RIEMANNIAN MANIFOLDS ADMITTING A PROJECTIVE SEMI-SYMMETRIC CONNECTION

Sibaji RIT ${ }^{1}$

Abstract

The object of the present paper is to study some curvature properties of a Riemannian manifold admitting projective semi-symmetric connection.

2010 Mathematics Subject Classification: 53C05, 53D15. Key words: Riemannian Manifolds, Projective Semi-symmetric connection.

1 Introduction

The idea of semi-symmetric connection was introduced by A. Friedman and J. A. Schouten [4] in 1924. In 1932, H. A. Hayden [5] introduced the semi-symmetric linear connection on a Riemannian manifold and this was further developed by K. Yano [14], M. C. Chaki and A. Konar [1], M. Prvanović ([6],[7],[8],[9]), U. C. De [3], U. C. De and B. K. De [2], P. Zhao et al [15, 16] and many others.

A linear connection $\bar{\nabla}$ defined on $\left(M^{n}, g\right)$ is said to be semi-symmetric [4] if its torsion tensor \bar{T} with respect to the connection $\bar{\nabla}$ is of the form

$$
\begin{equation*}
\bar{T}(X, Y)=\pi(Y) X-\pi(X) Y \tag{1}
\end{equation*}
$$

where π is a 1 -form defined by

$$
\begin{equation*}
\pi(X)=g(X, \rho) \tag{2}
\end{equation*}
$$

where ρ is associate vector field and for all vector fields $\mathrm{X} \in \chi(M), \chi(M)$ is the set of all differentiable vector field on M^{n}.

A linear connection $\bar{\nabla}$ defined on $\left(M^{n}, g\right)$ is said to be semi-symmetric metric connection [14] if its torsion tensor \bar{T} with respect to the connection $\bar{\nabla}$ satisfies (1) and $\nabla g=0$.

A Riemannian manifold $\left(M^{n}, g\right)$ is called locally symmetric if its curvature tensor R is parallel, that is, $\nabla R=0$, where ∇ is the Levi-Civita connection. The

[^0]notion of semi-symmetric manifold, a proper generalization of locally symmetric manifold, is defined by $R(X, Y) \cdot R=0$, where $R(X, Y)$ is considered as a field of linear endomorphisms, acting on R. A complete intrinsic classification of these manifolds was given by Szabó in [11].

In a recent paper P. Zhao [17] introduced the projective semi-symmetric connection on a Riemannian manifold. The projective semi-symmetric connection has also been studied by P. Zhao and H. Song [15], S. K. Pal and et al [10] and many others. This paper is organized as follows:

After the introduction we give some preliminary results in section 2. In Section 3, we obtain some results on the projective semi-symmetric connection whose the torsion tensor is recurrent. Section 4, deals with Riemannian manifold admitting a projective semi-symmetric connection whose curvature tensor vanishes and torsion tensor is recurrent. Finally, we obtain some sufficient conditions for a compact orientable Riemannian manifold admitting a projective semi-symmetric connection with recurrent torsion tensor and vanishing curvature tensor \bar{R}.

2 Preliminaries

Let $\left(M^{n}, g\right)(n \geq 3)$ be a Riemannian manifold and ∇ be the Levi-Civita connection associated with the metric g. In a Riemannian manifold, a linear connection $\bar{\nabla}$ is called a semi-symmetric connection if its torsion tensor \bar{T} defined by

$$
\begin{equation*}
\bar{T}(X, Y)=\bar{\nabla}_{X} Y-\bar{\nabla}_{Y} X-[X, Y], \tag{3}
\end{equation*}
$$

satisfies (1).
In this paper, we study a type of projective semi-symmetric connection $\bar{\nabla}$ in a Riemannian manifold introduced by P. Zhao [17]. The connection is given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+\psi(Y) X+\psi(X) Y+\phi(Y) X-\phi(X) Y \tag{4}
\end{equation*}
$$

where the 1-forms ϕ and ψ are given by

$$
\begin{equation*}
\phi(X)=\frac{1}{2} \pi(X) \text { and } \psi(\mathrm{X})=\frac{(\mathrm{n}-1)}{2(\mathrm{n}+1)} \pi(\mathrm{X}) . \tag{5}
\end{equation*}
$$

Making use of (3), the above equations gives

$$
\begin{equation*}
\bar{T}(X, Y)=\pi(Y) X-\pi(X) Y . \tag{6}
\end{equation*}
$$

It follows that the connection $\bar{\nabla}$ defined by (4) and (5) satisfies the condition (1). Therefore the connection $\bar{\nabla}$ is semi-symmetric [4].

