IDEALS OF A COMMUTATIVE ROUGH SEMIRING

V. M. CHANDRASEKARAN ${ }^{3}$, A. MANIMARAN ${ }^{* 2}$ and B. PRABA ${ }^{1}$

Abstract

In this paper, we proved that for every subset X of U there is a corresponding ideal J_{X} of the rough semiring (T, Δ, ∇) also we gave a characterization theorem for the ideals in the rough semiring (T, Δ, ∇) by proving every ideal in (T, Δ, ∇) will be of the form J_{X} for some subset X of U and the properties of these ideals are discussed with suitable examples.

2000 Mathematics Subject Classification: 16Y60, 05C25, 08A72.
Key words: monoid, commutative monoid, regular monoid, ideal, principal ideal, rough semiring

1 Introduction

Fundamentals of semigroups were discussed by J. M. Howie [14] in his classical book in 2003. Z.Pawlak [23] introduced the concept of rough set theory in 1982 to process incomplete information in the information system and it is defined as a pair of sets called lower and upper approximation. Rough sets can be applied in many fields like data analysis, pattern recognition, remove redundancies and generate decision rules. Also rough set theory will be applied in several fields like computational intelligence such as machine learning, intelligent systems, knowledge discovery, expert systems and others [27],[22],[5],[1],[7]. Praba and Mohan [26] discussed the concept of rough lattice. In this paper the authors considered an information system $I=(U, A)$. A partial ordering relation was defined on $T=\{R S(X) \mid X \subseteq U\}$. The least upper bound and greatest lower bound were established using the operation Praba Δ and Praba ∇. Praba et al.[24] discussed a commutative regular monoid on rough sets under the operation Praba Δ in 2013. In this paper the authors dealt with the rough ideals on (T, Δ). Manimaran et al.[20] studied the notion of a

[^0]regular rough ∇ monoid of idempotents under $\operatorname{Praba} \nabla$ in 2014. Praba et al. [25] dealt with semiring on the set of all rough sets also the authors discussed the pivot rough set as rough ideals on rough semiring in 2014. Manimaran et al.[21] discussed the characterization of rough semiring in 2017. Also, we defined the concept of rough homomorphism between two rough semirings (T, Δ, ∇) and $\left(T^{\prime}, \Delta_{1}, \nabla_{1}\right)$. N. Kuroki and P. P. Wang [17] discussed some properties of lower and upper approximations with respect to the normal subgroup. R. Biswas and S. Nanda [2] introduced the notion of rough groups and rough subgroups. The concept of rough ideal semigroup was introduced by Kuroki [18] in 1997. M. Kondo [16] described the notion of the structure on generalized rough sets in 2006. Changzhong Wang and Degang Chen [4] discussed about a short note on some properties of rough groups and the authors studied the image and inverse image of rough approximations of a subgroup with respect to a homomorphism between two groups in 2010. Zadeh [28] introduced the concept of fuzzy sets in his paper. Golan [11] described the concept of ideals in semirings in 1999.

Yonghong Liu [19] dealt with the concepts of special lattice of rough algebras in 2011. Ronnason Chinram [6] introduced the concept of rough prime ideals and rough fuzzy prime ideals in gamma semigroups in 2009. Also the authors T. B. Iwinski [15] and Z. Bonikowaski [3] studied algebraic properties of rough sets. The concept of rough fuzzy sets and fuzzy rough sets was introduced by D. Dubois, H. Parade [8]. Nick C. Fiala [9] discussed about semigroup, monoid and group models of groupoid identities in his paper. Gupta and Chaudhari [12] described that an ideal is a partitioning ideal if and only if it is a subtractive ideal. They also proved that a monic ideal is a partitioning ideal if and only if it is a substractive ideal. Hong et al. [13] dealt with some resultants over commutative idempotent semirings in 2017.

In this paper we discuss the ideals of a rough semiring (T, Δ, ∇) and we give a relation between the principal rough ideal of a commutative regular rough monoid of idempotent (T, ∇) and the rough semiring (T, Δ, ∇) for the given information system $I=(U, A)$ where the information system is defined by using the universal set U and a nonempty set of fuzzy attributes A. The paper is organized as follows.

In section 2, we give the necessary definitions related to rough set theory.
In section 3, we deal with the ideals of a rough semiring (T, Δ, ∇) and a relation between the principal rough ideal of a commutative regular rough monoid of idempotent (T, ∇) and the ideals of a rough semiring (T, Δ, ∇).

Section 4 deals with the properties of the ideals of rough semiring.
Section 5 gives the conclusion.

2 Preliminaries

In this section we present some preliminaries in rough sets and monoids.

2.1 Rough sets

An information system is a pair $I=(U, A)$ where U is a non empty finite set of objects, called universal set and A is a nonempty set of fuzzy attributes defined by $\mu_{a}: U \rightarrow[0,1], a \in A$, is a fuzzy set. Indiscernibility is a core concept of rough set theory and it is defined as an equivalence between objects. Objects in the information system about which we have the same knowledge forms an equivalence relation.

Formally any set $P \subseteq A$, there is an associated equivalence relation called P - Indiscernibility relation defined as follows,

$$
I N D(P)=\left\{(x, y) \in U^{2} \mid \forall a \in P, \mu_{a}(x)=\mu_{a}(y)\right\} .
$$

The partition induced by $I N D(P)$ consists of equivalence classes defined by

$$
[x]_{p}=\{y \in U \mid(x, y) \in I N D(P)\} .
$$

For any $X \subseteq U$, define the lower approximation space $\underline{P}(X)=\left\{x \in U \mid[x]_{p} \subseteq\right.$ $X\}$.
Also, define the upper approximation space $\bar{P}(X)=\left\{x \in U \mid[x]_{p} \cap X \neq \phi\right\}$.
Let $I=(U, A)$ be an information system, where U is a non empty finite set of objects, called the universe, A is a non empty finite fuzzy set of attributes and $T=\{R S(X) \mid X \subseteq U\}$ denotes the set of all rough sets.

Definition 2.1 (Rough set). A rough set corresponding to X, where X is an arbitrary subset of U in the approximation space P, we mean the ordered pair $R S(X)=(\underline{P}(X), \bar{P}(X))$.

Example 2.1. [26] Let $U=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$ and $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ where each $a_{i}(i=1$ to 4$)$ is a fuzzy set whose membership values are shown in Table 1.

Table 1:

A / U	a_{1}	a_{2}	a_{3}	a_{4}
x_{1}	0	0.1	0.3	0.2
x_{2}	1	0.6	0.7	0.3
x_{3}	0	0.1	0.3	0.2
x_{4}	1	0.6	0.7	0.3
x_{5}	0.8	0.5	0.2	0.4
x_{6}	1	0.6	0.7	0.3

Let $X=\left\{x_{1}, x_{3}, x_{5}, x_{6}\right\}$ and $P=A$. Then the equivalence classes induced by the P - Indiscernibility are given below.

$$
\begin{align*}
X_{1} & =\left[x_{1}\right]_{p} \tag{1}\\
X_{2} & =\left\{x_{2}, x_{3}\right\} \tag{2}\\
X_{3} & =\left\{x_{2}, x_{4}, x_{6}\right\} \tag{3}\\
X_{3} & =\left\{x_{5}\right\}
\end{align*}
$$

Hence, $\underline{P}(X)=\left\{x_{1}, x_{3}, x_{5}\right\}$ and

$$
\bar{P}(X)=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}
$$

Therefore $R S(X)=\left(\left\{x_{1}, x_{3}, x_{5}\right\},\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}\right)$.
Note that the upper approximation space consists of those objects that are possibly members of the target set X.

