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PLANAR TENSEGRITY FORM-FINDING
BY THE FORCE DENSITY METHOD

L.SIKO! L.KOPENETZ!

Abstract: A numerical form-inding algorithm capable of solving the initial
equilibrium problem of free-standing planar tensgrities is presented herein.
The only information needed at the start of the form-finding procedure is the
topology of the structure and the member types (cables and struts). The
eigenvalue decomposition of the force density matrix and the singular value
decomposition of the equilibrium matrix are performed iteratively during the
search of the nodal coordinates and the feasible set of force density
coefficients.
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1. Introduction

Tensegrity structures, first proposed for engineering applications by R.B. Fuller [6],
have been in a constant development over the past 3 decades due to an ever-increasing
interest in lightweight structural applications for engineering purposes. They belong to
the subclass of prestressable pin-jointed frameworks, more exactly to the family of
statically and kinematically indeterminate structures which can be rendered stable only
under the effect of pre-stress [9]. Furthermore, the research of Connelly showed that the
presence of the aforementioned pre-tensioning force depends on the geometry of the
structure [3, 5]. In this context the exact definition of the initial geometry of a tensegrity
structure is of capital importance. Thus, the design process of these structures must start
by finding an initial geometric configuration which alows the existence of a set of pre-
tensioning forces (which can stiffen the infinitessmal mechanisms of the proposed
system) even in the lack of external loading.

This procedure of finding the equilibrium configuration of tensegrity structures is
known as form-finding. The importance of this step is emphasized by the existence of
several different methods for the initial geometry problem. In the early stages of
tensegrity study the researchers tried to solve the problem of the equilibrium geometry
through analytical methods, but soon they found out that these are only suitable for highly
symmetric structures [4, 7, 10]. Later, the development of pioneering humerical methods
such as dynamic relaxation [1, 14], force density method [11, 17], non-linear
programming [15] or the reduced coordinates method [19] made a huge impact on the
research of prestressable lightweight structures, such as the tensegrity system. A full
review of the existing form-finding methods for tensegrity structures can be found in
[20].
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In this paper a dightly modified formulation of the force density method, one similar to
that proposed by Estrada et al [8] will be used for solving the prestressability problem of
planar tensegrity structures.

2. Equilibrium Equations of the For ce Density M ethod

The force density method was first proposed by Schek and Linkwitz [11, 17] for the
analysis of purely tensioned cable networks, but later this had been modified for the
analysis of tensegrity structures. This method capitalizes of an ingenious mathematical
trick by transforming the non-linear equations of equilibrium into a series of linear
equations. For example, the equilibrium equation in the x direction of a generalized node |
can be formulated as

Z%(Xj ~% )= T @)

k Ijk

where node | is connected to nodek, n, isthe value of the axial force in the element jk
and f ix represents the projected value of the external loading onto the x direction.

Although this equation seems to be linear the lengths of elements IJ.k in the denominator

are also functions of the nodal coordinates, thus making it non-linear. Schek’s solution to
the problem was to linearize these equations of equilibrium by introducing the value of
force density for each element.

Qi :n_- 2

Although the original method could be of great importance for many researchers this
paper will emphasize only on the modified version of the method, which is adapted for
the analysis of free-standing tensegrities.

2.1. Basic Assumptions

The following assumptions are made throughout this article:
¢ The members of the presented structures are pin-jointed
e Thetopology of structuresin terms of nodal connectivity is known
o No external load is applied onto the analysed structures and the self-weight of
the elements is neglected in the form-finding procedure
o The structure does not need any fixed nodes to be rendered stable

2.2. Self-Equilibrium Equationsfor Free-Standing Tensegrity Structures

For a D-dimensional structure with nB members and nN free nodes the topology of the
structure can be defined by its connectivity matrix C_(€ (1"™*™) as presented in [11, 12,
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17]. Let us imagine a member k that connects the nodes i and j, then the elements of the
kth row of the incidence matrix C will be defined by the following rule:

+1 form=i
0 otherwise

The equilibrium equations in each direction of a generalised pin-jointed assembly could
be formulated as

C./QCx=f, (4.1
C, QCy =f, (4.2)

where f, and f, are the vectors of the external loads in the x- and y-directions. Q is a

square matrix which has on its diagonal s the components of the vector of force densities g
as suggested in [17], defined by the following rule

qz(ql 0. %----an)T %)

each component of this vector represents the force density coefficient of a member
defined in Eq. (2). As a generd rule the values of force density coefficients are positive
for tensioned elements (cables) and negative for compressed members (struts).

