Bulletin of the *Transilvania* University of Braşov • Vol 10(59), No. 1 - 2017 Series III: Mathematics, Informatics, Physics, 91-102

SOME APPLICATIONS OF CERTAIN NEW TYPES OF SETS IN GTS VIA HEREDITARY CLASSES

Manik DAS¹ and Dhananjoy MANDAL*²

Abstract

In this paper we introduce certain new types of sets in a generalized topological space via hereditary classes and investigate their several properties. In the process we achieve some nice applications of these newly defined sets to study a few lower separation properties viz μ^* - R_0 , μ^* - R_1 and μ^* - $T_{\frac{1}{2}}$ spaces.

2000 Mathematics Subject Classification: 54A05, 54A10, 54D10. Key words: \wedge_{μ}^{*} -set, g. \wedge_{μ}^{*} -set, μ^{*} -g-closed sets, μ^{*} - R_{0} , μ^{*} - $T_{\frac{1}{2}}$ space.

1 Introduction

The idea of generalized topology [2] was introduced by A. Császár in 2002 and since then there has been a growing trend to study this concept in different perspectives. In 2007, A. Császár [5] introduced the notion of hereditary class in generalized topological space and subsequently many papers (e.g. see [7, 8, 10, 11, 12, 13, 15]) appeared in the recent literature. In this article, there is another attempt to introduce and investigate some new kind of sets in a generalized topological space with a hereditary class. Also, we give some applications of these sets by characterizing certain separation axioms viz. μ^*-R_0 , μ^*-R_1 and $\mu^*-T_{\frac{1}{2}}$.

A collection μ of subsets of a set X is called a generalized topology [2] on X if $\phi \in \mu$ and μ is closed under arbitrary union; the pair (X, μ) is called a generalized topological space (GTS, in short). The members of μ are called μ -open sets and their complements are called μ -closed sets in (X, μ) . According to [1], for $A \subseteq X$, the union of all μ -open subsets of X, each contained in A is called μ -interior of A and is denoted by $i_{\mu}(A)$; the map $i_{\mu} : \exp X \to \exp X$ is monotone (i.e., $A \subseteq B \Rightarrow i_{\mu}(A) \subseteq i_{\mu}(B)$), restricting (i.e., $i_{\mu}(A) \subseteq A$ for $A \subseteq X$) and

 $^{^1 \}rm Department$ of Mathematics, Govt. General Degree College, Kharagpur II, India, e-mail: manikdascu@gmail.com

²**Corresponding author*, Department of Pure Mathematics, University of *Calcutta*, India, e-mail: dmandal.cu@gmail.com

idempotent (i.e., $i_{\mu}(i_{\mu}(A)) = i_{\mu}(A)$), where expX denotes the set of all subsets of X. The generalized closure of a subset A of X, denoted by $c_{\mu}(A)$, is the intersection of all μ -closed subsets of X each containing A; the map $c_{\mu} : \exp X \to \exp X$ is monotone, idempotent and enlarging (i.e., $A \subseteq c_{\mu}(A)$ for $A \subseteq X$). Moreover $c_{\mu}(X \setminus A) = X \setminus i_{\mu}(A)$ [4].

A family \mathcal{H} of subsets of X is said to be a hereditary class [5] on X if $A \in \mathcal{H}$ and $B \subseteq A$ implies $B \in \mathcal{H}$. For a GTS (X, μ) with a hereditary class \mathcal{H} , a subset $A^*(\mu, \mathcal{H})$ or simply A^* of X is defined by $A^* = \{x \in X : U \cap A \notin \mathcal{H} \text{ for every} U \in \mu \text{ containing } x\}$ [5], for each $A \subseteq X$. In [5], it was also shown that for $A \subseteq X$ if $c^*_{\mu}(A) = A \cup A^*$, then $\mu^*(\mu, \mathcal{H})$ (or simply μ^*)= $\{A \subseteq X : c^*_{\mu}(X \setminus A) = X \setminus A\}$ is a generalized topology on X with $\mu \subseteq \mu^*$. Moreover, the map c^*_{μ} is monotone, enlarging and idempotent. The elements of μ^* are called μ^* -open sets. The complements of μ^* -open sets are called μ^* -closed sets and equivalently A is a μ^* -closed set iff $A^* \subseteq A$ [5].