Definition 2.2. [26] If $X \subseteq U$, then the number of equivalence classes (Induced by $I N D(P)$) contained in X is called as the Ind. weight of X. It is denoted by $I W(X)$.

Example 2.2. [26] Let $U=\left\{x_{1}, x_{2}, \cdots, x_{6}\right\}$ as in Table 1 and from equations (1),(2) B (3). The equivalence classes induced by $I N D(P)$ are

$$
\begin{aligned}
{\left[x_{1}\right]_{p} } & =\left\{x_{1}, x_{3}\right\} \\
{\left[x_{2}\right]_{p} } & =\left\{x_{2}, x_{4}, x_{6}\right\} \\
{\left[x_{5}\right]_{p} } & =\left\{x_{5}\right\}
\end{aligned}
$$

Let $X=\left\{x_{1}, x_{4}, x_{5}\right\} \subseteq U$ then by definition, Ind. weight of $X=I W(X)=1$ (since there is only one equivalence class $\left[x_{5}\right]_{p}=\left\{x_{5}\right\}$ present in X).

Definition 2.3. [26] Let $X, Y \subseteq U$. The Praba Δ is defined as

$$
X \Delta Y=X \cup Y, \text { if } \quad I W(X \cup Y)=I W(X)+I W(Y)-I W(X \cap Y)
$$

If $\quad I W(X \cup Y)>I W(X)+I W(Y)-I W(X \cap Y)$, then identify the equivalence class obtained by the union of X and Y. Then delete the elements of that class belonging to Y. Call the new set as Y. Now, obtain $X \Delta Y$. Repeat this process until $\quad I W(X \cup Y)=I W(X)+I W(Y)-I W(X \cap Y)$.

Example 2.3. [26] Let $U=\left\{x_{1}, x_{2}, \ldots, x_{6}\right\}$ as in Table 1.
Let $X=\left\{x_{2}, x_{4}, x_{5}\right\}, Y=\left\{x_{1}, x_{6}\right\} \subseteq U$ then by definition,

$$
I W(X)=1 ; I W(Y)=0 ; \quad I W(X \cup Y)=2 ; I W(X \cap Y)=0
$$

Here,

$$
I W(X \cup Y)>I W(X)+I W(Y)-I W(X \cap Y)
$$

The new equivalence class formed in $X \cup Y$ is $\left[x_{2}\right]_{p}$. As $x_{6} \in Y$ and x_{6} is an element of $\left[x_{2}\right]_{p}$, delete x_{6} from Y. Now the new Y is $\left\{x_{1}\right\}$. Now for $X=$ $\left\{x_{2}, x_{5}, x_{6}\right\}$ and $Y=\left\{x_{1}\right\}$. Finding $I W(X \cup Y)$,

$$
I W(X \cup Y)=I W(X)+I W(Y)-I W(X \cap Y)
$$

Therefore, $X \Delta Y=X \cup Y=\left\{x_{1}, x_{2}, x_{4}, x_{5}\right\}$.
Definition 2.4. [26] If $X, Y \subseteq U$ then an element $x \in U$ is called a Pivot element, if $[x]_{p} \nsubseteq X \cap Y$, but $[x]_{p} \cap X \neq \phi$ and $[x]_{p} \cap Y \neq \phi$
Definition 2.5. [26] If $X, Y \subseteq U$ then the set of Pivot elements of X and Y is called the Pivot set of X and Y and it is denoted by $P_{X \cap Y}$.

Ideals of a commutative rough semiring

Definition 2.6. [26] Praba ∇ of X and Y is denoted by $X \nabla Y$ and it is defined as

$$
X \nabla Y=\left\{x \mid[x]_{p} \subseteq X \cap Y\right\} \cup P_{X \cap Y} \text { where } X, Y \subseteq U
$$

Note that each Pivot element in $P_{X \cap Y}$ is the representative of that particular class.
Example 2.4. [26] Let $U=\left\{x_{1}, x_{2}, \ldots, x_{6}\right\}$ as in Table 1.
and let $X=\left\{x_{1}, x_{2}, x_{4}, x_{5}\right\}$ and $Y=\left\{x_{3}, x_{5}, x_{6}\right\} \subseteq U$ then $X \cap Y=\left\{x_{5}\right\}$
Here, $\left[x_{1}\right]_{p} \nsubseteq X \cap Y$, but $\left[x_{1}\right]_{p} \cap X \neq \phi$ and $\left[x_{1}\right]_{p} \cap Y \neq \phi$. Therefore x_{1} is a pivot element
Similarly x_{2} is a pivot element. Also pivot set $P_{X \cap Y}=\left\{x_{1}, x_{2}\right\}$. Therefore $X \cap Y=$ $\left\{x_{1}, x_{2}, x_{5}\right\}$.
Similarly $Y \nabla X=\left\{x_{3}, x_{5}, x_{6}\right\}$
$\therefore X \nabla Y \neq Y \nabla X$
$R S(X \nabla Y)=\left(\left[x_{5}\right]_{p},\left[x_{1}\right]_{p} \cup\left[x_{2}\right]_{p} \cup\left[x_{5}\right]_{p}\right)$ and $R S(Y \nabla X)=\left(\left[x_{5}\right]_{p},\left[x_{1}\right]_{p} \cup\left[x_{2}\right]_{p} \cup\right.$ $\left.\left[x_{5}\right]_{p}\right)$
$\therefore R S(X \nabla Y)=R S(Y \nabla X)$.
Definition 2.7 (Binary operation as Δ). [24] Let T be the collection of rough sets and let $\Delta: T \times T \rightarrow T$ such that $\Delta(R S(X), R S(Y))=R S(X \Delta Y)$.

Theorem 2.1. [24] Let $I=(U, A)$ be an information system where U is the universal (finite) set and A is the set of attributes and T is the set of all rough sets then (T, Δ) is a commutative monoid of idempotents.

Theorem 2.2. [24] (T, Δ) is a regular rough monoid of idempotents.
Definition 2.8 (Binary operation as ∇). [20] Let T be the collection of rough sets and let $\nabla: T \times T \rightarrow T$ such that $\nabla(R S(X), R S(Y))=R S(X \nabla Y)$.

Theorem 2.3. [20] Let $I=(U, A)$ be an information system where U is the universal (finite) set and A is the set of attributes and T is the set of all rough sets then (T, ∇) is a monoid of idempotents and it is called rough monoid of idempotents.

Theorem 2.4. [20] (T, ∇) is a commutative rough ∇ monoid of idempotents.
Theorem 2.5. [20] (T, ∇) is a commutative regular rough ∇ monoid of idempotents.
Theorem 2.6. [25] (T, Δ, ∇) is a rough semiring.
Theorem 2.7. For any subset X of U the principal ideal generated by $R S(X)$ in T (with respect to Δ) is given by $R S(X) \Delta T=T_{1}$ where $T_{1}=\{R S(Y) \mid Y \in$ $\left.\left(X \cup P\left(E \backslash E_{X}\right) \cup P\left(P_{\bar{X}}\right)\right)\right\}, E=\left\{X_{1}, X_{2}, \ldots X_{n}\right\}$ is the equivalence classes induced by $\operatorname{Ind}(P)$ and E_{X} is the set of all equivalence classes contained in X.

Theorem 2.8. For any subset X of U, the principal ideal generated by $R S(X)$ in T (with respect to ∇) is given by $R S(X) \nabla T=T_{2}$ where $T_{2}=\{R S(Y) \mid Y \in$ $\left.\left(P\left(E_{X}\right) \cup P\left(Z_{X}\right)\right)\right\}$ where $Z_{X}=\left\{x \in U \mid[x]_{p} \cap X \neq \phi\right\}, P\left(E_{X}\right)$ is the power set of E_{X} and $P\left(Z_{X}\right)$ is the power set of Z_{X}.