In order to simplify the equilibrium equations one could make the foll owing notation

D=C.'QC, (6)
where D is the square symmetric matrix of force densities [11, 17], which essentialy is
the analogue of the stress matrix presented in Connelly’s Energy Method [2].

Adapting the equations of equilibrium of a generalised pin-jointed framework to the
case of free-standing tensegrity structures and taking into account Eqg. (6) the equilibrium
of the system can be defined as

Dx=0. (7.2)

Dy =0. (7.2)

Reorganizing Eq. (7.1-7.2) the equilibrium condition of free-standing planar tensegrity
structures can be defined as

D[xy]=0. (8)
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On the other hand by substituting Eq. (6) into Eqg. (7.1, 7.2) the sef-equilibrium
equations of the free-standing tensegrity structures are

Aq=0. 9)

where A (€ [1°™*") jsthe equilibrium matrix presented in [13], defined as

A {CST diag(CSx)}

- . (10)
C, diag(C,y)
Equation (8) presents the relationship between the force densities and the noda
coordinates, while Eqg. (9) shows the relationship between the projected lengths of
members in each direction and their force density coefficients. Both equations
representing now linear homogeneous systems of self-equilibrium.

3. Prestressability Conditions
As noted earlier the tensegrity structures are part of the family of statically and

kinematically indeterminate pin-jointed assemblies. A classification of pin-jointed
structures according to Pellegrino [16] is presented in Table 1.

Classification of pin jointed structures Tablel
Category sand mvalues Type of Sructure
I s=0; m=0 Statically and kinematically
determinate
1 s=0; m>0 Statically determinate and
kinematically indeterminate
Il s>0; m=0 Statically indeterminate and
kinematically determinate
v s>0; m>0 Statically and kinematically
indeterminate

This type of structure must fulfil two necessary, but not sufficient conditions in a D-
dimensiona space to be in a stable equilibrium configuration. The first one refers to the
existence of the states of self-stress, which essentially translates to the rank deficiency
condition of the equilibrium matrix [13]. The number of inextensional mechanisms m and
the corresponding states of self-stress s can be defined using the rank of the equilibrium

matrix r,, asfollows
Mm=D-nN-r, >1. (11

s=nB-r, >1. (12)
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The second condition refers to the rank of the force density matrix D :
rank(D) <nN -D. (13)

Thelater condition isin concordance with the rank deficiency condition of the prestress
stable state defined by Connelly [5].

4. The Form-finding Procedure

Contrary to the majority of the known form-finding methods the one presented in this
article needs only a handful of initial parameters, such as the topology of the structure
(defined through the connectivity matrix Cs) and the member types, in order to solve the
initial equilibrium problem. This means that any initial assumptions regarding the nodal
coordinates, member length ratios or symmetric properties are not needed, making the
form-finding procedure considerably easier.

The prototype of the force density vector q° can be defined by assigning trivial values,
such as +1 and -1 for the cables, respective the struts:

T

qQ°=(+1+1+1..+1 -1-1-1...-1] . (14)
cables struts

First, the force density matrix D will be calculated starting from g° and C.by Eq. (6).

Subsequently the nodal coordinates will be derived from the force density matrix by
eigenvalue decomposition. These assumed nodal coordinates then will be substituted in
Eq. (10) defining the equilibrium matrix A. Finally, the equilibrium conditions defined in
Eqg. (8, 9) will be verified. If these are not fulfilled the force density matrix D will be
updated through a least squares type agorithm by choosing the updated vector of force
densities g by the singular value decomposition of the equilibrium matrix. The processis
iteratively searching for a set of noda coordinates [x y] and force density coefficients q
until the rank deficiency conditions presented in Eq. (12, 13) are fulfilled, thus forcing the
equilibrium conditions presented in Eq. (8, 9) to become true.

