $\left(\psi_{1}, \psi_{2}\right) \in W^{1, p}(\Omega) \bigcap C(\bar{\Omega}) \times W^{1, q}(\Omega) \bigcap C(\bar{\Omega})$ and a supersolution $\left(z_{1}, z_{2}\right) \in W^{1, p}(\Omega) \bigcap C(\bar{\Omega}) \times W^{1, q}(\Omega) \bigcap C(\bar{\Omega})$ of (1) such that $\psi_{i} \leq z_{i}$ for $i=1,2$. That is, ψ_{i}, z_{i} satisfies $\left(\psi_{1}, \psi_{2}\right)=(0,0)=\left(z_{1}, z_{2}\right)$ on $\partial \Omega$, and

$$
\begin{aligned}
\int_{\Omega}\left|\nabla \psi_{1}\right|^{p-2} \nabla \psi_{1} \nabla \xi d x & \leq \lambda \int_{\Omega} a(x)\left[f\left(\psi_{2}\right)-\frac{1}{\psi_{1}^{\alpha}}\right] \xi d x, \\
\int_{\Omega}\left|\nabla \psi_{2}^{q-2}\right| \nabla \psi_{2} \nabla \xi d x & \leq \lambda \int_{\Omega} b(x)\left[g\left(\psi_{1}\right)-\frac{1}{\psi_{2}^{\beta}}\right] \xi d x, \\
\int_{\Omega}\left|\nabla z_{1}\right|^{p-2} \nabla z_{1} \nabla \xi d x & \geq \lambda \int_{\Omega} a(x)\left[f\left(z_{2}\right)-\frac{1}{z_{1}^{\alpha}}\right] \xi d x, \\
\int_{\Omega}\left|\nabla z_{2}\right|^{q-2} \nabla z_{2} \nabla \xi d x & \geq \lambda \int_{\Omega} b(x)\left[g\left(z_{1}\right)-\frac{1}{z_{2}^{\beta}}\right] \xi d x,
\end{aligned}
$$

for all $\xi \in W:=\left\{\zeta \in C_{0}^{\infty}(\Omega): \zeta \geq 0\right.$ in $\left.\Omega\right\}$. Then the following result holds :

Lemma 2.1 (see [7]) Suppose there exist sub and super-solutions (ψ_{1}, ψ_{2}) and $\left(z_{1}, z_{2}\right)$ respectively of (1) such that $\left(\psi_{1}, \psi_{2}\right) \leq\left(z_{1}, z_{2}\right)$. Then (1) has solution (u, v) such that $(u, v) \in\left[\left(\psi_{1}, \psi_{2}\right),\left(z_{1}, z_{2}\right)\right]$.

To state our results precisely we introduce the following hypotheses:
(H1) $f, g:[0, \infty) \rightarrow[0, \infty)$ are C^{1} nondecreasing functions such that $f(s)$, $g(s)>0$ for $s>0$, and $\lim _{s \rightarrow \infty} g(s)=\infty$.
(H2) $\lim _{s \rightarrow \infty} \frac{f\left(M g(s)^{\frac{1}{q-1}}\right)}{s^{p-1}}=0$, for all $M>0$.
(H3) Suppose that there exists $\epsilon>0$ such that:
(i) $f\left(\frac{\mu(q-1+\beta)}{q} \epsilon^{\frac{1}{q-1}}\right)>\left(\frac{p}{(p-1+\alpha) \mu \epsilon^{\frac{1}{p-1}}}\right)^{\alpha}$,
(ii) $g\left(\frac{\mu(p-1+\alpha)}{p} \epsilon^{\frac{1}{p-1}}\right)>\left(\frac{q}{(q-1+\beta) \mu \epsilon^{\frac{1}{q-1}}}\right)^{\beta}$,
(iii) $\frac{1}{m} f\left(\epsilon^{\frac{1}{q-1}}\right) \leq \min \left\{\frac{p^{\alpha}}{\epsilon^{\frac{\alpha}{\rho^{-1}}(p-1+\alpha)^{\alpha} \lambda_{1, p}}}, \frac{N a_{1}}{a_{0} \lambda_{1, p}}, \frac{b_{0} q^{\beta}}{a_{0} \epsilon^{\frac{\beta}{q-1}}(q-1+\beta)^{\beta} \lambda_{1, q}}, \frac{M b_{1}}{a_{0} \lambda_{1, q}}\right\}$,
(iv) $\frac{1}{m} g\left(\epsilon^{\frac{1}{p-1}}\right) \leq \min \left\{\frac{q^{\beta}}{\epsilon^{\frac{\beta}{q-1}}(q-1+\beta)^{\beta} \lambda_{1, q}}, \frac{N a_{1}}{b_{0} \lambda_{1, p}}, \frac{a_{0} p^{\alpha}}{b_{0} \epsilon^{\frac{\alpha}{p-1}}(p-1+\alpha)^{\alpha} \lambda_{1, q}}, \frac{M b_{1}}{b_{0} \lambda_{1, q}}\right\}$,
where

