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INVERSE MATROID OPTIMIZATION PROBLEM UNDER
THE WEIGHTED HAMMING DISTANCES
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Abstract

Given a matroid equipped with a utility vector to define a matroid opti-
mization problem, the corresponding inverse problem is to modify the utility
vector as little as possible so that a given base of the matroid becomes optimal
to the matroid optimization problem. The modifications can be measured by
various distances. In this article, we consider the inverse matroid problem
under the bottleneck-type and the sum-type weighted Hamming distances.
In the sum-type case, the problem is converted into a minimum weighted
node covering problem on a bipartite network and consequently, it can be
solved in strongly polynomial time. In the bottleneck case, we propose an al-
gorithm based on the binary search technique to solve the problem in strongly
polynomial time.

Mathematics Subject Classification: 90C27, 90C35.
Key words: combinatorial optimization, matroids, inverse problems, Ham-

ming distance.

1 Introduction

A matroid is a structure that generalizes the notion of linear independence
in vector spaces [27]. Several combinatorial optimization problems can be formu-
lated in terms of matroids such as shortest path problem (in undirected graphs),
minimum spanning tree problem and bipartite matching problem [22]. This im-
plies that matroids play an important role in combinatorial optimization.
A pair M = (S, I) is called a matroid if S is a finite set, I ⊆ 2S and the following
axioms hold [27]:
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• ∅ ∈ I and if Y ⊆ X and X ∈ I, then Y ∈ I.

• If X,Y ∈ I and |X| < |Y |, then X ∪ {y} ∈ I for some y ∈ Y .

For matroid M = (S, I), the members of I are called independent sets and the
others dependent sets. An independent set with the maximum cardinality is
said to be a base and a dependent set with the minimum cardinality is called a
circuit. It is verified that all bases of a matroid have the same cardinality [3].
Suppose S = {1, 2, . . . ,m} and c = (c1, c2, . . . , cm) is a nonnegative utility vector
on the elements of S. A matroid (S, I) equipped with a utility vector c is denoted
by (S, I, c). For each X ⊆ S, we denote the value Σi∈Xci by c(X). A matroid
optimization problem is to find an independent set X such that c(X) is maximized
[10]. Thus, the problem can be formulated as follows:

max
X∈I

c(X). (1)

The problem (1) can be solved by a greedy algorithm [22]. Since the utility vector
is nonnegative, there exists at least an optimal base to the problem. Therefore, we
can reduce the problem to finding a base with maximum utility. We suppose that
any matroid is given by an independence testing oracle which can decide whether
X ⊆ S is independent in O(1) time. It is notable that the oracle is polynomial
for many specific problems in combinatorial optimization [22].
For a given base B ∈ I, the corresponding inverse matroid (IM) problem is to
modify the utility vector c as little as possible so that B becomes optimal to the
problem (1). The modifications can be measured by different distances such as
l1, l2 and l∞ norms and also, the weighted Hamming distances. In spite of devel-
oping matroid theory, inverse matroid problems are rarely considered in literature
[6, 7, 8, 10]. In [6, 7], the inverse matroid intersection problem under l1 is studied
and it is shown that the problem can be transformed into a minimum cost circu-
lation problem. Hence, it can be solved by strongly polynomial time algorithms.
DeĺlAmico et al. [10] introduced a new matroid, called the base matroid, and
discussed an efficient implementation of the greedy algorithm to solve the base-
matroid optimization problem. Then, they considered the IM problem under l1
and showed the IM problem can be converted into a base-matroid optimization
problem and consequently it can be solved efficiently.
In this article, we consider the inverse matroid problem under the weighted Ham-
ming distances. Both the sum-type and the bottleneck-type cases are studied. In
the sum-type case, we look for a vector d satisfying the following conditions for a
given base B:

(I) d(B′) ≤ d(B) for each B′ ∈ I.

(II) −li ≤ di − ci ≤ ui, for each i ∈ S where li ≥ 0 and ui ≥ 0 are respectively
given bounds for decreasing and increasing the value ci to di for each i ∈ S.