Let \bar{R} and R be the curvature tensors with respect to the projective semisymmetric connection $\bar{\nabla}$ and the Levi-Civita connection ∇ respectively. The curvature tensor \bar{R} and R are related by [17] that

$$
\begin{equation*}
\bar{R}(X, Y) Z=R(X, Y) Z+\beta(X, Y) Z+\alpha(X, Z) Y-\alpha(Y, Z) X, \tag{7}
\end{equation*}
$$

where $\beta(X, Y)$ and $\alpha(X, Y)$ are given by the following relations

$$
\begin{gather*}
\beta(X, Y)=\Psi^{\prime}(X, Y)-\Psi^{\prime}(Y, X)+\Phi^{\prime}(Y, X)-\Phi^{\prime}(X, Y), \tag{8}\\
\alpha(X, Y)=\Psi^{\prime}(X, Y)+\Phi^{\prime}(Y, X)-\psi(X) \phi(Y)-\phi(X) \psi(Y), \tag{9}\\
\Psi^{\prime}(X, Y)=\left(\nabla_{X} \psi\right)(Y)-\psi(X) \psi(Y), \tag{10}
\end{gather*}
$$

and

$$
\begin{equation*}
\Phi^{\prime}(X, Y)=\left(\nabla_{X} \phi\right)(Y)-\phi(X) \phi(Y) \tag{11}
\end{equation*}
$$

Contracting X in (7), we have [17]

$$
\begin{equation*}
\bar{S}(Y, Z)=S(Y, Z)+\beta(Y, Z)-(n-1) \alpha(Y, Z) \tag{12}
\end{equation*}
$$

where \bar{S} and S are the Ricci tensors with respect to the connections $\bar{\nabla}$ and ∇ respectively.

If \bar{r} and r are scalar curvatures of the manifold with respect to connections $\bar{\nabla}$ and ∇ respectively, then we have

$$
\begin{equation*}
\bar{r}=r+b-(n-1) a, \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
b=\sum \beta\left(e_{i}, e_{i}\right) \text { and } a=\sum \alpha\left(e_{i}, e_{i}\right) \tag{14}
\end{equation*}
$$

The Weyl projective curvature tensor \bar{P} on a Riemannian manifold with respect to the connection $\bar{\nabla}$ is defined by

$$
\begin{equation*}
\bar{P}(X, Y) Z=\bar{R}(X, Y) Z-\frac{1}{(n-1)}[\bar{S}(Y, Z) X-\bar{S}(X, Z) Y] . \tag{15}
\end{equation*}
$$

3 Projective semi-symmetric connection with recurrent torsion tensor

In this section, we consider a projective semi-symmetric connection $\bar{\nabla}$ given by (4), whose torsion tensor \bar{T} is recurrent, that is, the torsion tensor \bar{T} satisfies the condition

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \bar{T}\right)(Y, Z)=\pi(X) \bar{T}(Y, Z) \tag{16}
\end{equation*}
$$

where the 1 -form π is defined by (2). From (4), we get

$$
\begin{equation*}
\left(C_{1}^{1} \bar{T}\right)(Y)=(n-1) \pi(Y) \tag{17}
\end{equation*}
$$

where C_{1}^{1} denotes the operation of contraction.
From (17), it follows that

$$
\begin{equation*}
\left(\bar{\nabla}_{X} C_{1}^{1} \bar{T}\right)(Y)=(n-1)\left(\bar{\nabla}_{X} \pi\right)(Y) \tag{18}
\end{equation*}
$$

Using (16), we get

$$
\begin{equation*}
\left(\bar{\nabla}_{X} C_{1}^{1} \bar{T}\right)(Y)=\pi(X)\left(C_{1}^{1} \bar{T}\right)(Y) \tag{19}
\end{equation*}
$$