In Section 2 of this paper, we introduce two types of sets viz. \wedge_{μ}^{*} -set and \vee_{μ}^{*} -set in a GTS with a hereditary class and study some of their properties. In [9], we investigated μ^{*} - R_{0} , μ^{*} - R_{1} and μ^{*} - $T_{\frac{1}{2}}$ spaces in a GTS with a hereditary class. In the last section of this article, we investigate some lower separation axioms viz. μ^{*} - R_{0} , μ^{*} - R_{1} and μ^{*} - $T_{\frac{1}{2}}$ with the help of different types of sets introduced in Sections 2 and 3.

Definition 1. [6] Let (X, μ) be a GTS and $A \subseteq X$. The subsets $\wedge_{\mu}(A)$ and $\vee_{\mu}(A)$ are defined by

$$\wedge_{\mu}(A) = \begin{cases} \cap \{U : A \subseteq U, U \text{ is } \mu \text{-open sets } \}, & \text{if } \exists \ U \in \mu \text{ such that } A \subseteq U; \\ X, & \text{otherwise} \end{cases}$$
$$\vee_{\mu}(A) = \begin{cases} \cup \{F : F \subseteq A, F \text{ is } \mu \text{-closed } \}, & \text{if } \exists \ \mu \text{-closed } F \text{ such that } F \subseteq A; \\ \phi, & \text{otherwise} \end{cases}$$

Definition 2. [6] A subset A of a GTS (X, μ) is called a \wedge_{μ} -set $(\vee_{\mu}$ -set) if $A = \wedge_{\mu}(A)$ (respectively, if $A = \vee_{\mu}(A)$).

Theorem 1. [6] Let (X, μ) be a GTS and A be any subset of X. Then $\wedge_{\mu}(A) = \{x \in X : c_{\mu}(\{x\}) \cap A \neq \phi\}.$

2 \wedge^*_{μ} and \vee^*_{μ} -sets

The intent of this section is to introduce two types of sets viz. \wedge_{μ}^{*} -sets and \vee_{μ}^{*} -sets, and characterize μ^{*} -g-closed sets with the help of these types of sets. Before we begin this section, we observe that $\mathcal{M}_{\mu} = \bigcup \{M \mid M \in \mu\}$ is the largest μ -open set of X, and certainly if B is a μ -closed set then $X \setminus \mathcal{M}_{\mu} \subseteq B \subseteq X$.

Definition 3. Let (X, μ) be a GTS with a hereditary class \mathcal{H} and $A \subseteq X$. We define

New types of sets in GTS

$$\wedge_{\mu}^{*}(A) = \begin{cases} \cap \{U : A \subseteq U, U \text{ is } \mu^{*} \text{-open sets } \}, & \text{for } A \subseteq \mathcal{M}_{\mu}; \\ X, & \text{otherwise} \end{cases}$$
$$\vee_{\mu}^{*}(A) = \begin{cases} \cup \{F : F \subseteq A, F \text{ is } \mu^{*} \text{-closed sets } \}, & \text{for } X \setminus \mathcal{M}_{\mu} \subseteq A \subseteq X; \\ \phi, & \text{otherwise} \end{cases}$$

Theorem 2. Let (X, μ) be a GTS with a hereditary class \mathcal{H} . Then $\wedge_{\mu}^{*}(A) = \{x \in X : c_{\mu}^{*}(\{x\}) \cap A \neq \phi\}$ for each $A \subseteq X$.