$$
N=f\left(\frac{\mu(q-1+\beta)}{q} \epsilon^{\frac{1}{q-1}}\right)-\left(\frac{p}{(p-1+\alpha) \mu \epsilon^{\frac{1}{p-1}}}\right)^{\alpha}
$$

and

$$
M=g\left(\frac{\mu(p-1+\alpha)}{p} \epsilon^{\frac{1}{p-1}}\right)-\left(\frac{q}{(q-1+\beta) \mu \epsilon^{\frac{1}{q-1}}}\right)^{\beta} .
$$

We are now ready to give our existence result .

Theorem 2.2. Let (H1)-(H3) hold. Then there exists a positive solution of (1) for every $\lambda \in\left[\lambda_{*}(\epsilon), \lambda^{*}(\epsilon)\right]$, where

$$
\lambda^{*}=\min \left\{\frac{m \epsilon}{a_{0} f\left(\epsilon^{\frac{1}{q-1}}\right)}, \frac{m \epsilon}{b_{0} g\left(\epsilon^{\frac{1}{p-1}}\right)}\right\},
$$

and

$$
\lambda_{*}=\max \left\{\frac{\lambda_{1, p}\left(\frac{p-1+\alpha}{p}\right)^{\alpha} \epsilon^{\frac{p-1+\alpha}{p-1}}}{a_{0}}, \frac{\lambda_{1, p} \epsilon}{N a_{1}}, \frac{\lambda_{1, q}\left(\frac{q-1+\beta}{q}\right)^{\beta} \epsilon^{\frac{q-1+\beta}{q-1}}}{b_{0}}, \frac{\lambda_{1, q} \epsilon}{M b_{1}}\right\} .
$$

Remark 2.3. Note that (H3) implies $\lambda_{*}<\lambda^{*}$.

Example 2.4. Let $f(s)=e^{\frac{s}{s+1}}, g(s)=e^{s}$. Here $f(s), g(s)>0$ for $s>0$, f, g are non-decreasing functions and

$$
\lim _{s \rightarrow \infty} \frac{f\left(M g(s)^{\frac{1}{q-1}}\right)}{s^{p-1}}=0,
$$

for all $M>0$, and $\lim _{s \rightarrow \infty} g(s)=\infty$. We can choose $\epsilon>0$ so small that f, g satisfy (H3).

Proof. of Theorem 2.2 We shall verify that

$$
\left(\psi_{1}, \psi_{2}\right)=\left(\frac{p-1+\alpha}{p} \epsilon^{\frac{1}{p-1}} \phi_{1, p}^{\frac{p}{p-1+\alpha}}, \frac{q-1+\beta}{q} \epsilon^{\frac{1}{q-1}} \phi_{1, q}^{\frac{q}{q-1+\beta}}\right),
$$

is a sub-solution of (1). Let $w \in W$. Then a calculation shows that

$$
\nabla \psi_{1}=\epsilon^{\frac{1}{p-1}} \nabla \phi_{1, p} \phi_{1, p}^{\frac{1-\alpha}{p-1+\alpha}}
$$

and we have

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla \psi_{1}\right|^{p-2} \nabla \psi_{1} \cdot \nabla w d x=\epsilon \int_{\Omega} \phi_{1, p}^{1-\frac{\alpha p}{p-1+\alpha}}\left|\nabla \phi_{1, p}\right|^{p-2} \nabla \phi_{1, p} \nabla w d x \\
= & \epsilon \int_{\Omega}\left|\nabla \phi_{1, p}\right|^{p-2} \nabla \phi_{1, p}\left\{\nabla\left(\phi_{1, p}^{1-\frac{\alpha p}{p-1+\alpha}} w\right)-w \nabla\left(\phi_{1, p}^{1-\frac{\alpha p}{p-1+\alpha}}\right)\right\} d x \\
= & \epsilon\left\{\int_{\Omega}\left[\lambda_{1, p} \phi_{1, p}^{p-\frac{\alpha p}{p-1+\alpha}}-\left|\nabla \phi_{1, p}\right|^{p-2} \nabla \phi_{1, p} \nabla\left(\phi_{1, p}^{1-\frac{\alpha p}{p-1+\alpha}}\right)\right] w d x\right\} \\
= & \epsilon\left\{\int_{\Omega}\left[\lambda_{1, p} \phi_{1, p}^{p-\frac{\alpha p}{p-1+\alpha}}-\left|\nabla \phi_{1, p}\right|^{p}\left(1-\frac{\alpha p}{p-1+\alpha}\right) \phi_{1, p}^{-\frac{\alpha p}{p-1+\alpha}}\right] w d x\right\} \\
= & \epsilon \phi_{1, p}^{-\frac{\alpha p}{p-1+\alpha}}\left\{\int_{\Omega}\left[\lambda_{1, p} \phi_{1, p}^{p}-\left|\nabla \phi_{1, p}\right|^{p}\left(1-\frac{\alpha p}{p-1+\alpha}\right)\right] w d x\right\} .
\end{aligned}
$$

