ON THE EXISTENCE AND MULTIPLICITY RESULTS FOR A CLASS OF ELLIPTIC PROBLEMS WITH SINGULAR WEIGHTS AND FAILING ZEROES

S. H. RASOULI ${ }^{1}$

Abstract

In this paper we consider the existence of positive solutions of singular elliptic problems of the form $$
\begin{cases}-\operatorname{div}\left(|x|^{-a p}|\nabla u|^{p-2} \nabla u\right)=\lambda|x|^{-(a+1) p+b} f(u), & x \in \Omega \\ u=0, & x \in \partial \Omega\end{cases}
$$ where Ω is a bounded smooth domain of R^{N} with $0 \in \Omega, 1<p<N$, $0 \leq a<\frac{N-p}{p}$, and b, λ are positive parameters. Here $f:[0, \infty) \rightarrow R$ is continuous function. We discuss the existence of positive solution when f satisfies certain additional conditions. We use the method of sub-super solutions to establish our results.

2000 Mathematics Subject Classification: 35J55, 35J65.
Key words: singular weights; nonlinear elliptic problems; Failing zeroes.

1 Introduction

We study the existence of positive solutions to the singular elliptic problem

$$
\begin{cases}-\operatorname{div}\left(|x|^{-a p}|\nabla u|^{p-2} \nabla u\right)=\lambda|x|^{-(a+1) p+b} f(u), & x \in \Omega, \tag{1}\\ u=0, & x \in \partial \Omega,\end{cases}
$$

where Ω is a bounded smooth domain of R^{N} with $0 \in \Omega, 1<p<N, 0 \leq a<\frac{N-p}{p}$, and b, λ are positive parameters. Here $f:[0, \infty) \rightarrow R$ is continuous function.

Elliptic problems involving more general operator, such as the degenerate quasilinear elliptic operator given by $-\operatorname{div}\left(|x|^{-a p}|\nabla u|^{p-2} \nabla u\right)$, were motivated by the following Caaffarelli, Kohn and Nirenberg's inequality (see [6], [15]). The study of this type of problem is motivated by its various applications, for example, in fluid mechanics, in newtonian fluids, in flow through porous media and

[^0]in glaciology (see $[3,9]$). So, the study of positive solutions of singular elliptic problems has more practical meanings. We refer to [1], [2], [5], [11] for additional results on elliptic problems.

For the regular case, that is, when $a=0$ and $b=p$ and the quasilinear elliptic equation has been studied by several authors (see [12, 4]). See [8] where the authors discussed the problem (1) when $a=0, b=p=2$. In [14], the authors extended the study of [8], to the case when $p>1$. Here we focus on further extending the study in [12] for the quasilinear elliptic problem involving singularity. Due to this singularity in the weights, the extensions are challenging and nontrivial. Our approach is based on the method of sub-super solutions, see [7, 10].

2 Preliminaries

In this paper, we denote $W_{0}^{1, p}\left(\Omega,|x|^{-a p}\right)$, the completion of $C_{0}^{\infty}(\Omega)$, with respect to the norm $\|u\|=\left(\int_{\Omega}|x|^{-a p}|\nabla u|^{p} d x\right)^{\frac{1}{p}}$. To precisely state our existence result we consider the eigenvalue problem

$$
\begin{cases}-\operatorname{div}\left(|x|^{-a p}|\nabla \phi|^{p-2} \nabla \phi\right)=\lambda|x|^{-(a+1) p+b}|\phi|^{p-2} \phi, & x \in \Omega, \tag{2}\\ \phi=0, & x \in \partial \Omega .\end{cases}
$$

Let $\phi_{1, p}$ be the eigenfunction corresponding to the first eigenvalue $\lambda_{1, p}$ of (2) such that $\phi_{1, p}(x)>0$ in Ω, and $\left\|\phi_{1, p}\right\|_{\infty}=1$ (see $[13,16]$). It can be shown that $\frac{\partial \phi_{1, p}}{\partial n}<0$ on $\partial \Omega$. Here n is the outward normal. This result is well known and hence, depending on Ω, there exist positive constants $\epsilon, \delta, \sigma_{p}$ such that

$$
\begin{gather*}
\lambda_{1, p}|x|^{-(a+1) p+b} \phi_{1, p}^{p}-|x|^{-a p}\left|\nabla \phi_{1, p}\right|^{p} \leq-\epsilon, \quad x \in \bar{\Omega}_{\delta}, \tag{3}\\
\phi_{1, p} \geq \sigma_{p}, \quad x \in \Omega_{0}=\Omega \backslash \bar{\Omega}_{\delta}, \tag{4}
\end{gather*}
$$

where $\bar{\Omega}_{\delta}=\{x \in \Omega \mid d(x, \partial \Omega) \leq \delta\}$ (see [13]).

