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Abstract: A simplified model reference adaptive fuzzy control algorithm is 
tested on a few generic applications, through a set of simulations done using 
several Matlab programs. The algorithm is focused on an easy numerical 
implementation and ignores a mathematical background or demonstration of 
its convergence. The algorithm is different from the fuzzy model reference 
adaptive control presented in textbooks in the adaptation part. Here, the 
adaptation law is not based on fuzzy inference and the fuzzy feature of the 
system is kept only for the controller.  
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1. Introduction 
 
Fuzzy logic controllers have always been a less preferred solution in control systems 

mainly due to the lack of analytical design methods. Usually, fuzzy controllers are 
obtained from experience or by following a set of guidelines, drawn from examples. All 
textbooks in fuzzy control theory present applications of conventional fuzzy control 
systems and explain the choices made, without stating a strict method.  

Some may argue that, because a fuzzy inference system has a lot of parameters, having 
a strict method to determine all of them is at least useless, if not impossible. In the end, if 
the controller is “fuzzy” then why a “fuzzy” design method wouldn’t be good enough.  

There are at least two drawbacks in this approach. First, there is never any prove to say 
that an efficient, good performing fuzzy controller can obtained only by using the simple 
textbook solutions for a certain plant in a closed-loop control system. Or, in other words, 
when a fuzzy controller could not be determined to obtain any given control performance, 
it does not necessarily mean that the fuzzy logic solution is wrong or inappropriate.  

Second, the classical fuzzy controllers from most textbook examples have a (very close 
to) linear behaviour. But this is in contradiction with the main advantage of a fuzzy 
control algorithm, namely the nonlinearities that may improve performance.  

Over the years, the adaptive fuzzy control theory has been developed as solutions to 
these drawbacks. The model reference adaptive control (MRAC) theory [1] has been 
adapted to fuzzy systems, leading to notions as fuzzy model reference learning controllers 
introduced in [5], fuzzy model reference learning controllers, proposed by [7], or the self-
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organizing controllers, related to the original work of Mamdani [4]. For the basics and 
detailed examples please refer to [4] and [6]. The subtle differences are rarely explained, 
but some clues can be found in textbooks or comparative studies, as [3].  

 
2. Table-based Fuzzy Controllers 

 
In a table-based fuzzy inference system, the rules are represented by an array of 

numerical values for the output variable [2], [4], [6]. Each dimension of the array is 
associated to an input variable, and each row on that dimension is associated to a certain 
value of that variable. The range and values of each input variable are predefined. When 
the system runs, in any particular operating conditions (meaning that numerical values for 
input variables are available) the fuzzy inference algorithm computes the output from a 
few values picked from the table, weighted by the activation level of corresponding rules.  

For clarity, let’s consider a proportional-derivative (PD) fuzzy controller, which has 
two input variables, the control error - )(te  and its discrete derivative - )(td , and one 
output variable, the command action - )(tu . For this type of fuzzy controller, the rules-
table is a two-dimensional array (table) of values for the command action, )( , jiuM , 

with Nei ,1  and Ndj ,1 . The Ne  rows of the table are associated to preselected 
values of control error from its covering range ];[ maxmaxi eee  .Also, the Nd  columns 
are associated to values of error derivative from a covering range, ];[ maxmaxj ddd  . The 
details are more clearly presented in Figure 1. 
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Fig. 1. Generic rules-table for a proportional-derivative fuzzy controller 
 
Let us consider the conventional closed-loop control system with a working table-based 

PD fuzzy controller (see Figure 2). If the ranges of the variables are correctly set, then, 
for any operating conditions defined by the current input values )(te  and )(td , there are 
no more than four adjacent active cells in M . We will further refer them with the pairs: 

),( ji , ),1( ji  , )1,( ji  and )1,1(  ji . The row and column indexes are obtained 
from the conditions 1)(  ii etee  and 1)(  jj dtdd . The values in the active cells are 

jiu , , jiu ,1 , 1, jiu , 1,1  jiu . 
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Fig. 2. The model reference adaptive control system 

with proportional-derivative fuzzy controller 
 
In fuzzy logic, the active cells (which are fuzzy rules in another representation) have 

different activation intensities (or firing strengths [6]), calculated with: 
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These values are the weights of the cells in the computation of output variable. (Note 

the indexes in the left-side and those in the nominators of the right-side are.) Finally, 
having the values in the active cells and their weights, the outputted command action is:  

 
1,11,11,1,,1,1,, )()()()()(   jijijijijijijiji utwutwutwutwtu . (2) 

 
For the inference algorithm described here, there are a few elements to be set when 

defining the rules-table. First, the number of values of each input variable, Ne and Nd, has 
to be set. These are the numbers of rows and columns of M, so they have important 
influence on the efficiency of a real-time implementation. Then, the sets of numerical 
values of input variables, ei and dj, have to be set, within predefined covering ranges. So 
far, having the uniformly distributed points from ];[ maxmax ee  and ];[ maxmax dd  is a good 
setting. Finally, appropriate values for ui,j have to be found. 

 
3. Adding the Adaptive Feature 

 
Conventionally, the values of the output variable in the M table are taken from other 

examples or based on experience. Of course, this approach leads back to the drawbacks 
mentioned in the Introduction. A different solution is sought. Many text-books in fuzzy 
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control show that the table-based fuzzy inference algorithm brings the possibility of 
adding the adaptive feature, as further described.  