Making use of (17) and (19), we obtain

$$
\begin{equation*}
\left(\bar{\nabla}_{X} C_{1}^{1} \bar{T}\right)(Y)=(n-1) \pi(X) \pi(Y) \tag{20}
\end{equation*}
$$

Equating the right hand side of (18) and (20) implies

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \pi\right)(Y)=\pi(X) \pi(Y) \tag{21}
\end{equation*}
$$

Interchanging X by Y in the above equation, we get

$$
\begin{equation*}
\left(\bar{\nabla}_{Y} \pi\right)(X)=\pi(X) \pi(Y) \tag{22}
\end{equation*}
$$

Thus from (21) and (22), we have

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \pi\right)(Y)=\left(\bar{\nabla}_{Y} \pi\right)(X) \tag{23}
\end{equation*}
$$

Hence the 1 -form π is closed with respect to $\bar{\nabla}$.
Again

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \pi\right)(Y)=\bar{\nabla}_{X} \pi(Y)-\pi\left(\bar{\nabla}_{X} Y\right) . \tag{24}
\end{equation*}
$$

Applying (4) in (24), we get

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \pi\right)(Y)=\left(\nabla_{X} \pi\right)(Y)-\psi(Y) \pi(X)-\psi(X) \pi(Y)-\phi(Y) \pi(X)+\phi(X) \pi(Y) . \tag{25}
\end{equation*}
$$

With the help of (5), the above equation yields

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \pi\right)(Y)=\left(\nabla_{X} \pi\right)(Y)-\frac{(n-1)}{(n+1)} \pi(X) \pi(Y) \tag{26}
\end{equation*}
$$

From (26), it follows that

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \pi\right)(Y)-\left(\bar{\nabla}_{Y} \pi\right)(X)=\left(\nabla_{X} \pi\right) Y-\left(\nabla_{Y} \pi\right) X \tag{27}
\end{equation*}
$$

Since π is closed with respect to the connection $\bar{\nabla}$, it follows that the 1 -form π is closed with respect to the connection ∇.

It is easy to verify that both the 1 -forms ϕ and ψ are closed with respect to $\bar{\nabla}$ and ∇. Also that the tensors Φ^{\prime} and Ψ^{\prime} are symmetric. Consequently, we have

$$
\begin{equation*}
\beta(X, Y)=0 . \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha(X, Y)=\alpha(Y, X) \tag{29}
\end{equation*}
$$

In view of (23) and (28), the expressions (7), (12) and (13) reduce to

$$
\begin{gather*}
\bar{R}(X, Y) Z=R(X, Y) Z+\alpha(X, Z) Y-\alpha(Y, Z) X, \tag{30}\\
\bar{S}(Y, Z)=S(Y, Z)-(n-1) \alpha(Y, Z) \tag{31}
\end{gather*}
$$

$$
\begin{equation*}
\bar{r}=r-(n-1) a, \tag{32}
\end{equation*}
$$

respectively. We easily observe that the Ricci tensor \bar{S} is symmetric. Again using (9), (10) and (11) in (30), we obtain

$$
\begin{align*}
\bar{R}(X, Y) Z= & R(X, Y) Z+\left[\Psi^{\prime}(X, Z)+\Phi^{\prime}(Z, X)-\psi(X) \phi(Z)-\phi(X) \psi(Z)\right] Y \\
& -\left[\Psi^{\prime}(Y, Z)+\Phi^{\prime}(Z, Y)-\psi(Y) \phi(Z)-\psi(Z) \phi(Y)\right] X \\
& =R(X, Y) Z+\left[\left(\nabla_{X} \psi\right) Z-\psi(X) \psi(Z)+\left(\nabla_{Z} \phi\right) X-\phi(X) \phi(Z)\right. \\
& -\psi(X) \psi(Z)-\phi(X) \psi(Z)] Y-\left[\left(\nabla_{Y} \psi\right) Z-\psi(Y) \psi(Z)\right. \\
& \left.+\left(\nabla_{Z} \phi\right) Y-\phi(Z) \phi(Y)-\psi(Y) \phi(Z)-\phi(Y) \psi(Z)\right] X \\
& =R(X, Y) Z+\frac{n}{(n+1)}\left[\left(\nabla_{X} \pi\right)(Z) Y-\left(\nabla_{Y} \pi\right)(Z) X\right] \\
& -\frac{n^{2}}{(n+1)^{2}}[\pi(X) \pi(Z) Y-\pi(Y) \pi(Z) X] . \tag{33}
\end{align*}
$$