(III) The value
∑

i∈S wiH(ci, di) is minimized where for each i ∈ S, wi ≥ 0 is
an associated penalty for modifying ci to di and H(ci, di) = 0 if ci = di and
otherwise, H(ci, di) = 1;
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It is notable that the nonnegativity of the vector d does not guarantee by (II).
But one can redefine the lower bound vector l as

li =

{
ci ci − li < 0,
li ci − li ≥ 0,

∀i ∈ S,

which guarantees the nonnegativity condition. Therefore, this is not restrictive.

In the bottleneck-type case, we look for d satisfying the conditions (I) and (II)
together with the following condition instead of (III):

(IV) The value maxi∈S wiH(ci, di) is minimized where the notations are defined
as in (III).

The rest of this article is organized as follows. In Section 2, we review some
papers on the inverse combinatorial optimization problems. In Section 3, the IM
problem under the weighted sum-type Hamming distance is studied. It is shown
that the problem can be converted into a minimum weighted node cover problem
in an auxiliary bipartite network and consequently, it can be solved in strongly
polynomial time. In Section 4, the IM problem under the weighted bottleneck-
type Hamming distance is considered and an efficient algorithm is proposed. The
proposed algorithm is based on the binary search technique. Finally, we conclude
in Section 5.

2 Literature review

Suppose that a particular optimization problem is given together with a fea-
sible solution to it. The corresponding inverse problem is to modify some pa-
rameters of the optimization problem as little as possible such that the feasible
solution becomes optimal. The concept of inverse problems was first proposed by
Tarantola in geophysical sciences [23]. In the context of optimization, Burton and
Toint [4, 5] considered the inverse shortest paths problem where norm 2 is used
to measure the modifications. They also introduce two applications of the inverse
problem in traffic modeling and seismic tomography. Afterwards, many authors
considered the inverse optimization problems under the l1 and l∞ norms (for a
survey, see [14, 11]).
Over the past decade, the Hamming distances, both the sum-type (H1) and the
bottleneck-type (H∞) cases, have received attention in the inverse problems. Since
the Hamming distance is discontinuous and nonconvex, the known methods for
the l1, l2 and l∞ norms cannot be applied directly to the problems under the Ham-
ming distance [25]. Hence, the inverse problems under the Hamming distance are
studied separately from the inverse problems under the norms.
He et al. [13] considered three models of the inverse spanning tree problems: un-
bounded case, unbounded case with forbidden edges, and general bounded case.
They showed that the problems can be solved in strongly polynomial time by re-
ducing them to a minimum weighted node cover problem in a bipartite network.
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Zhang et al. [29] studied the constrained inverse spanning tree problem under
the bottleneck-type Hamming distance. The constraint is that the total modifica-
tion cost cannot exceed a given upper bound. It is also shown that these inverse
problem can be transformed into a minimum node cover problem on a bipartite
graph. The inverse min-max spanning problems, the non-constraint case and the
constraint case, are studied in [16, 17] and strongly polynomial-time algorithms
are proposed to solve them. Since the inverse matroid optimization problem is
an extension of the inverse spanning tree problem, in this article, we generalize
the known results on the inverse spanning tree problems to the inverse matroid
optimization problem.
Liu and Zhang [19] considered the inverse maximum flow problem under the sum-
type and bottleneck-type Hamming distance and showed that the problems can
be converted to minimum cut problems on an auxiliary network and can be solved
in strongly polynomial time. In [9], the authors considered the inverse feasibil-
ity problem of an inverse maximum flow problem. Their considered problem is
whether an inverse maximum flow is feasible or not; and if not, how the problem
can be feasible by modifying the parameters.
The inverse and reverse shortest path problem under the H1 distance is discussed
in [26, 28]. It is shown that the problem is NP-hard due to the 3-SAT problem.
Duin and Volgenant [12] considered some inverse network problems under the H∞
such as the inverse shortest path problem. They presented algorithms based on
the linear and binary search technique for solving the problems.
The inverse minimum cost flow problem under the Hamming distances is studied
in [1, 2, 15]. It is shown that the inverse problem under H1 is APX-hard because a
special case of the problem is equivalent to the weighted feedback arc set problem.
In the bottleneck-type case, we proposed a strongly polynomial-time algorithm for
solving the inverse minimum cost flow problem [24]. In [18], it is shown that the
inverse perfect matching problem under H1 is NP-hard but the inverse problem
under H∞ can be solved in strongly polynomial time.
In this article, we consider the inverse matroid problem under the weighted Ham-
ming distances. In the H1 case, we show that the problem is reducible to a
minimum node cover problem defined on an auxiliary bipartite network by using
a proposed optimality condition of the matroid optimization problem (1). This
result is a generalization of the known results on the inverse minimum spanning
tree problems [13, 29]. In the H∞ case, we present an algorithm based on the
binary search technique for solving the problem. This technique is a popular
method for solving the inverse problems under H∞ and l∞ distances [12, 20, 21].