In the following section, we discuss the ideals of a commutative rough semiring (T, Δ, ∇), the principal ideals of a regular rough monoid of idempotents (T, ∇) and relation between them with their properties.

3 Ideals of a rough semiring and principal ideals of a commutative regular rough ∇ monoid of idempotents

In this section, we consider an information system $I=(U, A)$. Now for any $X \subseteq U, R S(X)=(\underline{P}(X), \bar{P}(X))$ be the rough set and let $T=\{R S(X) \mid X \subseteq U\}$ be the set of all rough sets and let $E=\left\{X_{1}, X_{2}, \ldots X_{n}\right\}$ be the equivalence classes induced by $\operatorname{Ind}(P)$

For any subset X of U, let E_{X} be the set of equivalence classes contained in X, P_{X} be the set of pivot elements of X and $P(X)$ be the power set of X which is a subset of U.

Theorem 3.1. For any $X \subset U$, let $J_{X}=\{R S(Y) \mid Y \in P(X)\}$ then J_{X} is an ideal of (T, Δ, ∇).

Proof. Case 1: Let $R S(Y), R S(Z) \in J_{X}$ where $Y, Z \in P(X)$ and $X \subset U$ implies that $Y \Delta Z \subset X$ then $R S(Y \Delta Z) \in J_{X}$.
Case 2: Let $R S(Y) \in J_{X}$ and $R S(Z) \in T$.
Subcase 1: If $Z \subset X$ then $R S(Y \nabla Z) \in J_{X}$.
Subcase 2: If $Z \not \subset X$ and $Z \cap X \neq \phi$ then $Y \nabla Z=Y \nabla(Z \cap X) \subset X$ implies $R S(Y \nabla Z) \in J_{X}$.
Subcase 3: If $Z \not \subset X$ and $Z \cap X=\phi$ then $R S(Y \nabla Z)=R S(\phi) \in J_{X}$.
Therefore J_{X} is an ideal.
Theorem 3.2. Let $J=\left\{J_{X} \mid X \subseteq U\right\}$ and $\left.R=\{<R S(X)\rangle \mid X \subseteq U\right\}$ then $J=R$.

Proof. Let $X \subseteq U$ and consider the ideal generated by $R S(X)$ where $<R S(X)>=R S(X) \nabla T=\left\{R S(Y) \mid Y \in P\left(E_{X}\right) \cup P\left(Z_{X}\right)\right\}$ and $J_{X}=\{R S(Y) \mid Y \in P(X)\}$. To prove that $<R S(X)>=J_{X}$. Let $R S(Y) \in R S(X) \nabla T$ then $Y \in P\left(E_{X}\right) \cup P\left(Z_{X}\right) \subseteq X$ where $Z_{X}=\left\{x \in U \mid[x]_{p} \cap X \neq \phi\right\}$ implies that $R S(Y) \in J_{X}$. Conversely, if $R S(Y) \in J_{X}$ then $Y \in P(X)$ implies that $Y \subseteq X$ implies that $Y=Y \cap X$. Since $X \nabla Y=\left\{x \mid[x]_{p} \subseteq X \cap Y\right\} \cup P_{X \cap Y}=\left\{x \mid[x]_{p} \subseteq Y\right\} \cup P_{Y}=Y$. Therefore $R S(Y)=R S(X \nabla Y)=R S(X) \nabla R S(Y) \in R S(X) \nabla T$ implies that $R S(Y) \in R S(X) \nabla T$. Hence $J=R$.

Theorem 3.3 (Characterization theorem for the rough ideals in rough semiring $(T, \Delta, \nabla))$. Let (T, Δ, ∇) be a rough semiring and let J_{1} be a rough ideal in T then $J_{1}=J_{X}$ for some subset X of U.

Proof. As U is finite, $|T|$ is also finite and $J_{1} \subseteq T$ implies that $\left|J_{1}\right|$ is also finite. Let $J_{1}=\left\{R S\left(Y_{1}\right), R S\left(Y_{2}\right), \ldots R S\left(Y_{k}\right)\right\}$ where $k \leq|T|$ then we have to prove that $J_{1}=J_{X}$ for some subset X of U. Let $X=Y_{1} \Delta Y_{2} \Delta \cdots \Delta Y_{k}$ then $J_{X}=\left\{R S(Z) \mid Z \in P\left(Y_{1} \Delta Y_{2} \Delta \cdots \Delta Y_{k}\right)\right\}$. Let $R S\left(Y_{j}\right) \in J_{1}$ then $R S\left(Y_{j}\right) \in J_{X}$. Conversely, let $R S(Z) \in J_{X}$ implies that $Z \in P(X)$ implies that $\left.Z \in P\left(Y_{1} \Delta Y_{2} \Delta \cdots \Delta Y_{k}\right)\right\}$ where $Z=E_{Z} \cup P_{Z}=E_{Z} \Delta P_{Z}$. Let $Y_{1}, Y_{2}, \cdots Y_{r}$ be the subsets containing the equivalence classes that are completely contained in Z and let P_{Z} is a subset of $Y_{t_{1}} \Delta Y_{t_{2}} \Delta \cdots \Delta Y_{t_{j}}$ where $t_{1}, t_{2}, t_{3}, \cdots t_{j} \in\{1,2,3, \cdots r\}$. Therefore $R S(Z)=R S\left(E_{Z} \Delta P_{Z}\right)=R S\left(E_{Z}\right) \Delta R S\left(P_{Z}\right)=$ $\left(R S\left(Y_{1} \Delta Y_{2} \Delta \cdots \Delta Y_{r}\right) \nabla R S\left(E_{Z}\right)\right) \Delta\left(R S\left(Y_{t_{1}} \Delta Y_{t_{2}} \Delta \cdots \Delta Y_{t_{j}}\right) \nabla R S\left(P_{Z}\right)\right) \quad$ since $R S\left(Y_{1} \Delta Y_{2} \cdots \Delta Y_{r}\right) \in J_{1}, R S\left(E(Z) \in T\right.$ and J_{1} is an ideal in T. Therefore $R S\left(Y_{1} \Delta Y_{2} \Delta \cdots \Delta Y_{r}\right) \nabla R S\left(E_{Z}\right) \in J_{1}$ similarly $R S\left(Y_{t_{1}} \Delta Y_{t_{2}} \Delta \cdots \Delta Y_{t_{j}}\right) \in J_{1}$, $R S\left(P_{Z}\right) \in T$ and $J_{1} \quad$ is an ideal in T. Therefore $R S\left(Y_{t_{1}} \Delta Y_{t_{2}} \Delta \cdots \Delta Y_{t_{j}}\right) \nabla R S\left(P_{Z}\right) \in J_{1}$ and J_{1} is closed under Δ. Hence $\left(R S\left(Y_{1} \Delta Y_{2} \Delta \cdots \Delta Y_{r}\right) \nabla R S\left(E_{Z}\right)\right) \Delta\left(R S\left(Y_{t_{1}} \Delta Y_{t_{2}} \Delta \cdots \Delta Y_{t_{j}}\right) \nabla R S\left(P_{Z}\right)\right) \quad \in \quad J_{1}$. Therefore $R S(Z) \in J_{1}$. Hence $J_{1}=J_{X}$.