Contracting X in (33), we get

$$
\begin{equation*}
\bar{S}(Y, Z)=S(Y, Z)-\frac{n(n-1)}{(n+1)}\left(\nabla_{Y} \pi\right)(Z)+\frac{n^{2}(n-1)}{(n+1)^{2}} \pi(Y) \pi(Z) \tag{34}
\end{equation*}
$$

Making use of (33), (34) and closed 1-form π in (15), we have

$$
\begin{equation*}
\bar{P}(X, Y) Z=P(X, Y) Z \tag{35}
\end{equation*}
$$

By the above discussion we can state the following:
Theorem 1. If $\left(M^{n}, g\right)(n \geq 3)$ is a Riemannian manifold admitting a projective semi-symmetric connection $\bar{\nabla}$, whose torsion tensor \bar{T} is recurrent with respect to $\bar{\nabla}$, then the Weyl projective curvature tensor is invariant.

Now we define $(0,4)$ type tensors $\widetilde{\bar{R}}$ and \widetilde{R} with respect to $\bar{\nabla}$ and ∇ respectively, where

$$
\begin{equation*}
\widetilde{R}(X, Y, Z, W)=g(R(X, Y) Z, W) \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{\bar{R}}(X, Y, Z, W)=g(\bar{R}(X, Y) Z, W) \tag{37}
\end{equation*}
$$

Then from (33), we have

$$
\begin{gather*}
\widetilde{\bar{R}}(X, Y, Z, W)=-\widetilde{\bar{R}}(Y, X, Z, W), \tag{38}\\
\widetilde{\bar{R}}(X, Y, Z, W)+\widetilde{\bar{R}}(X, Y, W, Z) \neq 0 \tag{39}
\end{gather*}
$$

and

$$
\begin{equation*}
\tilde{\bar{R}}(X, Y, Z, W)+\widetilde{\bar{R}}(Z, W, X, Y) \neq 0 \tag{40}
\end{equation*}
$$

Thus we have the following:

Theorem 2. If $\left(M^{n}, g\right)(n \geq 3)$ is a Riemannian manifold admitting a projective semi-symmetric connection $\bar{\nabla}$, whose torsion tensor is recurrent with respect to $\bar{\nabla}$. Then
(a) $\bar{R}(X, Y, Z, W)+\widetilde{\bar{R}}(Y, X, Z, W)=0$,
(b) $\widetilde{\bar{R}}(X, Y, Z, W)+\widetilde{\bar{R}}(X, Y, W, Z) \neq 0$, in general,
(c) $\widetilde{\bar{R}}(X, Y, Z, W)+\widetilde{\bar{R}}(Z, W, X, Y) \neq 0$, in general.

4 Projective semi-symmetric connection with recurrent torsion tensor and vanishing curvature tensor \bar{R}

In this section we consider a projective semi-symmetric connection $\bar{\nabla}$ whose curvature tensor \bar{R} vanishes and torsion tensor \bar{T} is recurrent with respect to $\bar{\nabla}$. Then (33) becomes

$$
\begin{align*}
R(X, Y) Z= & \frac{n}{(n+1)}\left[\left(\nabla_{Y} \pi\right)(Z) X-\left(\nabla_{X} \pi\right)(Z) Y\right] \\
& +\frac{n^{2}}{(n+1)^{2}}[\pi(X) \pi(Z) Y-\pi(Y) \pi(Z) X] . \tag{41}
\end{align*}
$$