3 Inverse problem under the sum-type Hamming dis-
tance

Let M = (S, I, c) be a weighted matroid, and B a given base of M . In this
section, we consider the inverse matroid optimization problem under the sum-type



The inverse matroid optimization problem 89

weighted Hamming distance as follows:

min
∑
i∈S

wiH(ci, di), (2a)

s.t. d(B′) ≤ d(B) ∀B′ ∈ I, (2b)

−li ≤ di − ci ≤ ui ∀i ∈ S, (2c)

where the notations are defined as in Section 1.
For satisfying the constraints (2b) in this form, it is required to enumerate all
of matroid’s independent sets. Hence, for avoiding this undesired constraints, we
introduce necessary and sufficient conditions for the optimality of a base in the
problem (1). By using the optimality conditions, we substitute the constraints
(2b) by some equivalent constraints which are more convenient for investigating.

Lemma 1. [3] Let B1 and B2 be two bases of a matroid. For each i ∈ B1\B2,
there exists j ∈ B2\B1 so that the sets (B1\{i})∪{j} and (B2\{j})∪{i} are also
bases.

Lemma 1 implies that one can obtain a base from the other by replacing some
element of the base by some suitable element of the other. For every i ∈ B, the
set

{j ∈ S : (B\{i}) ∪ {j} is a base}

contains obviously i and has no j ∈ B\{i} because any two bases have the same
cardinality. For each base B and each i ∈ B, we define

SB(i) = {j ∈ S\{i} : (B\{i}) ∪ {j} is a base}. (3)

It is evident that SB(i) ∩B = ∅, i ∈ B. We also define the set

B = {i ∈ B : SB(i) 6= ∅} (4)

for restricting our attention to SB(i)’s to be non-empty. We now state necessary
and sufficient conditions for the optimality of the given base B to the problem
(1).

Theorem 1. Let B be a base of matroid M = (S, I, c). B is an optimal base to
the problem (1) if and only if

cj ≤ ci ∀i ∈ B, ∀j ∈ SB(i)

where the sets SB(i) and B are defined in (3) and (4), respectively.

Proof. We first prove the necessity. Let B be an optimal base to the problem (1).
For each i ∈ B and each j ∈ SB(i), define Bij = (B\{i})∪{j}. By definition, Bij

is a base. Since B is optimal, c(Bij) ≤ c(B) and consequently, cj ≤ ci.
Now, the sufficiency is proved. Suppose that B′ is an optimal base to the problem
(1). It is obvious that the cardinality of sets B′\B and B\B′ are equal. We
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construct the base B from B′ by replacing elements of B′\B with elements of
B\B′ one by one. The assumption guarantees the optimality of B.
If the cardinal of B\B′ is zero, then the result is immediate. Suppose that the
cardinal of B\B′ is equal to k. Choose an arbitrary element i1 ∈ B\B′. By using
Lemma 1, there exists j1 ∈ (B′\B)∩SB(i1) so that B′1 = (B′\{j1})∪{i1} is a base.
Based on the assumption, ci1 ≥ cj1 and hence, c(B′1) ≥ c(B′). Therefore, B′1 is
an optimal base. Choose i2 ∈ B\B′1. By using Lemma 1, j2 ∈ (B′1\B) ∩ SB(i2)
exists so that B′2 = (B′1\{j2})∪{i2} is a base. By the assumption, c(B′2) ≥ c(B′1)
and consequently, B′2 is also an optimal base. By repeating this process, we can
construct a sequence of the optimal bases B′1, B

′
2, . . . , B

′
k where B′l = (B′l−1\{il})∪

{jl}, l = 1, 2, . . . , k, for some il ∈ B\B′l−1 and some jl ∈ B′l−1\B. Since the
cardinality of B\B′l, l = 1, 2, . . . , k, is equal to k− l, it follows that B′k = B. This
completes the proof.