3.1 Examples

Example 3.1. From example 2.1, let $X=\left\{x_{1}, x_{2}, x_{5}\right\}$ then

$$
P(X)=\left\{\phi,\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{5}\right\},\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{5}\right\},\left\{x_{2}, x_{5}\right\},\left\{x_{1}, x_{2}, x_{5}\right\}\right\}
$$

and from equations (1),(2) G (3), we have, $J_{X}=\left\{R S(\phi), \operatorname{RS}\left(\left\{x_{1}\right\}\right), \operatorname{RS}\left(\left\{x_{2}\right\}\right), \operatorname{RS}\left(X_{3}\right), \operatorname{RS}\left(\left\{x_{1}\right\} \cup\left\{x_{2}\right\}\right), R S\left(\left\{x_{1}\right\} \cup\right.\right.$ $\left.\left.\left.\left.\left.X_{3}\right\}\right), R S\left(\left\{x_{2}\right\} \cup X_{3}\right\}\right), R S\left(\left\{x_{1}\right\} \cup\left\{x_{2}\right\} \cup X_{3}\right\}\right)\right\}$ where

$$
T=\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right), R S\left(\left\{x_{2}\right\}\right), R S\left(X_{1}\right), R S\left(X_{2}\right), R S\left(X_{3}\right), R S\left(\left\{x_{1}\right\} \cup\right.\right.
$$ $\left.\left\{x_{2}\right\}\right), R S\left(\left\{x_{1}\right\} \cup X_{3}\right), R S\left(\left\{x_{2}\right\} \cup X_{3}\right), R S\left(X_{1} \cup\left\{x_{2}\right\}\right), R S\left(\left\{x_{1}\right\} \cup X_{2}\right), R S\left(X_{1} \cup\right.$ $\left.X_{2}\right), R S\left(X_{1} \cup X_{3}\right), R S\left(X_{2} \cup X_{3}\right), R S\left(\left\{x_{1}\right\} \cup X_{2} \cup X_{3}\right), R S\left(X_{1} \cup\left\{x_{2}\right\} \cup\right.$ $\left.\left.X_{3}\right), R S\left(\left\{x_{1}\right\} \cup\left\{x_{2}\right\} \cup X_{3}\right), R S(U)\right\}$

Table 2:

Δ	$R S(\phi)$	$R S\left(\left\{x_{1}\right\}\right)$	$R S\left(\left\{x_{2}\right\}\right)$	$R S\left(X_{3}\right)$	$\begin{gathered} R S\left(\left\{x_{1}\right\} U\right. \\ \left.\left\{x_{2}\right\}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{2}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{gathered}$
$R S(\phi)$	$R S(\phi)$	$R S\left(\left\{x_{1}\right\}\right)$	$R S\left(\left\{x_{2}\right\}\right)$	$R S\left(X_{3}\right)$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.\left\{x_{2}\right\}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{2}\right\} 4\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{gathered}$
$R S\left(\left\{x_{1}\right\}\right)$	$R S\left(\left\{x_{1}\right\}\right)$	$R S\left(\left\{x_{1}\right\}\right)$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.\left\{x_{2}\right\}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.\left\{x_{2}\right\}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} \hline R S\left(\left\{x_{1}\right\} \cup\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \leftharpoonup\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{gathered}$
R	$R S(\{$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.\left\{x_{2}\right\}\right) \end{gathered}$	$R S\left(\left\{x_{2}\right\}\right)$	$\begin{gathered} R S\left(\left\{x_{2}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.\left\{x_{2}\right\}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{2}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\}\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{gathered}$
$R S\left(X_{3}\right)$	$R S\left(X_{3}\right)$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{2}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$R S\left(X_{3}\right)$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{2}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \\ \hline \end{gathered}$
$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.\left\{x_{2}\right\}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.\left\{x_{2}\right\}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \\ \hline \end{gathered}$			
$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \\ \hline \end{gathered}$
$\begin{gathered} R S\left(\left\{x_{2}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{2}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{2}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{2}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{2}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \\ \hline \end{gathered}$
$\begin{gathered} R S\left(\left\{x_{1}\right\}\right) \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} \mathcal{R S}\left(\left\{x_{1}\right\}\right) \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\}\right) \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} \mathcal{R S}\left(\left\{x_{1}\right\}\right) \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathcal{J S}\left(\left\{x_{1}\right\}\right) \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} \sim R S\left(\left\{x_{1}\right\}\right) \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} \mathcal{R S}\left(\left\{x_{1}\right\}\right) \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} \sim R S\left(\left\{x_{1}\right\}\right) \\ \left\{x_{2}\right\} \cup \\ X_{3} \\ \hline \end{gathered}$	$\begin{gathered} \sim R S\left(\left\{x_{1}\right\}\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{gathered}$

From Table 2, it is clear that J_{X} is closed under Δ
Table 3:

∇	$R S(\phi)$	$R S(\{x\}$	\})RS(\{xq	\}) $R S\left(X_{1}\right)$	$R S\left(X_{2}\right)$	$R S\left(X_{3}\right)$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.\left\{x_{2}\right\}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{2}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(X_{1} \cup\right. \\ \left.\left\{x_{2}\right\}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.X_{2}\right) \end{gathered}$	$\begin{gathered} R S\left(X_{1} \cup\right. \\ \left.X_{2}\right) \end{gathered}$	$\begin{gathered} R S\left(X_{1} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(X_{2} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\}\right. \\ X_{2} \cup \\ \left.X_{3}\right) \end{gathered}$	$\left\lvert\, \begin{gathered} R S\left(X_{1} \cup\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{gathered}\right.$	$\begin{gathered} R S\left(\left\{x_{1}\right\}\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{gathered}$	$\cup R S(U)$
$R S(\phi)$																		
$R S\left(\left\{x_{1}\right\}\right)$	$R S(\phi)$	$R S(\{x\}$	$\}) R S(\phi)$	$R S(\{x\}$	$\} R S(\phi)$	$R S(\phi)$	$R S\left(\left\{x_{1}\right\}\right)$	$R S\left(\left\{x_{1}\right\}\right)$	$R S(\phi)$	$R S\left(\left\{x_{1}\right\}\right)$	$R S\left(\left\{x_{1}\right\}\right)$	$R S\left(\left\{x_{1}\right\}\right)$	$R S\left(\left\{x_{1}\right\}\right)$	$R S(\phi)$	$R S\left(\left\{x_{1}\right\}\right.$	$R S\left(\left\{x_{1}\right\}\right)$	$R S\left(\left\{x_{1}\right\}\right)$	$R S\left(\left\{x_{1}\right\}\right)$
$R S\left(\left\{x_{2}\right\}\right)$	$R S(\phi)$	$R S(\phi)$	$R S(\{x \neq\}$	$\} R S(\phi)$	$R S(\{x \nmid\}$	$\} R S(\phi)$	$R S\left(\left\{x_{2}\right\}\right)$	$R S(\phi)$	$R S\left(\left\{x_{2}\right\}\right)$	$R S\left(\left\{x_{2}\right\}\right)$	$R S\left(\left\{x_{2}\right\}\right)$	$R S\left(\left\{x_{2}\right\}\right)$	$R S(\phi)$	$R S\left(\left\{x_{2}\right\}\right)$	$R S\left(\left\{x_{2}\right\}\right.$	$R S\left(\left\{x_{2}\right\}\right)$	$R S\left(\left\{x_{2}\right\}\right)$	$R S\left(\left\{x_{2}\right\}\right)$
$R S\left(X_{3}\right)$	$R S(\phi)$	$R S\left(X_{3}\right)$	$R S(\phi)$	$R S\left(X_{3}\right)$	$R S\left(X_{3}\right)$	$R S(\phi)$	$R S(\phi)$	$R S(\phi)$	$R S\left(X_{3}\right)$									
$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.\left\{x_{2}\right\}\right) \end{gathered}$	$R S(\phi)$	$R S(\{x\}$	\})RS $\left\{x_{2}\right\}$	\}) $R S(\{x$	\})RS(\{x中	\} RS (ϕ)	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.\left\{x_{2}\right\}\right) \end{gathered}$	$R S\left(\left\{x_{1}\right\}\right)$	$R S\left(\left\{x_{2}\right\}\right)$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.\left\{x_{2}\right\}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.\left\{x_{2}\right\}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.\left\{x_{2}\right\}\right) \end{gathered}$	$R S\left(\left\{x_{1}\right\}\right)$	$R S\left(\left\{x_{2}\right\}\right)$	$\begin{gathered} R S\left(\left\{x_{1}\right\}\right. \\ \left.\left\{x_{2}\right\}\right) \end{gathered}$	$\left\|\begin{array}{c} \cup S S\left(\left\{x_{1}\right\}\right. \\ \left.\left\{x_{2}\right\}\right) \end{array}\right\|$	$\left.\begin{array}{\|c} \cup \\ \left\{S \left(\left\{x_{1}\right\}\right.\right. \\ \left.\left\{x_{2}\right\}\right) \end{array} \right\rvert\,$	$\begin{gathered} \left.\left\lvert\, \begin{array}{r} R S\left(\left\{x_{1}\right\}\right. \\ \left.\left\{x_{2}\right\}\right) \end{array}\right.\right\} \\ \hline \end{gathered}$
$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$R S(\phi)$	$R S(\{x\}$	$\}) R S(\phi)$	$R S(\{x\}$	$\} R S(\phi)$	$R S\left(X_{3}\right)$	$R S\left(\left\{x_{1}\right\}\right)$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$R S\left(X_{3}\right)$	$R S\left(\left\{x_{1}\right\}\right)$	$R S\left(\left\{x_{1}\right\}\right)$	$R S\left(\left\{x_{1}\right\}\right)$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$R S\left(X_{3}\right)$	$\underset{\left.X_{3}\right)}{R S\left(\left\{x_{1}\right\}\right.}$	$\left\lvert\, \begin{gathered} R S\left(\left\{x_{1}\right\}\right. \\ \left.X_{3}\right) \end{gathered}\right.$	$\begin{gathered} \because R S\left(\left\{x_{1}\right\}\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\}\right. \\ \left.X_{3}\right) \end{gathered}$
$\begin{gathered} R S\left(\left\{x_{2}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$R S(\phi)$	$R S(\phi)$	$R S\left(\left\{x_{\chi}\right\}\right.$	$\}) R S(\phi)$	$R S(\{x \neq\}$	\} $R S\left(X_{3}\right)$	$R S\left(\left\{x_{2}\right\}\right)$	$R S\left(X_{3}\right)$	$\begin{gathered} R S\left(\left\{x_{2}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$R S\left(\left\{x_{2}\right\}\right)$	$R S\left(\left\{x_{2}\right\}\right)$	$R S\left(\left\{x_{2}\right\}\right)$	$R S\left(X_{3}\right)$	$\begin{gathered} R S\left(\left\{x_{2}\right\}\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{2}\right\}\right. \\ \left.X_{3}\right) \end{gathered}$	$\left\|\begin{array}{c} \mathcal{R S}\left(\left\{x_{2}\right\}\right. \\ \left.X_{3}\right) \end{array}\right\|$	$\begin{gathered} \left.\left.\cup \begin{array}{c} R S \\ \left.X_{3}\right) \end{array}\right\} x_{2}\right\} \\ \hline \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{2}\right\}\right. \\ \left.X_{3}\right) \end{gathered}$
$\begin{gathered} \left.R S\left(\left\{x_{1}\right\}\right)\right\} \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{gathered}$	$R S(\phi)$	$R S(\{x\}$	\})RS $\left(\left\{x_{2}\right\}\right.$	\}) $R S(\{x$	\})RS(\{x中	\} RS(X_{3})	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.\left\{x_{2}\right\}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{2}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.\left\{x_{2}\right\}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.\left\{x_{2}\right\}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.\left\{x_{2}\right\}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{2}\right\}\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\}\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{gathered}$	$\left\|\begin{array}{c} R S\left(\left\{x_{1}\right\}\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{array}\right\|$	$\left\|\begin{array}{c} R S\left(\left\{x_{1}\right\}\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{array}\right\|$	$\left\lvert\, \begin{gathered} R S\left(\left\{x_{1}\right\}\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{gathered}\right.$

From Table 3, it is clear that for all $R S(X) \in J_{X}$ and $R S(Y) \in T$ such that $R S(X) \nabla R S(Y) \in J_{X}$. Thus J_{X} is an ideal of T. Also, for $X=\left\{x_{1}, x_{2}, x_{5}\right\}$ we have $<R S(X)>=R S(X) \nabla T=\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right), R S\left(\left\{x_{2}\right\}\right), R S\left(X_{3}\right), R S\left(\left\{x_{1}\right\} \cup\left\{x_{2}\right\}\right), R S\left(\left\{x_{1}\right\} \cup\right.\right.$ $\left.\left.X_{3}\right), R S\left(\left\{x_{2}\right\} \cup X_{3}\right), R S\left(\left\{x_{1}\right\} \cup\left\{x_{2}\right\} \cup X_{3}\right)\right\}=J_{X}$.

Example 3.2. From example 2.1, let $X=\left\{x_{1}, x_{2}\right\}$ then $P(X)=\left\{\phi,\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{1}, x_{2}\right\}\right\}$ and $J_{X}=\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right), R S\left(\left\{x_{2}\right\}\right), R S\left(\left\{x_{1}\right\} \cup\right.\right.$ $\left.\left.\left\{x_{2}\right\}\right)\right\}$ where
$T=\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right), R S\left(\left\{x_{2}\right\}\right), R S\left(X_{1}\right), R S\left(X_{2}\right), R S\left(X_{3}\right), R S\left(\left\{x_{1}\right\} \cup\left\{x_{2}\right\}\right), R S\left(\left\{x_{1}\right\} \cup X_{3}\right), R S\left(\left\{x_{2}\right\} \cup X_{3}\right), R S\left(X_{1} \cup\left\{x_{2}\right\}\right), R S\left(\left\{x_{1}\right\} \cup X_{2}\right), R S\left(X_{1} \cup\right.\right.$ $\left.\left.X_{2}\right), R S\left(X_{1} \cup X_{3}\right), R S\left(X_{2} \cup X_{3}\right), R S\left(\left\{x_{1}\right\} \cup X_{2} \cup X_{3}\right), R S\left(X_{1} \cup\left\{x_{2}\right\} \cup X_{3}\right), R S\left(\left\{x_{1}\right\} \cup\left\{x_{2}\right\} \cup X_{3}\right), R S(U)\right\}$

Table 4:

From Table 4 , it is clear that J_{X} is closed under Δ

Table 5:

From Table 5, it is clear that for all $R S(X) \in J_{X}$ and $R S(Y) \in T$ such that $R S(X) \nabla R S(Y) \in J_{X}$. Thus J_{X} is an ideal of T. Also, for $X=\left\{x_{1}, x_{2}\right\}$ we have $<R S(X)>=R S(X) \nabla T=\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right), R S\left(\left\{x_{2}\right\}\right), R S\left(\left\{x_{1}\right\} \cup\left\{x_{2}\right\}\right)\right\}=J_{X}$.