Now

$$
\begin{align*}
& (R(X, Y) \cdot R)(U, V) W \\
& =R(X, Y) \cdot R(U, V) W-R(R(X, Y) U, V) W \\
& -R(U, R(X, Y) V) W-R(U, V) R(X, Y) W \\
& =\frac{n}{(n+1)}\left[\left(\nabla_{V} \pi\right)(W) R(X, Y) U-\left(\nabla_{U} \pi\right)(W) R(X, Y) V\right. \\
& -\left(\nabla_{Y} \pi\right)(U) R(X, V) W+\left(\nabla_{X} \pi\right)(U) R(Y, V) W-\left(\nabla_{Y} \pi\right)(V) R(U, X) W \\
& \left.+\left(\nabla_{X} \pi\right)(V) R(U, Y) W-\left(\nabla_{Y} \pi\right)(W) R(U, V) X+\left(\nabla_{X} \pi\right)(W) R(U, V) Y\right] \\
& -\frac{n^{2}}{(n+1)^{2}}[\pi(V) \pi(W) R(X, Y) U-\pi(U) \pi(W) R(X, Y) V \\
& -\pi(Y) \pi(U) R(X, V) W+\pi(X) \pi(U) R(Y, V) W-\pi(Y) \pi(V) R(U, X) W \\
& +\pi(X) \pi(V) R(U, Y) W-\pi(Y) \pi(W) R(U, V) X+\pi(X) \pi(W) R(U, V) Y] \tag{42}
\end{align*}
$$

Now using (41) and closed 1 -form π in (42), we get

$$
\begin{equation*}
(R(X, Y) \cdot R)(U, V) W=0 \tag{43}
\end{equation*}
$$

This leads to the following:
Theorem 3. Let $\left(M^{n}, g\right)(n \geq 3)$ be a Riemannian manifold admitting a projective semi-symmetric connection $\bar{\nabla}$, whose torsion tensor is recurrent with respect to the connection $\bar{\nabla}$ and vanishing curvature tensor \bar{R}. Then the manifold is semi-symmetric with respect to the Levi-Civita connection ∇.

Now suppose that vector field ρ is a unit vector field defined by $g(X, \rho)=\pi(X)$. Contracting X in (41), we get

$$
\begin{equation*}
S(Y, Z)=\frac{n(n-1)}{(n+1)}\left(\nabla_{Y} \pi\right) Z-\frac{n^{2}(n-1)}{(n+1)^{2}} \pi(Y) \pi(Z) \tag{44}
\end{equation*}
$$

Using (21) in (26), we get

$$
\begin{equation*}
\left(\nabla_{X} \pi\right) Y=\frac{2}{(n+1)} \pi(X) \pi(Y) \tag{45}
\end{equation*}
$$

Applying (45) in (44), we get

$$
\begin{equation*}
S(Y, Z)=\lambda \pi(Y) \pi(Z) \tag{46}
\end{equation*}
$$

where $\lambda=\frac{n(n-1)(2-n)}{(n+1)^{2}} \neq 0$ for $n \geq 3$.
From (46), we get

$$
\begin{equation*}
S(X, X)=\lambda[g(X, \rho)]^{2} \text { for all } X \tag{47}
\end{equation*}
$$

$$
\begin{equation*}
\text { Therefore } S(\rho, \rho)=\lambda \text {, since } \rho \text { is a unit vector. } \tag{48}
\end{equation*}
$$

Let θ be the angle between ρ and an arbitrary vector X ,
then $\cos \theta=\frac{g(X, \rho)}{\sqrt{g(\rho, \rho)} \sqrt{g(X, X)}}=\frac{g(X, \rho)}{\sqrt{g(X, X)}}$ [by our hypothesis $\left.g(\rho, \rho)=1\right]$.
Since $\cos \theta \leq 1$, so $[g(X, \rho)]^{2} \leq g(X, X)=|X|^{2}$.
Thus from (46), we have

$$
\begin{equation*}
S(X, X) \leq \lambda|X|^{2} \tag{49}
\end{equation*}
$$

Let l^{2} be the square length of the Ricci tensor. Then

$$
\begin{equation*}
l=S\left(L e_{i}, e_{i}\right) \tag{50}
\end{equation*}
$$

where L is the symmetric endomorphism of the tangent space at each point corresponding to the Ricci tensor S, that is $g(L X, Y)=S(X, Y)$ for all X, Y and $\left\{e_{i}\right\} \mathrm{i}=1,2,3, \ldots, n$ is an orthonormal basis of the tangent space at a point.
Making use of (47), the above equations gives

$$
\begin{align*}
l^{2} & =S\left(L e_{i}, e_{i}\right) \\
& =\lambda \pi\left(L e_{i}\right) \pi\left(e_{i}\right) \\
& =\lambda g\left(L e_{i}, \rho\right) g\left(e_{i}, \rho\right) \\
& =\lambda g(L \rho, \rho) \\
& =\lambda S(\rho, \rho) \\
& =\lambda . \lambda \\
& =\lambda^{2} \tag{51}
\end{align*}
$$