Based on Theorem 1, we can rewrite the problem (2) as follows:

min
∑
i∈S

wiH(ci, di), (5a)

s.t. dj ≤ di ∀i ∈ B,∀j ∈ SB(i), (5b)

−li ≤ di − ci ≤ ui ∀i ∈ S. (5c)

Lemma 2. If the problem (5) is feasible, then there exists an optimal solution d̄
so that

• d̄i ≥ ci ∀i ∈ B;

• d̄i ≤ ci ∀i ∈
⋃

k∈B SB(k);

• d̄i = ci ∀i /∈ B ∪
⋃

k∈B SB(k).

Proof. Since for each feasible solution, the objective value of the problem (5)
belongs to a finite set, the feasibility of the problem implies that the problem
has at least one optimal solution. Suppose that d̂ is an optimal solution to the
problem (5) and i0 ∈ B exists so that d̂i0 < ci0 . Define d̄ as follows:

d̄i =

{
ci0 i = i0,

d̂i i 6= i0.

Since d̂ is feasible,
d̂j ≤ d̂i0 ∀j ∈ SB(i0),

and because of d̄i0 = ci0 > d̂i0 ,

d̂j ≤ d̄i0 ∀j ∈ SB(i0).

This result together with d̄i = d̂i, i ∈ S\{i0}, guarantees d̄ is feasible to the
problem (5). On the other hand,∑

i∈S
wiH(ci, d̂i)−

∑
i∈S

wiH(ci, d̄i) = wi0 ≥ 0,



The inverse matroid optimization problem 91

then d̄ is also optimal. By repeating this process, we can obtain an optimal
solution d̄ so that d̄i ≥ ci for all i ∈ B.
Similarly, the proof of the second case can be done.
The result of the third case is immediate, because the variable dk does not appear
in the constraints (5b) for each k /∈ B ∪

⋃
i∈B SB(i).

For each i ∈ S, we set αi = |di − ci|. By Lemma 2, we can limit our attention to
the special form of feasible solutions by satisfying

• αi = di − ci for i ∈ B;

• αi = ci − di for i ∈
⋃

k∈B SB(k);

• αi = 0 for i /∈ B ∪
⋃

k∈B SB(k).

By these settings, the problem (5) reduces to

min
∑

i∈B∪
⋃

k∈B SB(k)

wiH(0, αi),

s.t. cj − ci ≤ αj + αi ∀i ∈ B, ∀j ∈ SB(i), (6)

0 ≤ αi ≤ ui ∀i ∈ B,

0 ≤ αi ≤ li ∀i ∈
⋃
k∈B

SB(k).

Now, we discuss about some results of the problem (6).

Lemma 3. If ᾱ is a feasible solution to the problem (6), then α̂ defined by

α̂i =


0 ᾱi = 0,
ui ᾱi 6= 0, i ∈ B,
li ᾱi 6= 0, i ∈

⋃
k∈B SB(k),

is also feasible and the objective values of both the feasible solutions are equal.

Proof. Based on the definition of α̂, ᾱi 6= 0 if and only if α̂i 6= 0. This shows that
the objective values of α̂ and ᾱ are equal. From the definition of α̂, it follows that
ᾱi ≤ α̂i for each i ∈ S and consequently,

cj − ci ≤ ᾱj + ᾱi ≤ α̂j + α̂i ∀i ∈ B,∀j ∈ SB(i).

This completes the proof.