4.1. Eigenvalue Decomposition of the For ce Density Matrix

The square symmelric force dendgty matrix D can be factorized usng eigenvaue
decomposition asfollows[18]:

D=0®AD". (15)

where @ (e 0™*™) isthe orthogonal matrix whose columns are the eigenvector basis
f of D. While A (€ 1™*™) isthe diagona matrix of the corresponding eigenvalues | , .
These will bein anincreasing order.

The number of zero eigenvalues (noted with €) of D is equal to the dimension of its null
space nD [18]. It is clear that the null space of D contains the potential nodal coordinates
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of the tensegrity structure. There are two cases to be considered. Thefirst oneise < nD.
In this case the first nD eigenvectors of @ are taken as potential nodal coordinates

[Xy]e[fl fo.f nD]' (16)

The agorithm then determines the force density vector g, which will be repeatedly
approximated from Eq. (9), thus providing the least squares type of solution to the
equilibrium problem.

An eigenvector f, will be removed from the nD eigenvector bases of @ if its projected
length (Cf,) iseither equal to O or forces a zero-length member.

The remaining eigenvectors will constitute the linearly independent basis of nodal
coordinates for the tensegrity structure

The second case is when e > nD, i.e. the rank deficiency is larger than needed and the
force density matrix D is not positive definite during the iteration. An additiona
verification of the positive semi-definiteness of the tangent stiffness matrix is necessary
as per Connelly’s super-stability conditions defined in [3].

4.2. Selecting a Feasible Set of Force Densities

Once a potentid set of coordinates|[ x y] is found from Eq. (8) the equilibrium matrix A will
be determined through subgtitution in Eq. (10). The solution of the linear homogeneous system
presented in Eq. (9) can be found by the singular value decomposition (SVD) of the equilibrium
matrix A [16]

A=USYWT. (17)

where U (€ 0P™*P™) —[u, u,..up, Jand W (€ 0P™*P™) = [w, w,..w g ]are

the left and right orthonormal bases of singular values. Sv respectively is the diagona
matrix of nonnegative singular values of A in adecreasing order [18].

The iterative form-finding procedure will stop when both the rank deficiency condition
of Eg. (12) and the equilibrium condition of Eq. (8) are met. Accordingly, there are two
cases to be considered with respect to the number of self-stress states s during the form-
finding process. Case 1 s=0, there is no sdf-stress state which could balance the
infinitesimal mechanisms of the structure. The form-finding procedure will use a least
squares type of approach to select a possible self-stress state from the right orthonormal
bases of singular values which matches in sign with the prototype of force densities °.

Case 2 s>1, it is known that the left and right orthonormal bases of singular values
contain the minextensional mechanisms and the vectors q of force densities which indeed
satisfy the linear homogeneous equations of equilibrium [16]. In this context the matrices
U and W can be grouped as follows:

U=[u,u,..u, |m, m,..m_J. (18.1)

W = [w, W, .. W, |0, 4 --.0,]. (182)
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For evaluating the accuracy of results the Euclidean norm of the unbalanced internal
forcesin each direction e, = Dx and e, = Dy is used

e = \/(eX)T e, +(ey)T e, .

(19)

5. Numerical Example-A Planar Hexagonal Tensegrity

Fig. 1. Planar hexagonal tensegrity

Theinitial geometry of the planar hexagonal
tensegrity comprising of three struts and six
cables (Fig. 1) is studied herein for verification
purposes. The known information at the
beginning of the form-finding procedure is the
incidence matrix and the prototype of force
densities

0

q =(Q1_CI6 =+11Q7_QQ =_1)T- (20)

The results of the presented form-finding
procedure concur with those found by Tibert
and Pdllegrino [20], respectively by Estrada et
a [8]. The form-finding procedure converges

in ten iterations with a total design error of e, = 6.3906-10"°(Fig. 2). The solution of

theinitia equilibrium problem normalised

with respect to cable 1 is aforce density vector

with g = +1 for cablesand g =-0.5 for struts.

6. Conclusions

The presented form-finding method
solves the initia equilibrium problem
with minimal information regarding the
properties of the analysed structures (the
incidence matrix and element types).

Trivial values (+1, -1) may be used for
the prototype of force densities to find a
feasible range of nodd coordinates and
force densities which fulfil the rank
deficiency conditions forced upon the
force density, respectively the equilibrium
matriX.

The presented agorithm is very well
suited for the design of both free-form and
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