This leads to the following:
Lemma 1. The length of the Ricci tensor of a Riemannian manifold (M^{n}, g) ($n \geq 3$) admitting a projective semi-symmetric connection with recurrent torsion tensor and vanishing curvature tensor \bar{R} is constant.

5 Sufficient conditions for a compact orientable Riemannian manifold admitting a projective semisymmetric connection with recurrent torsion tensor and vanishing curvature tensor \bar{R} to be (a) conformal to a sphere in E_{n+1} and (b) isometric to a sphere

First we give the definition of conformality between two Riemannian manifolds. Let $\left(M^{n}, g\right)$ and $\left(\widetilde{M^{n}}, \widetilde{g}\right)$ be two Riemannian manifolds. If there exists a oneone differentiable mapping $\left(M^{n}, g\right) \longrightarrow\left(\widetilde{M}^{n}, \widetilde{g}\right)$ such that the angle between any two vectors at a point p of M is always equal to that of the corresponding two vectors at the corresponding point \widetilde{p} of \widetilde{M}, then $\left(M^{n}, g\right)$ is said to be conformal to ($\left.\widetilde{M}^{n}, \widetilde{g}\right)$. A sufficient condition was given by Y.Watanabe[12] as follows:

Let $M^{n}(n \geq 3)$ be a Riemannian manifold, if there exists a non parallel vector field X such that the condition

$$
\begin{equation*}
\int_{M} S(X, X) d v=\frac{1}{2} \int_{M}|d X|^{2} d v+\frac{(n-1)}{n} \int_{M}(\partial X)^{2} d v \tag{52}
\end{equation*}
$$

holds, then M^{n} is conformal to a sphere in E_{n+1}, where $d v$ is the volume element of M and $d X$ and ∂X are curl and divergence of X respectively.

In this section we consider a compact orientable Riemannian manifold M^{n} $(n \geq 3)$ admitting a projective semi-symmetric connection with recurrent torsion tensor and vanishing curvature tensor \bar{R} without boundary having generator ρ, where ρ is a unit vector field defined by $g(X, \rho)=\pi(X)$.
Substituting $X=\rho$ in (52) and making use (48), we obtain

$$
\begin{equation*}
\int_{M} \lambda d v=\frac{1}{2} \int_{M}|d \rho|^{2} d v+\frac{(n-1)}{n} \int_{M}(\partial \rho)^{2} d v . \tag{53}
\end{equation*}
$$

From (47), we get

$$
\begin{equation*}
S(X, \rho)=\lambda \pi(X) \tag{54}
\end{equation*}
$$

Suppose ρ is a parallel vector field. Then $\nabla_{X} \rho=0$.
Therefore by Ricci identity we have

$$
\begin{equation*}
R(X, Y) \rho=0 \tag{55}
\end{equation*}
$$

Contracting X in (55), we get

$$
\begin{equation*}
S(Y, \rho)=0 \tag{56}
\end{equation*}
$$

Since $\lambda \neq 0$ and $\pi(X) \neq 0$, then from (54) we obtain $S(X, \rho) \neq 0$. Hence ρ cannot be parallel vector field.

If a compact orientable Riemannian manifold M^{n} admits a projective semisymmetric connection with recurrent torsion tensor and vanishing curvature tensor \bar{R} without boundary, the vector field ρ is a non-parallel vector field. If in such a case the condition (53) is satisfied, then by Watanabe's condition (52) (M^{n}, g) ($n \geq 3$) is conformal to a sphere in E_{n+1}.

Hence we can state the following:

Theorem 4. If a compact orientable Riemannian manifold (M^{n}, g) ($n \geq 3$) without boundary admitting a projective semi-symmetric connection with recurrent torsion tensor and vanishing curvature tensor \bar{R} without boundary, satisfies the condition (53), then the manifold $\left(M^{n}, g\right)(n \geq 3)$ is conformal to a sphere immersed in E_{n+1}.