Set C = {(i, j) ∈ S × S : i ∈ B and j ∈ SB(i)}. By using Lemma 3, the
problem (6) can be reduced to the following combinatorial optimization problem:

min
∑

i∈B∪
⋃

k∈B SB(k)

wiH(0, αi),

s.t. cj − ci ≤ αj + αi ∀(i, j) ∈ C, (7)

αi = 0, ui ∀i ∈ B,

αi = 0, li ∀i ∈
⋃
k∈B

SB(k).
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Proposition 1. The problem (7) is feasible if and only if

cj − ci ≤ lj + ui ∀i ∈ B, ∀j ∈ SB(i).

Proof. The necessity case is obvious because if α is feasible, then

cj − ci ≤ αj + αi ≤ lj + ui,

for each i ∈ B and each j ∈ SB(i). The proof of sufficiency is immediate since α0

defined by

α0
i =

{
ui i ∈ B,
li i ∈

⋃
k∈B SB(k),

is feasible to the problem.

It is remarkable that for some i ∈ S, the value of αi is fixed in all feasible
solutions and consequently, we can first set such αi’s. During these preprocessing
operations, some constraints are satisfied and can be deleted from the problem.
Let us explain how to perform the preprocessing operations in more details. For
each (i, j) ∈ C corresponding to the constraint cj − cj ≤ αj + αi, one of the
following five cases holds:

• If cj − ci ≤ 0, then the constraint cj − ci ≤ αj + αi is satisfied for any value
of αi and αj .

• If 0 < cj − ci ≤ min{lj , ui}, then it is possible to satisfy the corresponding
constraint by setting αi = ui or αj = lj . We denote the set {(i, j) ∈ C : 0 <
cj − ci ≤ min{lj , ui}} by C1.

• If min{lj , ui} < cj − ci ≤ max{lj , ui}, then for satisfying the constraint
cj − ci ≤ αj + αi, it is necessary to set αi = ui if ui = max{ui, lj} and
αj = lj otherwise.

• If max{lj , ui} < cj − ci ≤ lj + ui, then it is necessary to set αi = ui and
αj = lj for satisfying the associated constraint.

• If cj−ci > lj+ui, then the inverse problem is infeasible based on Proposition
1.

Suppose that the problem (7) is feasible. Based on the above argument, if αi’s are
set in cases 3 or 4, then any constraint corresponding to (i, j) ∈ C\C1 is satisfied
and can be eliminated. We denote the set of indices of the variables which do
not set in cases 3 or 4 by S̄. It is notable that we also eliminate the constraints
corresponding to (i, j) ∈ C1 if i /∈ S̄ or j /∈ S̄. Because if i /∈ S̄, then αi = ui ≥
min{lj , ui} ≥ cj − ci and similarly, if j /∈ S̄, then αj = lj ≥ min{lj , ui} ≥ cj − ci.
We denote the set {(i, j) ∈ C1 : i, j ∈ S̄} by C̄. This argument shows that the
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problem (7) can be reduced as follows:

min
∑
i∈S̄

wiH(0, αi) +
∑

i∈(B∪
⋃

k∈B SB(k))\S̄

wi,

s.t. cj − ci ≤ αj + αi ∀(i, j) ∈ C̄, (8)

αi = 0, ui ∀i ∈ S̄ ∩B,

αi = 0, li ∀i ∈ S̄ ∩
⋃
k∈B

SB(k),

For each i ∈ S̄, we define yi ∈ {0, 1} with the following properties:

yi = 1⇔ αi = ui ∀i ∈ S̄ ∩B,

yj = 1⇔ αj = lj ∀j ∈ S̄ ∩
⋃
k∈B

SB(k).

Since 0 < cj− ci ≤ min{lj , ui} for each (i, j) ∈ C̄, it follows that that the problem
(8) is equivalent to the following problem:

min
∑
i∈S̄

wiyi +
∑

i∈(B∪
⋃

k∈B SB(k))\S̄

wi,

s.t. 1 ≤ yi + yj ∀(i, j) ∈ C̄, (9)

yi = 0, 1 ∀i ∈ S̄.

This problem is an instance of the well-known minimum weighted node cover
problems defined on the bipartite network G(S̄, C̄,w) where S̄ is the node set, C̄
is the arc set and finally, w is the arc weight vector [22]. Now, we are ready to
state our proposed algorithm for solving the inverse problem (4).
Algorithm 1.