$$
\begin{aligned}
& \text { Example 3.3. From example 2.1, let } X=\left\{x_{1}, x_{3}\right\} \text { then } P(X)=\left\{\phi,\left\{x_{1}\right\},\left\{x_{3}\right\},\left\{x_{1}, x_{3}\right\}\right\} \text { and } J_{X}=\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right), R S\left(X_{1}\right)\right\} \\
& \text { where } T=\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right), R S\left(\left\{x_{2}\right\}\right), R S\left(X_{1}\right), R S\left(X_{2}\right), R S\left(X_{3}\right), R S\left(\left\{x_{1}\right\} \cup\left\{x_{2}\right\}\right), R S\left(\left\{x_{1}\right\} \cup X_{3}\right), R S\left(\left\{x_{2}\right\} \cup X_{3}\right), R S\left(X_{1} \cup\right.\right. \\
& \left.\left\{x_{2}\right\}\right), R S\left(\left\{x_{1}\right\} \cup X_{2}\right), R S\left(X_{1} \cup X_{2}\right), R S\left(X_{1} \cup X_{3}\right), R S\left(X_{2} \cup X_{3}\right), R S\left(\left\{x_{1}\right\} \cup X_{2} \cup X_{3}\right), R S\left(X_{1} \cup\left\{x_{2}\right\} \cup X_{3}\right), R S\left(\left\{x_{1}\right\} \cup\left\{x_{2}\right\} \cup\right. \\
& \left.\left.X_{3}\right), R S(U)\right\}
\end{aligned}
$$

Table 6:
From Table 6, it is clear that J_{X} is closed under Δ

∇	RS(ϕ)	$R S(\{x\}$	\} RS(\{	$R S\left(X_{1}\right)$	$R S\left(X_{2}\right)$	$R S\left(X_{3}\right.$	$\underset{\left.\left\{x_{2}\right\}\right)}{R S\left(\left\{x_{1}\right\} \cup\right.}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{2}\right\} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\underset{\left.\left\{x_{2}\right\}\right)}{R S\left(X_{1} \cup\right.}$	$\begin{gathered} R S\left(\left\{x_{1}\right\} \cup\right. \\ \left.X_{2}\right) \end{gathered}$	$\underset{\left.X_{2}\right)}{R S\left(X_{1} \cup\right.}$	$\begin{gathered} R S\left(X_{1} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(X_{2} \cup\right. \\ \left.X_{3}\right) \end{gathered}$	$\begin{gathered} R S\left(\left\{x_{1}\right\}\right. \\ X_{2} \cup \\ \left.X_{3}\right) \end{gathered}$	$\left\{\begin{array}{c} R S\left(X_{1} \cup\right. \\ \left\{x_{2}\right\} \cup \\ \left.X_{3}\right) \end{array}\right)$	$\left.\begin{array}{c} R S\left(\left\{x_{1}\right\}\right. \\ \left\{x_{2}\right\} \\ \left.X_{3}\right) \end{array}\right\}$	$\cup R S(U)$
$R S(\phi)$	RS(ϕ)	$R S(\phi)$	$R S(\phi)$	$R S(\phi)$														
$R S\left(\left\{x_{1}\right\}\right)$	$R S(\phi)$	$R S(\{x\}$	$\} R S(\phi)$	$R S(\{x$,	$R S(\phi)$	$R S(\phi)$	$R S\left(\left\{x_{1}\right\}\right)$	$R S\left(\left\{x_{1}\right\}\right)$	$R S(\phi)$	$R S\left(\left\{x_{1}\right\}\right)$	$R S\left(\left\{x_{1}\right\}\right)$	$R S\left(\left\{x_{1}\right\}\right)$	$R S\left(\left\{x_{1}\right\}\right)$	$R S(\phi)$	$R S\left(\left\{x_{1}\right.\right.$	$R S\left(\left\{x_{1}\right\}\right)$	$R S\left(\left\{x_{1}\right\}\right.$	$R S\left(\left\{x_{1}\right\}\right)$
$R S\left(X_{1}\right)$	RS()	$R S(\{x\}$	\}RS(ϕ)	$R S\left(X_{1}\right)$	$R S(\phi)$	$R S(\phi)$	$R S\left(\left\{x_{1}\right\}\right)$	$R S\left(\left\{x_{1}\right\}\right)$	$R S(\phi)$	$R S\left(X_{1}\right)$	$R S\left(\left\{x_{1}\right\}\right)$	$R S\left(X_{1}\right)$	$R S\left(X_{1}\right)$	$R S(\phi)$	$R S\left(\left\{x_{1}\right\}\right.$	$R S\left(X_{1}\right)$	$R S\left(\left\{x_{1}\right\}\right)$) $R S\left(X_{1}\right)$

From Table 7 , it is clear that for all $R S(X) \in J_{X}$ and $R S(Y) \in T$ such that $R S(X) \nabla R S(Y) \in J_{X}$. Thus J_{X} is an ideal of T. Also,
for $X=\left\{x_{1}, x_{2}, x_{5}\right\}$ we have $<R S(X)>=R S(X) \nabla T=\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right), R S\left(\left\{x_{2}\right\}\right), R S\left(X_{3}\right), R S\left(\left\{x_{1}\right\} \cup\left\{x_{2}\right\}\right), R S\left(\left\{x_{1}\right\} \cup\right.\right.$
$\left.\left.X_{3}\right), R S\left(\left\{x_{2}\right\} \cup X_{3}\right), R S\left(\left\{x_{1}\right\} \cup\left\{x_{2}\right\} \cup X_{3}\right)\right\}=J_{X}$.

4 Properties

Lemma 4.1. If $X \subseteq Y$ then $J_{X} \subseteq J_{Y}$ where X and $Y \subseteq U$.
Proof. Let $X \subseteq Y$ where $X, Y \subseteq U$ then $X \cap Y=X$ implies that $R S(X)=$ $R S(X \nabla Y)=R S(X) \nabla R S(Y) \in R S(X) \nabla T$. Let $R S(Z) \in J_{X}$ then $Z \in P(X) \subseteq$ $X \subseteq Y$ implies that $Z \in P(Y)$ then $R S(Z) \in J_{Y}$. Hence $J_{X} \subseteq J_{Y}$.

Example 4.1. From example 2.1, let $X=\left\{x_{1}, x_{2}\right\}$ and $Y=\left\{x_{1}, x_{2}, x_{4}, x_{6}\right\}$ where $X \subseteq Y$ then $P(X)=\left\{\phi,\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{1}, x_{2}\right\}\right\}$ and $P(Y)=\left\{\phi,\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{4}\right\},\left\{x_{6}\right\},\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{4}\right\},\left\{x_{1}, x_{6}\right\},\left\{x_{2}, x_{4}\right\}\right.$, $\left.\left\{x_{2}, x_{6}\right\},\left\{x_{4}, x_{6}\right\},\left\{x_{1}, x_{2}, x_{4}\right\},\left\{x_{1}, x_{2}, x_{6}\right\},\left\{x_{2}, x_{4}, x_{6}\right\},\left\{x_{1}, x_{4}, x_{6}\right\},\left\{x_{1}, x_{2}, x_{4}, x_{6}\right\}\right\}$ also $\quad J_{X}=\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right), R S\left(\left\{x_{2}\right\}\right), R S\left(\left\{x_{1}\right\} \cup\left\{x_{2}\right\}\right)\right\} \quad$ and $J_{Y}=\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right), R S\left(\left\{x_{2}\right\}\right), R S\left(X_{2}\right), R S\left(\left\{x_{1}\right\} \cup\left\{x_{2}\right\}\right)\right.$, $\left.R S\left(\left\{x_{1}\right\} \cup X_{2}\right)\right\}$ clearly if $X \subseteq Y$ then $J_{X} \subseteq J_{Y}$.