Further, we suppose that a compact orientable Riemannian manifold (M^{n}, g) admits a projective semi-symmetric connection with recurrent torsion tensor and vanishing curvature tensor \bar{R} without boundary, the unit vector field ρ under consideration admits a non-isometric conformal motion generated by a vector X . Since l^{2} is constant by Lemma(1), it follows that

$$
\begin{equation*}
£_{X} l^{2}=0 \tag{57}
\end{equation*}
$$

where $£_{X}$ denotes the Lie differentiation with respect to X . Also from (46) we see that the scalar curvature r is constant.

Now, it is known [13] that if a compact Riemannian manifold M of dimension $n \geq 3$ with constant scalar curvature admits an infinitesimal non-isometric conformal transformation X such that $£_{X} l^{2}=0$, then M is isometric to a sphere.

This leads to the following:
Theorem 5. If a compact orientable Riemannian manifold (M^{n}, g) ($n \geq 3$) without boundary admits a projective semi-symmetric connection with recurrent torsion tensor and vanishing curvature tensor \bar{R} and a non-isometric conformal transformation X, then the manifold is isometric to a sphere.

Acknowledgement. The author is very thankful to the referee for his/her valuable suggestions towards the improvement of the paper.

References

[1] Chaki, M. C. and Konar, A., On a type of semi-symmetric connection on a Riemannian manifold, J. Pure Math. 1 Calcutta University, (1981), 77-80.
[2] De, U. C. and De, B.K., On a type of semi-symmetric connection on a Riemannian Manifold, Ganita, 47 (1996), 11-24.
[3] De, U. C., On a type of semi-symmetric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 21 (1990), no. 1, 334-338.
[4] Friedmann, A. and Schouten, J. A., Uber die geometric der halbsymmetrischen Ubertragungen, Math. Zeitschr., 21 (1924), no. 1, 211-223.
[5] Hayden, H. A., Subspaces of space with torsion, Proc London Math. Soc., $\mathbf{3 4}$ (1932), 27-50.
[6] Prvanović, M., On pseudo metric semi-symmetric connections, Pub. De L Institut Math., Nouvelle serie, 18 (1975), 157-164.
[7] Prvanović, M., On some classes of semi-symmetric connections in the locally decomposable Riemannian space, Facta. Univ. Ser. Math. Inform., 10 (1995), 105-116.
[8] Prvanović, M., Some special semi-symmetric and some special holomorphically semi-symmetric F connections, Pub. Inst. Math. (Beograd), 35(49) (1984), 139-152.
[9] Prvanović, M., Some tensors of metric semi-symmetric connection, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 107 (1973), 303-316.
[10] Pal, S. K., Pandey, M. K. and Singh, R. N., On a type of projective semisymmetric connection, Int. J. of Analysis and Applications, 7 (2015), no. 2, 153-161.
[11] Szabó, Z. I., Structure theorems on Riemannian spaces satisfying $R(X, Y)$ • $R=0$, the local version, J. Deff. Geom., 17 (1982), 531-582.
[12] Watanabe, Y., Integral inequalities in compact, orientable manifold Riemannian or Kahlerian, Kodai Math. Sem. Report, 20 (1968), 264-271.
[13] Yano, K., Integral Formulas in Riemannian Geometry, Springer, Berlin, 1954.
[14] Yano, K., On semi-symmetric metric connection, Revue Roumaine de Math. Pure et Appliquees, 15 (1970), 1579-1581.
[15] Zhao, P. and Shangguan, L., On semi-symmetric connection, J. of Henan Normal University(Natural Science), 19 (1994), no. 4, 13-16.
[16] Zhao, P. and Song, H., An invariant of the projective semi-symmetric connection, Chinese Quarterly J. of Math., 17 (2001), no. 4, 49-54.
[17] Zhao, P., Some properties of projective semi-symmetric connections, Int Math. Forum, 3(7) (2008), 341-347.

[^0]: ${ }^{1}$ Department of Mathematics, Ramsaday College, Vill+PO+PS- Amta, Howrah, Pin- 711401, West Bengal, India, e-mail: sibajirit@gmail.com