Proof. Let $x \in \wedge_{\mu}^{*}(A)$ be such that $c_{\mu}^{*}(\{x\}) \cap A = \phi$. Then $A \subseteq X \setminus c_{\mu}^{*}(\{x\})$, where $X \setminus c_{\mu}^{*}(\{x\})$ is a μ^{*} -open set not containing x and hence $x \notin \wedge_{\mu}^{*}(A)$, a contradiction. Conversely, let $c_{\mu}^{*}(\{x\}) \cap A \neq \phi$. If $x \notin \wedge_{\mu}^{*}(A)$, then by definition of $\wedge_{\mu}^{*}(A)$, there exists a μ^{*} -open set U with $x \notin U$ such that $A \subseteq U$. Let $y \in c_{\mu}^{*}(\{x\}) \cap A$. Then $y \in c_{\mu}^{*}(\{x\})$ and $y \in U$. Thus $x \in U$, a contradiction.

Theorem 3. For subsets $A, B, A_{\alpha}(\alpha \in \Delta)$ of a GTS (X, μ) with a hereditary class \mathcal{H} , the following properties hold: (i) $A \subseteq \wedge_{\mu}^{*}(A)$. (ii) If A is μ^{*} -open, then $A = \wedge_{\mu}^{*}(A)$. (iii) If $A \subseteq B$, then $\wedge_{\mu}^{*}(A) \subseteq \wedge_{\mu}^{*}(B)$. (iv) $\wedge_{\mu}^{*}(\wedge_{\mu}^{*}(A)) = \wedge_{\mu}^{*}(A)$. (v) $\wedge_{\mu}^{*}(\cap\{A_{\alpha}:\alpha\in\Delta\}) \subseteq \cap\{\wedge_{\mu}^{*}(A_{\alpha}):\alpha\in\Delta\}$. (vi) $\wedge_{\mu}^{*}(\cup\{A_{\alpha}:\alpha\in\Delta\}) = \cup\{\wedge_{\mu}^{*}(A_{\alpha}):\alpha\in\Delta\}$.

Proof. (i) and (ii) follow from the definition.

(*iii*) Let $A \subseteq B$. If $x \notin \wedge_{\mu}^{*}(B)$, then there exists a μ^{*} -open set U such that $B \subseteq U$ and $x \notin U$. Since $A \subseteq B \subseteq U$, then from the definition of $\wedge_{\mu}^{*}(A)$, we have $x \notin \wedge_{\mu}^{*}(A)$ and hence $\wedge_{\mu}^{*}(A) \subseteq \wedge_{\mu}^{*}(B)$.

(iv) By (i), we have $\wedge_{\mu}^{*}(\wedge_{\mu}^{*}(A)) \supseteq \wedge_{\mu}^{*}(A)$. Suppose that $x \notin \wedge_{\mu}^{*}(A)$. Then there exists a μ^{*} -open set U such that $A \subseteq U$ and $x \notin U$. Since $A \subseteq \wedge_{\mu}^{*}(A) \subseteq U$, from the definition of $\wedge_{\mu}^{*}(\wedge_{\mu}^{*}(A))$, we have $\wedge_{\mu}^{*}(\wedge_{\mu}^{*}(A)) \subseteq U$, and hence $x \notin \wedge_{\mu}^{*}(\wedge_{\mu}^{*}(A))$, that is $\wedge_{\mu}^{*}(\wedge_{\mu}^{*}(A)) \subseteq \wedge_{\mu}^{*}(A)$. Thus $\wedge_{\mu}^{*}(\wedge_{\mu}^{*}(A)) = \wedge_{\mu}^{*}(A)$. (v) It follows from (i) and (iii).

(vi) We have $\wedge_{\mu}^{*}(A_{\alpha}) \subseteq \wedge_{\mu}^{*}(\bigcup_{\alpha \in \Delta} A_{\alpha})$ and hence $\bigcup_{\alpha \in \Delta} \wedge_{\mu}^{*}(A_{\alpha}) \subseteq \wedge_{\mu}^{*}(\bigcup_{\alpha \in \Delta} A_{\alpha})$. Next, let $x \notin \bigcup_{\alpha \in \Delta} \wedge_{\mu}^{*}(A_{\alpha})$. Then $x \notin \wedge_{\mu}^{*}(A_{\alpha})$ for each $\alpha \in \Delta$ and so there exists a μ^{*} -open set U_{α} such that $A_{\alpha} \subseteq U_{\alpha}$ and $x \notin U_{\alpha}$. Let $U = \cup U_{\alpha}$. Then $U \in \mu^{*}$ such that $\cup A_{\alpha} \subseteq U$ and $x \notin U$, and hence $x \notin \wedge_{\mu}^{*}(\cup A_{\alpha})$.