3 Our results

A nonnegative function ψ is called a subsolution of (1) if it satisfy $\psi \leq 0$ on $\partial \Omega$ and

$$
\begin{aligned}
& \int_{\Omega}|x|^{-a p}|\nabla \psi|^{p-2}|\nabla \psi| \cdot \nabla w d x \leq \lambda \int_{\Omega}|x|^{-(a+1) p+b} f(\psi) w d x \\
& \int_{\Omega}|x|^{-a p}|\nabla z|^{p-2}|\nabla z| \cdot \nabla w d x \geq \lambda \int_{\Omega}|x|^{-(a+1) p+b} f(z) w d x
\end{aligned}
$$

for all $w \in W=\left\{w \in C_{0}^{\infty}(\Omega) \mid w \geq 0, x \in \Omega\right\}$. Then the following result holds:
Lemma 3.1. (See [13]) Suppose there exist sub and super- solutions ψ and z
respectively of (1) such that $\psi \leq z$. Then (1) has a solution u such that $\psi \leq u \leq z$.
We make the following assumptions:
(H1) There exists $\mu>0$ such that $f(y)(\mu-y)>0 ; y \neq \mu_{1}$.
(H2)

$$
\lim _{y \rightarrow 0^{+}} \frac{f(y)}{y^{p-1}}=0 .
$$

We establish:

Theorem 3.2. Assume (H1) holds. Then the problem (1) admits a positive large solution provided λ is large.

Theorem 3.3. Assume (H1) and (H2) hold. Then the problem (1) has at least two positive solutions provided λ is large.

4 Proof of Theorems 3.2-3.3

Proof of Theorem 3.2

For fixed $\gamma \in(0, \mu)$, we shall verify that $\psi=\left(\frac{\gamma}{2}\right)^{\frac{1}{p-1}}\left(\frac{p-1}{p}\right) \phi_{1, p}^{\frac{p}{p-1}}$, is a sub-solution of (1). Let $w \in W$. Then a calculation shows that

$$
\begin{aligned}
& \int_{\Omega}|x|^{-a p}|\nabla \psi|^{p-2} \nabla \psi \nabla w d x \\
= & \left(\frac{\gamma}{2}\right) \int_{\Omega}|x|^{-a p} \phi_{1, p}\left|\nabla \phi_{1, p}\right|^{p-2} \nabla \phi_{1, p} \nabla w d x \\
= & \left(\frac{\gamma}{2}\right) \int_{\Omega}|x|^{-a p}\left|\nabla \phi_{1, p}\right|^{p-2} \nabla \phi_{1, p}\left[\nabla\left(\phi_{1, p} w\right)-\left|\nabla \phi_{1, p}\right|^{p} w\right] d x \\
= & \left(\frac{\gamma}{2}\right) \int_{\Omega}\left[\lambda_{1, p}|x|^{-(a+1) p+b} \phi_{1, p}^{p}-|x|^{-a p}\left|\nabla \phi_{1, p}\right|^{p}\right] w d x .
\end{aligned}
$$

First we consider the case when $x \in \bar{\Omega}_{\delta}$. We have $\lambda_{1, p}|x|^{-(a+1) p+c_{1}} \phi_{1, p}^{p}-$ $|x|^{-a p}\left|\nabla \phi_{1, p}\right|^{p} \leq-\epsilon$ on Ω_{δ}. Since $f(\psi) \geq 0$, it follows that

$$
\begin{aligned}
& \left(\frac{\gamma}{2}\right) \int_{\bar{\Omega}_{\delta}}\left[\lambda_{1, p}|x|^{-(a+1) p+c_{1}} \phi_{1, p}^{p}-|x|^{-a p}\left|\nabla \phi_{1, p}\right|^{p}\right] w d x \\
\leq & -\left(\frac{\gamma}{2}\right) \epsilon \int_{\bar{\Omega}_{\delta}} w d x \\
\leq & \lambda \int_{\bar{\Omega}_{\delta}}|x|^{-(a+1) p+p} f(\psi) w d x .
\end{aligned}
$$