Similarly
$\int_{\Omega}\left|\nabla \psi_{2}\right|^{q-2} \nabla \psi_{2} \cdot \nabla w d x=\epsilon \phi_{1, q}^{-\frac{\beta q}{q-1+\beta}}\left\{\int_{\Omega}\left[\lambda_{1, q} \phi_{1, q}^{q}-\left|\nabla \phi_{1, q}\right|^{q}\left(1-\frac{\beta q}{q-1+\beta}\right)\right] w d x\right\}$.
First we consider the case when $x \in \overline{\Omega_{\delta}}$. We have

$$
\left(1-\frac{s r}{r-1+s}\right)\left|\nabla \phi_{1, r}\right|^{r} \geq m
$$

Then

$$
-\epsilon\left(1-\frac{\alpha p}{p-1+\alpha}\right)\left|\nabla \phi_{1, p}\right|^{p} \phi_{1, p}^{-\frac{\alpha p}{p-1+\alpha}} \leq-m \epsilon .
$$

Since $\lambda \leq \lambda^{*}$ then

$$
\lambda \leq \frac{m \epsilon}{a_{0} f\left(\epsilon^{\frac{1}{q-1}}\right)} .
$$

Hence

$$
\begin{align*}
-\epsilon\left(1-\frac{\alpha p}{p-1+\alpha}\right)\left|\nabla \phi_{1, p}\right|^{p} \phi_{1, p}^{-\frac{\alpha p}{p-1+\alpha}} & \leq-\lambda a_{0} f\left(\epsilon^{\frac{1}{q-1}}\right) \\
& \leq-\lambda a_{0} f\left(\frac{q-1+\beta}{q} \epsilon^{\frac{1}{q-1}} \phi_{1, q}^{\frac{q}{q-1+\beta}}\right) \tag{5}\\
& =-\lambda a_{0} f\left(\psi_{2}\right)
\end{align*}
$$

Also since $\lambda_{*} \leq \lambda$, then

$$
\frac{\lambda_{1, p}\left(\frac{p-1+\alpha}{p}\right)^{\alpha} \epsilon^{\frac{p-1+\alpha}{p-1}}}{a_{0}} \leq \lambda .
$$

Therefore

$$
\begin{align*}
\lambda_{1, p} \phi_{1, p}^{p-\frac{\alpha p}{p-1+\alpha}} \epsilon & \leq \lambda_{1, p} \epsilon \phi_{1, p}^{-\frac{\alpha p}{p-1+\alpha}} \\
& \leq \frac{\lambda a_{0}}{\left(\frac{p-1+\alpha}{p} \epsilon^{\frac{1}{p-1}} \phi_{1, p}^{\frac{p}{p-1+\alpha}}\right)^{\alpha}} \tag{6}\\
& =\frac{\lambda a_{0}}{\psi_{1}^{\alpha}} .
\end{align*}
$$

Combining (5) and (6) we see that

$$
\begin{align*}
& \epsilon\left[\lambda_{1, p} \phi_{1, p}^{p-\frac{\alpha p}{p-1+\alpha}}-\left(1-\frac{\alpha p}{p-1+\alpha}\right)\left|\nabla \phi_{1, p}\right|^{p} \phi_{1, p}^{-\frac{\alpha p}{p-1+\alpha}}\right] \\
& =\lambda_{1, p} \phi_{1, p}^{p-\frac{\alpha p}{p-1+\alpha}} \epsilon-\epsilon\left(1-\frac{\alpha p}{p-1+\alpha}\right)\left|\nabla \phi_{1, p}\right|^{p} \phi_{1, p}^{-\frac{\alpha p}{p-1+\alpha}} \\
& \leq \frac{\lambda a_{0}}{\psi_{1}^{\alpha}}-\lambda a_{0} f\left(\psi_{2}\right) \tag{7}\\
& \leq \lambda a(x)\left[f\left(\psi_{2}\right)-\frac{1}{\psi_{1}^{\alpha}}\right] .
\end{align*}
$$