Remark 1. In (v) of Theorem 3, the equality does not hold in general, even if Δ is a finite index set. See the following example.

Example 1. Let $X = \{a, b, c, d\}$. Consider a $GT \mu$ on X, where $\mu = \{\phi, \{a\}, \{d\}, \{a, d\}, \{a, c\}, \{a, c, d\}\}$ and a hereditary class $\mathcal{H} = \{\phi, \{b\}, \{c\}\}$. Then $\mu^* = \{\phi, \{a\}, \{d\}, \{a, d\}, \{a, c\}, \{a, c, d\}\}$. Let us consider $A = \{a, d\}$ and $B = \{c, d\}$. Then $\wedge_{\mu}^*(A) = \{a, d\}, \ \wedge_{\mu}^*(B) = \{a, c, d\}$ and $\wedge_{\mu}^*(A \cap B) = \{d\}$. Thus $\wedge_{\mu}^*(A \cap B) \neq \wedge_{\mu}^*(A) \cap \wedge_{\mu}^*(B)$.

Lemma 1. Let (X, μ) be a GTS with a hereditary class \mathcal{H} . Then $\wedge_{\mu}^{*}(X \setminus A) = X \setminus \vee_{\mu}^{*}(A)$ for every $A \subseteq X$.

Proof. We have $X \setminus \forall_{\mu}^{*}(A) = X \setminus (\cup \{F : F \subseteq A \text{ and } F \text{ is a } \mu^{*}\text{-closed set}\}) = \cap \{X \setminus F : X \setminus A \subseteq X \setminus F \text{ and } X \setminus F \text{ is a } \mu^{*}\text{-open set }\} = \wedge_{\mu}^{*}(X \setminus A).$

Using the above lemma and Theorem 3, we have the following result:

Theorem 4. For subsets $A, B, A_{\alpha}(\alpha \in \Delta)$ of a GTS (X, μ) with a hereditary class \mathcal{H} , the following properties hold: (i) $\vee_{\mu}^{*}(A) \subseteq A$. (ii) If A is μ^{*} -closed, then $A = \vee_{\mu}^{*}(A)$. (iii) If $A \subseteq B$, then $\vee_{\mu}^{*}(A) \subseteq \vee_{\mu}^{*}(B)$. (iv) $\vee_{\mu}^{*}(\vee_{\mu}^{*}(A)) = \vee_{\mu}^{*}(A)$. (v) $\vee_{\mu}^{*}(\circ \{A, : \alpha \in \Delta\}) = \circ \{\vee_{\mu}^{*}(A, : \alpha \in \Delta\})$

 $\begin{array}{l} (v) \lor_{\mu}^{\mu} (\cap \{A_{\alpha} : \alpha \in \Delta\}) = \cap \{\lor_{\mu}^{\mu}(A_{\alpha}) : \alpha \in \Delta\}. \\ (vi) \cup \{\lor_{\mu}^{\mu}(A_{\alpha}) : \alpha \in \Delta\} \subseteq \lor_{\mu}^{*} (\cup \{A_{\alpha} : \alpha \in \Delta\}). \end{array}$

Definition 4. Let (X, μ) be a GTS with a hereditary class \mathcal{H} . A subset A of X is said to be a

(i) \wedge_{μ}^{*} -set if $A = \wedge_{\mu}^{*}(A)$, (ii) \vee_{μ}^{*} -set if $A = \vee_{\mu}^{*}(A)$. Therefore a subset A of X is a \wedge_{μ}^{*} -set if and only if $X \setminus A$ is a \vee_{μ}^{*} -set.