On the other hand, on $\Omega \backslash \bar{\Omega}_{\delta}$, we have $\phi_{1, p} \geq \sigma_{p}$, for some $0<\sigma_{p}<1$. We can find λ_{*} sufficiently large such that

$$
\left(\frac{\gamma}{2}\right) \lambda_{1, p}<\lambda \min _{s \in\left[\frac{\gamma}{2}, \gamma\right]}^{2} f(s),
$$

for all $x \in \Omega \backslash \bar{\Omega}_{\delta}$ and for all $\lambda \geq \lambda_{*}$. Hence

$$
\begin{aligned}
& \left(\frac{\gamma}{2}\right) \int_{\Omega \backslash \bar{\Omega}_{\delta}}\left[\lambda_{1, p}|x|^{-(a+1) p+b} \phi_{1, p}^{p}-|x|^{-a p}\left|\nabla \phi_{1, p}\right| p\right] w d x \\
\leq & \left(\frac{\gamma}{2}\right) \int_{\Omega \backslash \bar{\Omega}_{\delta}}|x|^{-(a+1) p+b} \lambda_{1, p} w d x \\
\leq & \left.\lambda \int_{\Omega \backslash \bar{\Omega}_{\delta}}|x|^{-(a+1) p+b} \min _{s \in\left[\frac{\gamma}{2} p\right.}^{2}, \gamma\right] \\
\leq & \lambda(s) w d x \\
& |x|^{-(a+1) p+b} f(\psi) w d x .
\end{aligned}
$$

Hence

$$
\int_{\Omega}|x|^{-a p}\left|\nabla \psi_{1}\right|^{p-2}\left|\nabla \psi_{1}\right| \cdot \nabla w d x \leq \int_{\Omega}|x|^{-(a+1) p+c_{1}} f\left(\psi_{1}\right) h\left(\psi_{2}\right) w d x
$$

i.e., ψ is a sub-solution of (1).

Next it is easy to see that constant function $z=\mu$ is a super-solution of (1) with $z \geq \psi$. Thus, by [13] there exists a positive solution u of (1) such that $\psi \leq u \leq z$. This completes the proof of Theorem 3.2.

Proof of Theorem 3.3

To prove Theorem 3.3, we will construct a subsolution ψ, a strict supersolution ξ, a strict subsolution w_{1}, and a supersolution z_{1} for (1) such that $\psi \leq \xi \leq z$, $\psi \leq w \leq z$, and $w \not \approx \xi$. Then (1) has at least three distinct solutions $u_{i}, i=1,2,3$, such that $u_{1} \in[\psi, \xi], u_{2} \in[w, z]$, and

$$
u_{3} \in[\psi, z] \backslash([\psi, \xi] \cup[w, z])
$$

We first note that $\psi=0$ is a solution (hence a subsolution). In the proof of Theorem 3.3 we saw that for λ large, $w=\left(\frac{\gamma}{2}\right)^{\frac{1}{p-1}}\left(\frac{p-1}{p}\right) \phi_{1, p}^{\frac{p}{p-1}}$, is a positive strict subsolution. And also we know that $z=\mu$ is a super-solution of (1) with $z \geq w$. Now we will show that there is a positive and strict supersolution ξ such that $\xi \leq z$ and $w \not \leq \xi$. From (H2) we can choose $\alpha \in\left(0,\left(\frac{\gamma}{2}\right)^{\frac{1}{p-1}}\left(\frac{p-1}{p}\right)\right)$ such that for $0<y<\alpha$,

$$
\lambda f(y)<\lambda_{1, p} y^{p-1} .
$$

Let $\xi=\alpha \phi_{1, p}$. Then,

$$
\begin{aligned}
\int_{\Omega}|x|^{-a p}\left|\nabla \xi_{1}\right|^{p-2} \nabla \xi_{1} \nabla w d x & =\alpha^{p-1} \int_{\Omega}|x|^{-a p}\left|\nabla \phi_{1, p}\right|^{p-2} \nabla \phi_{1, p} \nabla w d x \\
& =\lambda 1, p \int_{\Omega}|x|^{-(a+1) p+b}\left|\alpha \phi_{1, p}\right|^{p-2} w d x \\
& >\lambda \int_{\Omega}|x|^{-(a+1) p+b} f\left(\alpha \phi_{1, p}\right) w d x \\
& \geq \lambda \int_{\Omega}|x|^{-(a+1) p+b} f(\xi) w d x
\end{aligned}
$$