Lemma 4.2. For any two subsets X and Y of $U, J_{X} \cap J_{Y}=J_{X \nabla Y}$.
Proof.

$$
\begin{array}{ll}
\text { Let } & R S(Z) \in J_{X} \cap J_{Y} \\
\Leftrightarrow & Z \in\left\{P\left(E_{X} \cup P\left(Z_{X}\right)\right\} \cap\left\{P\left(E_{Y}\right) \cup P\left(Z_{Y}\right)\right\}\right. \\
\Leftrightarrow & Z \in\left\{P\left(E_{X} \cap P\left(E_{Y}\right)\right\} \cup\left\{P\left(Z_{X}\right) \cap P\left(Z_{Y}\right)\right\}\right. \\
\Leftrightarrow & Z \in\left\{P\left(E_{X \cap Y}\right) \cup P\left(Z_{X \cap Y}\right)\right\} \\
\Leftrightarrow & \therefore \quad Z \in P(X \nabla Y) \text { i.e., } R S(Z) \in J_{X \nabla Y} \\
\Leftrightarrow & \text { Hence } J_{X} \cap J_{Y}=J_{X \nabla Y .} .
\end{array}
$$

Example 4.2. From example 2.1, let $X=\left\{x_{1}, x_{4}\right\}$ and $Y=\left\{x_{1}, x_{2}\right\}$ then $X \nabla Y=\left\{x_{1}, x_{2}\right\}, \quad P(X \nabla Y)=\left\{\phi,\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{1}, x_{2}\right\}\right\}$ then $\left.J_{X} \quad=\quad\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right), R S\left(\left\{x_{2}\right\}\right), R S\left(\left\{x_{1}\right\} \cup \quad \cup x_{2}\right\}\right)\right\}$, $J_{Y} \quad=\quad\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right), R S\left(\left\{x_{2}\right\}\right), R S\left(\left\{x_{1}\right\} \cup \cup \quad\left\{x_{2}\right\}\right)\right\}$, $J_{X} \cap J_{Y}=\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right), R S\left(\left\{x_{2}\right\}\right), R S\left(\left\{x_{1}\right\} \cup\left\{x_{2}\right\}\right)\right\}$ and $J_{X \nabla Y}=\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right), R S\left(\left\{x_{2}\right\}\right), R S\left(\left\{x_{1}\right\} \cup\left\{x_{2}\right\}\right)\right\}=J_{X} \cap J_{Y}$.

Example 4.3. From example 2.1, let $X=\left\{x_{1}, x_{2}\right\}$ and $Y=\left\{x_{3}, x_{5}\right\}$ then

$J_{Y} \quad=\quad\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right), R S\left(X_{3}\right), R S\left(\left\{x_{1}\right\} \quad \cup \quad X_{3}\right)\right\}$, $J_{X} \cap J_{Y}=\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right)\right\}$ and $J_{X \nabla Y}=\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right)\right\}=J_{X} \cap J_{Y}$.

Example 4.4. From example 2.1, let $X=\left\{x_{1}, x_{2}\right\}$ and $Y=\left\{x_{5}\right\}$ then $X \nabla Y=\{\phi\}, P(X \nabla Y)=\{\phi\}$ and $P(X)=\left\{\phi,\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{1}, x_{2}\right\}\right\}$ also $P(Y)=\left\{\phi,\left\{x_{5}\right\}\right\}$ then $J_{X}=\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right), R S\left(\left\{x_{2}\right\}\right)\right.$,
$\left.R S\left(\left\{x_{1}\right\} \cup\left\{x_{2}\right\}\right)\right\}$ and $J_{Y}=\left\{R S(\phi), R S\left(X_{3}\right)\right\}$ also $J_{X} \cap J_{Y}=\{R S(\phi)\}$ then $J_{X \nabla Y}=\{R S(\phi)\}=J_{X} \cap J_{Y}$.

Lemma 4.3. If $X \cap Y \neq \phi$ then $J_{X} \cap J_{Y}=J_{P_{X \cap Y}}$.
Proof.

$$
\begin{array}{ll}
\text { Let } & R S(Z) \in J_{X} \cap J_{Y} \\
\Leftrightarrow & Z \in\left\{P\left(E_{X} \cup P\left(Z_{X}\right)\right\} \cap\left\{P\left(E_{Y}\right) \cup P\left(Z_{Y}\right)\right\}\right. \\
\Leftrightarrow & Z \in\left\{P\left(E_{X} \cap P\left(E_{Y}\right)\right\} \cup\left\{P\left(Z_{X}\right) \cap P\left(Z_{Y}\right)\right\}\right. \\
\Leftrightarrow & I f Z \in\left\{P\left(E_{X} \cap P\left(E_{Y}\right)\right\} \text { then } X \cap Y \neq \phi\right. \\
& \text { which is not possible so } Z \in P\left(Z_{X}\right) \cap P\left(Z_{Y}\right) \\
\Leftrightarrow & \text { Hence } Z \in P\left(P_{X \cap Y}\right) \text { i.e., } R S(Z) \in J_{P_{X \cap Y}}
\end{array}
$$

Example 4.5. From example 2.1, let $X=\left\{x_{1}, x_{2}\right\}$ and $Y=\left\{x_{3}, x_{4}, x_{5}\right\}$ where $X \cap Y=\phi$ then $P(X)=\left\{\phi,\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{1}, x_{2}\right\}\right\}$ and $P(Y)=\left\{\phi,\left\{x_{3}\right\},\left\{x_{4}\right\},\left\{x_{5}\right\},\left\{x_{3}, x_{4}\right\},\left\{x_{3}, x_{5}\right\},\left\{x_{4}, x_{5}\right\},\left\{x_{3}, x_{4}, x_{5}\right\}\right\}$ also $J_{X}=\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right), R S\left(\left\{x_{2}\right\}\right), R S\left(\left\{x_{1}\right\} \quad \cup \quad\left\{x_{2}\right\}\right)\right\} \quad$ and $J_{Y}=\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right), R S\left(\left\{x_{2}\right\}\right), R S\left(X_{3}\right), R S\left(\left\{x_{1}\right\} \cup X_{3}\right), R S\left(\left\{x_{2}\right\} \cup\right.\right.$ $\left.\left.X_{3}\right), R S\left(\left\{x_{1}\right\} \quad \cup \quad\left\{x_{2}\right\}\right), R S\left(\left\{x_{1}\right\} \quad \cup \quad\left\{x_{2}\right\} \quad \cup \quad X_{3}\right)\right\} \quad$ then $J_{X} \cap J_{Y}=\left\{R S(\phi), \operatorname{RS}\left(\left\{x_{1}\right\}\right), R S\left(\left\{x_{2}\right\}\right), \operatorname{RS}\left(\left\{x_{1}\right\} \cup\left\{x_{2}\right\}\right)\right\}$. Now $P_{X \cap Y}=\left\{x_{1}, x_{2}\right\}$ and $J_{P_{X \cap Y}}=\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right), R S\left(\left\{x_{2}\right\}\right), R S\left(\left\{x_{1}\right\} \cup\left\{x_{2}\right\}\right)\right\}$. Therefore $J_{X} \cap J_{Y}=J_{P_{X \cap Y}}$.

Remarks 4.1. 1. For any two subsets X and Y of $U, X \neq Y$ does not imply that $J_{X} \neq J_{Y}$.
2. For any two subsets X and Y of $U, X \cap Y=\phi$ does not imply that $J_{X} \neq J_{Y}$.