On the other hand on $\Omega-\overline{\Omega_{\delta}}$ we have $\mu \leq \phi_{1, p}^{\frac{p}{p-1+\alpha}} \leq 1$, for $\mu>0$, and therefore for $\lambda \geq \lambda_{*}$, we have $\frac{\lambda_{1, p \epsilon}}{N a_{1}} \leq \lambda$. Hence

$$
\begin{align*}
& \epsilon\left[\lambda_{1, p} \phi_{1, p}^{p-\frac{\alpha p}{p-1+\alpha}}-\left|\nabla \phi_{1, p}\right|^{p}\left(1-\frac{\alpha p}{p-1+\alpha}\right) \phi_{1, p}^{-\frac{\alpha p}{p-1+\alpha}}\right] \\
& \leq \epsilon \lambda_{1, p} \phi_{1, p}^{p-\frac{\alpha p}{p-1+\alpha}} \\
& \leq \epsilon \lambda_{1, p} \\
& \leq \lambda N a_{1} \\
& =\lambda a_{1}\left[f\left(\frac{\mu(q-1+\beta)}{q} \epsilon^{\frac{1}{q-1}}\right)-\left(\frac{p}{(p-1+\alpha) \mu \epsilon^{\frac{1}{p-1}}}\right)^{\alpha}\right] \tag{8}\\
& \leq \lambda a_{1}\left[f\left(\psi_{2}\right)-\frac{1}{\psi_{1}^{\alpha}}\right] \\
& \leq \lambda a(x)\left[f\left(\psi_{2}\right)-\frac{1}{\psi_{1}^{\alpha}}\right] .
\end{align*}
$$

Combining (7) and (8) on Ω, for $\lambda \in\left[\lambda_{*}(\epsilon), \lambda^{*}(\epsilon)\right]$, we see that

$$
\epsilon\left[\lambda_{1, p} \phi_{1, p}^{p-\frac{\alpha p}{p-1+\alpha}}-\left|\nabla \phi_{1, p}\right|^{p}\left(1-\frac{\alpha p}{p-1+\alpha}\right) \phi_{1, p}^{-\frac{\alpha p}{p-1+\alpha}}\right] \leq \lambda a(x)\left[f\left(\psi_{2}\right)-\frac{1}{\psi_{1}^{\alpha}}\right] .
$$

Similarly for $\lambda \in\left[\lambda_{*}, \lambda^{*}\right]$ we get

$$
\epsilon\left[\lambda_{1, q} \phi_{1, q}^{q-\frac{\beta q}{q-1+\beta}}-\left|\nabla \phi_{1, q}\right|^{q}\left(1-\frac{\beta q}{q-1+\beta}\right) \phi_{1, q}^{-\frac{\beta q}{q-1+\beta}}\right] \leq \lambda b(x)\left[g\left(\psi_{1}\right)-\frac{1}{\psi_{2}^{\beta}}\right] .
$$

Hence

$$
\int_{\Omega}\left|\nabla \psi_{1}\right|^{p-2} \nabla \psi_{1} \nabla w d x \leq \lambda \int_{\Omega} a(x)\left[f\left(\psi_{2}\right)-\frac{1}{\psi_{1}^{\alpha}}\right] w d x
$$

and

$$
\int_{\Omega}\left|\nabla \psi_{2}\right|^{q-2} \nabla \psi_{2} \nabla w d x \leq \lambda \int_{\Omega} b(x)\left[g\left(\psi_{1}\right)-\frac{1}{\psi_{2}^{\beta}}\right] w d x,
$$

i.e., $\left(\psi_{1}, \psi_{2}\right)$ is a sub-solution of (1) for $\lambda \in\left[\lambda_{*}, \lambda^{*}\right]$.