In adaptive control theory, the desired performance is defined through a reference 
model [1]. In direct MRAC, the designer determines the model which assures the desired 
dynamic and steady-state responses of the control system. Later, any adaptable controller 
parameter is modified based on the difference between the output of the reference model 

)(tym  and the output of the plant )(ty p  namely on the error )()()( tytyt pm  . Figure 
2 shows the MRAC system, with the PD controller from the previous chapter. 

In fuzzy MRAC, as presented in textbooks, the parameters are adapted through a 
method that implies the use of a second fuzzy rules-table, called performance table [6]. 
Although it is a proven efficient method, a simplification is possible to will ease the 
implementation. Since the command action is calculated from the values in the inference 
table based on how active they are, we may also say that the contribution of jiu ,  to the 
error )(t  is determined by the firing strength of the ),( ji  cell, namely jiw , . Therefore, it 
is reasonable to iteratively modify jiu , in strict relation with how much contribution it 
brought to the error at current iteration. Therefore, the adaptation rule would be: 

 
][][][]1[ ,,, kkwkuku jijiji  . (3) 

 
We introduced here the specific notations used for discrete-time domain, with the 

square brackets and the index k for the current iteration. The constant coefficient  is the 
algorithm convergence speed rate. The initial values in M are set to zero: 0]0[, jiu .  

 
4. Simulation Results for a Few Generic Examples 

 
To demonstrate the convergence of the algorithm for the adaptive system with the non-

linear fuzzy controller is very difficult. So, in order to validate the method, we run a set of 
simulations with generic examples, using a custom Matlab program. The basic idea of the 
program was to avoid any high-level Matlab functions and to keep it as close as possible 
to a program written for a numerical device (as a microcontroller).  

The fuzzy controller is a PD type. Since there are numerical simulations, the control 
error derivative can be approximated with sTkekekd /])1[][(][  , with sT  being the 
sampling time. The size of M  table is 11Ne  rows by 5Nd  columns. 

Let’s consider that the transient response to a step type command action applied to the 
plant is available and the plant is a first-order element (PT1). The suggested reference 
model would also be a PT1. The plant’s and model’s parameters are listed in Table 1. Of 
course, the plant and its parameters are considered unknown or uncertain, which is the 
main reason of the method itself. The discrete-time recurrent equation for the PT1 
reference model is: 

 

][]1[][ kr
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where mk  and mT  are the parameters that assures the desired system performance.  
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For each simulated case, 10 consecutive trials were done, keeping the values in the M  
table from one trial to the next. If the adaptation works, then the response of the control 
system should get closer to the one of the reference model trial by trial. A trial consists in 
applying the step-unit reference signal, 1)( tr , 0t , which is similar to restarting the 
system without resetting M . For the slow systems, trial time was set to 100tT  seconds 
with 1.0sT  seconds sampling time. For the fast systems, trial time is 10 seconds, with 
0.01 seconds sampling time. For every example, a trial has 1000sN  samples. The 
value of the convergence speed rate  was kept to 0.1 for all examples. So far, there is no 
method to determine its value, neither any recommendation about how to choose it.  

To check the algorithm convergence or the adaptation mechanism efficiency, we 
introduce a performance measure, which is defined for a trial as:  

 





sN

k m
q ky

k

1 ][
][  100%, (5) 

 
where q is the trial index. This is the integral of absolute error relative to the output of the 
reference model, so the measure will be expressed as percentage of desired output.  

Table 1 presents the results for two examples, while Figures 3 and 4 show the output of 
the control system compared to the reference model for the first and for the last trials.  

 
Simulation results for a few parameter configurations      Table 1 

Performance criterion Reference model  Plant’s model first trial last trial 
slow PT1: 1mk ; 10mT  slow PT1: 8.0pk ; 20pT  12.14 0.51 

fast PT1:  1mk ; 2.0mT  fast PT1:  2.1pk ; 5.0pT  6.92 0.21 

 

 
Fig. 3. The slow plant’s output for the 1st 
and the 10th adaptation trials, compared 

to the reference model 

 
Fig. 4. The fast plant’s output for the 1st 
and the 10th adaptation trials, compared 

to the reference model  
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5. Conclusions and Future Work 
 
To overcome the drawbacks of the usual design methods for fuzzy controllers, a 

parameter adaptation mechanism is added to the conventional fuzzy control system. The 
extended scheme could be kept as an adaptive control system, or it can be used to derive 
the rule-base of a fixed controller.  

The method is a simplified fuzzy model reference adaptive control system, focused on 
the easy numerical implementation. The adaptation mechanism stands on a simple and 
intuitive modification rule that uses the measure of how ‘active’ is the modified 
parameter at the current iteration. This is the firing strength of the rule containing the 
modified parameter.  

The simulations proved that the method is efficient for a class of applications at least: 
the first-order systems with slow or with fast dynamics. However, for a better validation, 
more simulations should be done: second-order underdamped or over-damped plants with 
first-order or second-order reference models, higher-order linear plants, non-linear plants, 
unstable plants, different sizes for the rules table, different convergence speed rates, etc. 
Then, for the refinement of the method, implementations with microcontroller are to be 
done, to tackle other programming specific issues.  
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