Example 4.6. From example 2.1, let $X=\left\{x_{1}, x_{4}\right\}$ and $Y=\left\{x_{2}, x_{3}\right\}$ since $X \neq Y$ then $P(X)=\left\{\phi,\left\{x_{1}\right\},\left\{x_{4}\right\},\left\{x_{1}, x_{4}\right\}\right\}$ and $P(Y)=\left\{\phi,\left\{x_{2}\right\},\left\{x_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\}$ also $J_{X}=\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right), R S\left(\left\{x_{2}\right\}\right.\right.$,
$\left.R S\left(\left\{x_{1}\right\} \cup\left\{x_{2}\right\}\right)\right\}$ and $J_{Y}=\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right), R S\left(\left\{x_{2}\right\}, R S\left(\left\{x_{1}\right\} \cup\left\{x_{2}\right\}\right)\right\}\right.$ where $J_{X}=J_{Y}$. This shows that for any two subsets X and Y of $U, X \neq Y$ does not imply that $J_{X} \neq J_{Y}$ and $X \cap Y=\phi$ does not imply that $J_{X} \neq J_{Y}$.

Remarks 4.2. If $X \cap Y \neq \phi$ then $J_{X} \cap J_{Y}$ need not be equal to $J_{X \cap Y}$.
Example 4.7. From example 2.1, let $X=\left\{x_{1}, x_{2}\right\}$ and $Y=\left\{x_{1}, x_{6}\right\}$ then $X \cap Y=\left\{x_{1}\right\}$ and $P(X \cap Y)=\left\{\phi,\left\{x_{1}\right\}\right\}$ then $P(X)=\left\{\phi,\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{1}, x_{2}\right\}\right\}$ and $P(Y)=\left\{\phi,\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{1}, x_{2}\right\}\right\} \quad$ then $J_{X} \quad=\quad\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right), R S\left(\left\{x_{2}\right\}\right), R S\left(\left\{x_{1}\right\} \quad \cup \quad\left\{x_{2}\right\}\right)\right\}$, $J_{Y} \quad=\quad\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right), R S\left(\left\{x_{2}\right\}\right), R S\left(\left\{x_{1}\right\} \quad \cup \quad\left\{x_{2}\right\}\right)\right\}$, $J_{X} \cap J_{Y}=\left\{R S(\phi), \operatorname{RS}\left(\left\{x_{1}\right\}\right), \operatorname{RS}\left(\left\{x_{2}\right\}\right), \operatorname{RS}\left(\left\{x_{1}\right\} \cup\left\{x_{2}\right\}\right)\right\}$ and $J_{X \cap Y}=\left\{R S(\phi), R S\left(\left\{x_{1}\right\}\right)\right\}$. Thus we can conclude if $X \cap Y \neq \phi$ then $J_{X} \cap J_{Y}$ need not be equal to $J_{X \cap Y}$.

5 Conclusion

In this paper, we discussed the ideals of a commutative rough semiring (T, Δ, ∇) and we gave a characterization for the ideals of a rough semiring (T, Δ, ∇) in terms of the principal ideals of the rough monoid (T, ∇) for a given information system $I=(U, A)$. We present some properties related to these concepts and the same concepts are illustrated through examples.

References

[1] Bisaria,J., Srivastava, N. and Paradasani, K.R, A rough set model for sequential pattern mining with constraints, (IJCNS) International Journal of Computer Network Security, 1 (2009), no. 2, $16-22$.
[2] Biswas, R. and Nanda, S., Rough groups and rough subgroups, Bulletin of the Polish Academy of Sciences Mathematics 42 (1994), 251 - 254.
[3] Bonikowaski, Z., Algebraic structures of rough sets, rough sets, fuzzy sets and knowledge discovery, Springer London, 1994, 242 - 247.
[4] Changzhong, W. and C. Degang, A short note on some properties of rough groups, Computers and Mathematics with Applications, 59 (2010), 431-436.
[5] Chen, D., Cui, D.-W., Wang, C.-X. and Wang, R.-Z., A rough set based hierarchical clustering algorithm for categorical data, International Journal of information Technology, 12 (2006), no. 3, 149 - 159.
[6] Chinram, R., Rough prime ideals and rough fuzzy prime ideals in Gamma semigroups, Korean Mathematical Society 24 (2009), no. 3, 341 - 351.
[7] Chouchoulas, A., Shen, Q., Rough set-aided keyword reduction for text categorization, Applied Artificial Intelligence 15 (2001), 843 - 873.
[8] Dubois, D. and Prade, H., Rough fuzzy sets and fuzzy rough sets, International Journal of General Systems 17 (1990), no. 2-3, 191-209.
[9] Fiala, N.C. Semigroup, monoid and group models of grupouid identites, Quasigroups and Related Systems 16 (2008), 25-29.
[10] Ghosh, S. Fuzzy k-ideals of semirings, Fuzzy Sets and Systems, 95 (1998), no. 1, 103-108.
[11] Golan, J.S., Ideals in semirings, semirings and their applications, Springer Netherlands, (1999), $65-83$.
[12] Gupta V. and Chaudhari, J.N., On partitioning ideals of semirings, Kyungpook Mathematical Journal, 46 (2006), no. 2, 181 - 184.

Ideals of a commutative rough semiring
[13] Hong, H., Kim, Y., Scholten, J.M. and Sendra, J. R., Resultants over commutative idempotent semirings I, Algebraic Aspect, Journal of Symbolic Computation, 79 (2017), no. 2, $285-308$.
[14] Howie, J.M., Fundamentals of semigroup theory, Oxford University Press, New York, (2003).
[15] Iwinski, T.B., Algebraic approach to Rough Sets, Bulletin of the Polish Academy of Sciences Mathematics 35 (1987), 673-683.
[16] Kondo, M., On the structure of generalized rough sets, Information Sciences, 176 (2006), 586 - 600.
[17] Kuroki, N., Wang, P.P., The lower and upper approximations in a fuzzy group, Information Sciences 90 (1996), 203 - 220.
[18] Kuroki, N. Rough ideals in semigroups, Information Sciences 100 (1997), 139 - 163.
[19] Liu, Y., Special lattice of rough algebras, Applied Mathematics 2 (2011), 1522 - 1524.
[20] Manimaran, A, Praba, B. and Chandrasekaran, V.M., Regular rough ∇ monoid of idempotents, International Journal of Applied Engineering and Research, 9(16) (2014), 3469 - 3479.
[21] Manimaran, A, Praba, B. and Chandrasekaran, V.M., Characterization of rough semiring, Afrika Matematika, (2017), DOI: 10.1007/s13370-017-04957.
[22] Nasiri, J. H., Mashinchi, M., Rough set and data analysis in decision tables, Journal of Uncertain Systems, 3 (2009), no. 3, $232-240$.
[23] Pawlak, Z. Rough sets, International Journal of Computer and Information Sciences, 11 (1982), 341 - 356.
[24] Praba, B, Chandrasekaran, V.M. and Manimaran, A. A commutative regular monoid on rough sets, Italian Journal of Pure and Applied Mathematics, 31 (2013), 307 - 318.
[25] Praba, B, Chandrasekaran, V.M. and Manimaran, A. Semiring on rough sets, Indian Journal of Science and Technology, 8 (2015), no. 3, 280 - 286.
[26] Praba, B and Mohan, R. Rough lattice, International Journal of Fuzzy Mathematics and System, 3 (2013), no. 2, 135-151.
[27] Sai, Y. Nie, P. Xu, R. and Huang, J. A rough set approach to mining concise rules from inconsistent data, IEEE International Conference on Granular Computing, 10 (2006), no. 12, $333-336$.
[28] Zadeh, L.A., Fuzzy Sets, Information and Control, 8 (1965), 338-353.

[^0]: ${ }^{3}$ School of Advanced Sciences, VIT University, Vellore-632014, India, e-mail: vmcsn@yahoo.com
 ${ }^{2 *}$ Corresponding author, School of Advanced Sciences, VIT University, Vellore-632014, India, e-mail: marans2011@gmail.com
 ${ }^{1}$ SSN College of Engineering, Kalavakkam, Chennai - 603110, India, e-mail: prabab@ssn.edu.in