Input: Matroid (S, I, c), a penalty vector w, bound vectors l and u and a base
B ∈ I.

Initialization: Set α = 0, z = 0 and M = ∅.

Step 1: If cj− ci > lj +ui for some (i, j) ∈ C, then the problem (5) is infeasible
and stop; otherwise, go to Step 2.

Step 2: For each (i, j) ∈ C with max{lj , ui} < cj − ci ≤ lj + ui, perform the
following operations:

• If i /∈M , then set αi = ui and update z = z + wi and M = M ∪ {i}.
• If j /∈M , then set αj = lj and update z = z + wj and M = M ∪ {j}.

Step 3: For each (i, j) ∈ C with min{lj , ui} < cj − ci ≤ max{lj , ui}, perform the
following operations:

• If i /∈M and ui = max{lj , ui}, then set αi = ui and update z = z+wi

and M = M ∪ {i}.
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• Else, if j /∈ M and lj = max{lj , ui} then set αj = lj and update
z = z + wj and M = M ∪ {j}.

Step 4: Solve the minimum weighted node covering problem (9). Follow the
following procedure:

• For each i ∈ S̄ ∩B, if yi = 1, then set αi = ui and z = z + wi.

• For each j ∈ S̄∩
⋃

k∈B SB(k), if yj = 1, then set αj = lj and z = z+wj .

• Construct the vector d as follows:

di =


ci + αi i ∈ B,
ci − αi i ∈

⋃
k∈B SB(k),

ci otherwise.

Output: d is optimal solution to the problem (5) with objective value z.

Now, we analyze the complexity of Algorithm 1. We first discuss about the com-
plexity of solving the problem (9). Since B ∩

⋃
k∈B SB(k) = ∅ and C̄ = {(i, j) :

i ∈ S̄ ∩ B and j ∈ S̄ ∩
⋃

k∈B SB(k)}, the network G(S̄, C̄,w) is bipartite. Con-
sequently, the problem (9) can be solved by solving a maximum flow problem in
a transformed bipartite network in O(n3m) time where n = |B| ≥ |S̄ ∩ B| and
m = |S| ≥ |S̄ ∩

⋃
k∈B SB(k)| [13]. On the other hand, Steps 1, 2 and 3 are done

in O(mn) time. Hence, we establish the following result.

Theorem 2. The inverse matroid problem (5) can be solved in O(n3m) time
where m = |S| and n = |B|.

4 Inverse problem under the bottleneck-type Ham-
ming distance

In this section, for a given base B of matroid M = (S, I, c), we consider the
following problem:

min max
i∈S

wiH(ci, di),

s.t. d(B′) ≤ d(B) ∀B′ ∈ I, (10)

−li ≤ di − ci ≤ ui ∀i ∈ S,

where the notations are defined as in Section 1. Based on Theorem 1, we can
rewrite the problem as follows:

min max
i∈S

wiH(ci, di),

s.t. dj ≤ di ∀i ∈ B, ∀j ∈ SB(i), (11)

−li ≤ di − ci ≤ ui ∀i ∈ S.
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Since the feasible sets of both the inverse problems (5) and (11) are the same,
the obtained feasibility results for the problem (5) are also valid for the prob-
lem (11). Each objective value of the problem (11) is a member of the finite set
{w1, w2, . . . , wm}. Hence, the feasibility of the problem implies at least the exis-
tence of an optimal solution. Now, we restrict our attention to a special form of
feasible solutions and look for such an optimal solution.

Lemma 4. If the problem (11) has a feasible solution with objective value less
than or equal to wk, then the solution d(k) defined as

d
(k)
i =


ci + ui wi ≤ wk, i ∈ B,
ci − li wi ≤ wk, i ∈

⋃
j∈B SB(j),

ci wi > wk or i /∈ B ∪
⋃

j∈B SB(j),
(12)

is also feasible with objective value less than or equal to wk.

Proof. From the definition of d(k), H(d
(k)
i , ci) = 0 for each i ∈ S with wi > wk.