Now we construct a supersolution $\left(z_{1}, z_{2}\right) \geq\left(\psi_{1}, \psi_{2}\right)$. We will prove there exists $c \gg 1$ such that

$$
\left(z_{1}, z_{2}\right)=\left(c e_{p}(x),\left[\lambda\|b\|_{\infty} g\left(c\left\|e_{p}\right\|_{\infty}\right)\right]^{\frac{1}{q-1}} e_{q}(x)\right),
$$

is a supersolution of (1). A calculation shows that

$$
\begin{aligned}
\int_{\Omega}\left|\nabla z_{1}\right|^{p-2} \nabla z_{1} \nabla w d x & =c^{p-1} \int_{\Omega}\left|\nabla e_{p}\right|^{p-2} \nabla e_{p} \nabla w d x \\
& =c^{p-1} \int_{\Omega} w d x,
\end{aligned}
$$

by (H2) we know that, for $c \gg 1$,

$$
\frac{1}{\lambda\|a\|_{\infty}} \geq \frac{f\left(\left[\lambda\|b\|_{\infty} g\left(c\left\|e_{p}\right\|_{\infty}\right)\right]^{\frac{1}{q-1}}\left\|e_{q}\right\|_{\infty}\right)}{c^{p-1}}
$$

Hence

$$
\begin{aligned}
c^{p-1} & \geq \lambda\|a\|_{\infty} f\left(\left[\lambda\|b\|_{\infty} g\left(c\left\|e_{p}\right\|_{\infty}\right)\right]^{\frac{1}{q-1}}\left\|e_{q}\right\|_{\infty}\right) \\
& \geq \lambda\|a\|_{\infty} f\left(\left[\lambda\|b\|_{\infty} g\left(c\left\|e_{p}\right\|_{\infty}\right)\right]^{\frac{1}{q-1}} e_{q}(x)\right) \\
& =\lambda a(x) f\left(z_{2}\right) \\
& \geq \lambda a(x)\left[f\left(z_{2}\right)-\frac{1}{z_{1}^{\alpha}}\right] .
\end{aligned}
$$

Therefore

$$
\int_{\Omega}\left|\nabla z_{1}\right|^{p-2} \nabla z_{1} \nabla w d x \geq \lambda \int_{\Omega} a(x)\left[f\left(z_{2}\right)-\frac{1}{z_{1}^{\alpha}}\right] w d x .
$$

Also

$$
\begin{aligned}
\int_{\Omega}\left|\nabla z_{2}\right|^{q-2} \nabla z_{2} \nabla w d x & =\lambda\|b\|_{\infty} g\left(c\left\|e_{p}\right\|_{\infty}\right) \int_{\Omega} w d x \\
& \geq \lambda \int_{\Omega} b(x) g\left(c e_{p}(x)\right) w d x \\
& =\lambda \int_{\Omega} b(x) g\left(z_{1}\right) w d x \\
& \geq \lambda \int_{\Omega} b(x)\left[g\left(z_{1}\right)-\frac{1}{z_{2}^{\beta}}\right] w d x
\end{aligned}
$$

i.e., $\left(z_{1}, z_{2}\right)$ is a supersolution of (1) with $z_{i} \geq \psi_{i}$ for c large, $i=1,2$. (This is possible since $\left|\nabla e_{r}\right| \neq 0 ; \partial \Omega$ for $\left.r=p, q\right)$. Thus, there exists a positive solution (u, v) of (1) such that $\left(\psi_{1}, \psi_{2}\right) \leq(u, v) \leq\left(z_{1}, z_{2}\right)$ and Theorem 2.2 is proven.

References

[1] Aris, R., Introduction to the analysis of chemical reactors, Prentice Hall, Englewood Cliffs, NJ, 1965.
[2] Drábek, P. and Milota, J. Methods of nonlinear analysis, Applications to differential equations, Birkhauser Advanced Texts, Basel - Boston - Berlin 2007.
[3] Lee, E.K., Shivaji, R. and Ye, J. Classes of infinite semipositone systems, Proc. Roy. Soc. Edinb. 139A (2009), 853-865.
[4] Lee, E.K. and Shivaji, R., Posiotive solutions for infinit semipositone problems with falling zeros, Nonlinear Analysis 72 (2010), 4475-4479.
[5] Lee, E.K., Shivaji, R. and Ye, J. Classes of infinite semipositone $n \times n$ systems, Diff. Int. Eqs, 24, no. 3-4, (2011), 361-370.
[6] Marin, M., Some basic theorems in elastostatics of micropolar materials with voids, J. Comp. Appl. Math. 70, no. 1, (1996), 115-126.
[7] Rasouli, S.H., Halimi, Z. and Mashhadban, Z., A remark on the existence of positive weak solution for a class of (p, q)-laplacian nonlinear system with sign-changing weight, Nonl. Anal, 73 (2010) 385-389.

[^0]: ${ }^{1 *}$ Corresponding author, Department of Mathematics, Faculty of Basic Sciences, Babol Noshirvani University of Technology, Babol, Iran, e-mail: s.h.rasouli@nit.ac.ir
 ${ }^{2}$ Department of Mathematics, Faculty of Basic Sciences, Babol Noshirvani University of Technology, Babol, Iran