Thus ξ is a strict supersolution and $w \not \approx \xi$. Hence there exists solutions $u_{2} \in[\psi, \xi]$, $u_{3} \in[w, z]$, and $u \in[\psi, z] \backslash([\psi, \xi] \cup[w, z])$. Thus we have two positive solutions u_{2} and u_{3}. Hence Theorem 3.3 holds.

References

[1] Afrouzi, G.A. Rasouli, S.H., A remark on the existence of multiple solutions to a multiparameter nonlinear elliptic system, Nonl. Anal. 71 (2009) 445-455.
[2] Afrouzi, G.A. Rasouli, S.H., A remark on the linearized stability of positive solutions for systems involving the p-Laplacian, Positivity 11 (2007), no. 2, 351-356.
[3] Atkinson, C. and El Kalli, K., Some boundary value problems for the Bingham model, J. Non-Newtonian Fluid Mech, 41 (1992) 339-363.
[4] Bartsch, T. and Liu, Z.L. Multiple sign-changing solutions of a quasilinear elliptic eigenvalue problem involving the p-Laplacian, Comm. Contemp. Math. 6 (2004), 245-258.
[5] Bueno, H. Ercole, G, Ferreira,W. and Zumpano, A., Existence and multiplicity of positive solutions for the p-Laplacian with nonlocal coefficient, J. Math. Anal. Appl. 343 (2008) 151-158.
[6] Caffarelli, L, Kohn, R. and Nirenberg, L., First order interpolation inequalities with weights, Compos. Math. 53 (1984) 259-275.
[7] Canada, A., Drabek, P. and Gamez, J.L., Existence of positive solutions for some problems with nonlinear diffusion, Trans. Amer. Math. Soc. 349 (1997) 4231-4249.
[8] Castro, A., Hassanpour, M. and Shivaji, R., Uniqueness of non-negative solutions for a semipositone problems with concave nonlinearity, Comm. Partial Differential Equations, 20 (1995) 1927-1936.
[9] Câstea, F., Motreanu, D. and Rădulescu, V., Weak solutions of quasilinear problems with nonlinear boundary condition, Nonlinear Anal. 43 (2001) 623636.
[10] Drabek, P. and Hernandez, J., Existence and uniqueness of positive solutions for some quasilinear elliptic problem, Nonl. Anal, 44 (2001), no. 2, 189-204.
[11] Fei Fang, Shibo Liu, Nontrivial solutions of superlinear p-Laplacian equations, J. Math. Anal. Appl. 351 (2009) 138-146.
[12] Lee, E.K., Shivaji, R. and Ye, J. Positive solutions for elliptic equatios involving nonlinearities with falling zeroes, Appl. Math. Letters, 22 (2009), no. 6, 846-851.
[13] Miyagaki, O.H. and Rodrigues, R.S., On positive solutions for a class of singular quasilinear elliptic systems, J. Math. Anal. Appl. 334 (2007) 818833.
[14] Oruganti, S. and Shivaji, R., Existence results for classes of p-laplacian semipositone equations, Bound. Value Probl. (2005) 1-7. Article ID 87483.
[15] Xuan, B., The solvability of quasilinear Brezis-Nirenberg-type problems with singular weights, Nonlinear Anal. 62 (2005) 703-725.
[16] Xuan, B., The eigenvalue problem for a singular quasilinear elliptic equation, Electronic J. Differential Equations 2004(2004), no. 16, 1-11.

[^0]: ${ }^{1}$ Faculty of Basic Science, Babol Noshirvani University of Technology, Babol, Iran, e-mail: s.h.rasouli@nit.ac.ir