Consequently, the objective value of d(k) is at most wk. Let d be a feasible solution
with objective value less than or equal to wk. Based on the definition of d(k) and
the bound constraints of the problem (11), the relations

di = d
(k)
i for i ∈ S with wi > wk,

di ≤ d(k)
i for i ∈ B with wi ≤ wk,

di ≥ d(k)
i for i ∈

⋃
j∈B

SB(j) with wi ≤ wk,

hold. These relations together with the feasibility of d yield

d
(k)
j ≤ dj ≤ di ≤ d(k)

i ∀i ∈ B,∀j ∈ SB(i).

Thus, the solution d(k) is feasible.

Suppose we sort the arc penalties wij ’s: let w1 ≤ w2 ≤ . . . ≤ wm denote the
sorted list of these penalties. In the following, two immediate consequences of
Lemma 4 are given.

Corollary 1. The solution d(m), defined by (12) for k = m, is feasible to the
problem (11) if the problem is feasible.

Corollary 2. Suppose that k is the least index so that d(k) is feasible to the
problem (11), then the solution d(k) is optimal.

By Corollary 2, the problem (11) can be reduced to finding the least index k
so that d(k) is feasible. We use the binary search technique to look for the index
k.
Let us state our proposed algorithm formally.
Algorithm 2.
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Input: Matroid M = (S, I, c), a penalty vector w, bound vectors l and u, and a
base B.

Step 1: Sort all the arcs in nondecreasing order of their penalties.

Step 2: If d(m) is feasible to the problem (11), then set s = [m2 ], k = [m2 ],

d∗ = d(m), w∗ = wm and go to Step 3. Otherwise, the problem (11) is
infeasible and stop (see Corollary 1).

Step 3: If s = 0, then go to Step 4 and otherwise, go to Step 5.

Step 4: If d(k) is feasible to the problem (11), then set s = [ s2 ], k = k − s,

d∗ = d(k),w∗ = wk and otherwise, set s = [ s2 ], k = k + s. Go to Step 3.

Step 5: Stop. d∗ is an optimal solution to the problem (11) with the objective
value w∗.

In Algorithm 2, d∗ stores the latest feasible solution to be found by Algorithm
and w∗ is its objective value. Suppose that m = |S| and n = |B|. Since the
problem consists of at most O(mn) inequalities as dj ≤ di, the feasibility of a
given solution can be identified in O(mn) time. On the other hand, the number
of iterations is O(logm). We have thus established the following result.

Theorem 3. The inverse matroid problem (11) can be solved in O(mn logm)
time.

5 Conclusion

In this article, we studied the inverse matroid optimization problem under the
weighted Hamming distances, the sum-type case and the bottleneck-type case.
For the former, we reduce the problem to a minimum weighted node cover prob-
lem on an auxiliary bipartite network. Therefore, the problem can be solved in
O(mn3) time. For the latter, we applied the binary search technique for solving
the problem in O(mn logm) time.
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(2016), 97–110

[2] Aman, M. and Tayyebi, J., Capacity inverse minimum cost flow problem un-
der the weighted Hamming distances, Iranian Journal of Operations Research
5, no. 2, (2014), 12–25.

[3] Brylawski, T.L., Some properties of basic families of subsets, Discrete Math-
ematics 6 (1973), 333–341.



The inverse matroid optimization problem 97

[4] Burton, D. and Toint, P.L., On an instance of the inverse shortest paths
problem, Mathematical Programming 53 (1992), 45–61.

[5] Burton, D. and Toint, P.L., On the use of an inverse shortest paths algo-
rithm for recovering linearly correlated costs, Mathematical Programming 63
(1994), 1–22.

[6] Cai, M., Inverse problems of matroid intersection, Journal of Combinatorial
Optimization 3 (1999), 465–474.

[7] Cai, M. and Li, Y., Inverse matroid intersection problem, ZOR-Math. Meth-
ods Oper. Res. 45 (1997), 235–243.

[8] Cai, M., Yang, X. and Li, Y., Inverse polymatroidal flow, J. Combin. Theory
3 (1999), 115–126.

[9] Deaconu, A. and Ciurea, E., Inverse feasibility problems of the inverse max-
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