Theorem 5. Let (X, μ) be a GTS with a hereditary class \mathcal{H} . Then the following statements hold:

(a) ϕ is a \wedge_{μ}^* -set and X is a \vee_{μ}^* -set.

(b) Arbitrary union of \wedge_{μ}^* -sets is a \wedge_{μ}^* -set.

(c) Arbitrary intersection of \vee_{μ}^{*} -sets is a \vee_{μ}^{*} -set.

Proof. (a) Clear.

(b) Let $\{A_{\alpha} : \alpha \in \Delta\}$ be an arbitrary family of \wedge_{μ}^* -sets. Then $A_{\alpha} = \wedge_{\mu}^*(A_{\alpha})$, for each $\alpha \in \Delta$. Let $A = \cup \{A_{\alpha} : \alpha \in \Delta\}$. Then by (vi) of Theorem 3, we have $\wedge_{\mu}^*(A) = A$ and hence A is a \wedge_{μ}^* -set.

(c) It follows from Lemma 1 and (b) above.

Definition 5. [9] A subset A of a GTS (X, μ) with a hereditary class \mathcal{H} is said to be μ^* -g-closed if $c_{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is μ^* -open. The complement of a μ^* -g-closed set is μ^* -g-open.

Theorem 6. Let (X, μ) be a GTS with a hereditary class \mathcal{H} and $A \subseteq X$. Then A is μ^* -g-closed if and only if $c_{\mu}(A) \subseteq \wedge^*_{\mu}(A)$.

Proof. Let A be a μ^* -g-closed set and $x \in c_{\mu}(A)$. If $x \notin \wedge_{\mu}^*(A)$, then there exists a μ^* -open set U containing A such that $x \notin U$. Now since A is μ^* -g-closed and $A \subseteq U$, where U is μ^* -open, it follows that $c_{\mu}(A) \subseteq U$ and thus $x \notin c_{\mu}(A)$, a contradiction. Therefore $c_{\mu}(A) \subseteq \wedge_{\mu}^*(A)$.

Conversely suppose that $c_{\mu}(A) \subseteq \wedge_{\mu}^{*}(A)$. Let $A \subseteq U$, where U is μ^{*} -open. Then $\wedge_{\mu}^{*}(A) \subseteq U$ and hence $c_{\mu}(A) \subseteq U$. Therefore A is μ^{*} -g-closed. \Box

New types of sets in GTS

Corollary 1. Let (X, μ) be a GTS with a hereditary class \mathcal{H} and $A \subseteq X$. Then A is μ^* -g-open if and only if $\vee^*_{\mu}(A) \subseteq i_{\mu}(A)$.

Corollary 2. Let (X, μ) be a GTS with a hereditary class \mathcal{H} and A be a \wedge_{μ}^* -set. Then A is μ^* -g-closed if and only if A is μ -closed in (X, μ) .

Proof. Suppose that A is μ^* -g-closed. Then by using Theorem 6, we have $c_{\mu}(A) \subseteq \wedge^*_{\mu}(A) = A$. Thus A is μ -closed. The converse is obvious.

Corollary 3. Let (X, μ) be a GTS with a hereditary class \mathcal{H} and A be a \vee_{μ}^{*} -set. Then A is μ^{*} -g-open if and only if A is μ -open in (X, μ) .

Theorem 7. Let (X, μ) be a GTS with a hereditary class \mathcal{H} and $A \subseteq X$. Then A is μ^* -g-closed if $\wedge^*_{\mu}(A)$ is μ^* -g-closed.

Proof. Let $\wedge_{\mu}^{*}(A)$ be μ^{*} -g-closed. Suppose that $A \subseteq U$, where U is μ^{*} -open. Then $\wedge_{\mu}^{*}(A) \subseteq U$. Since $\wedge_{\mu}^{*}(A)$ is μ^{*} -g-closed, it follows that $c_{\mu}(\wedge_{\mu}^{*}(A)) \subseteq U$. Since $A \subseteq \wedge_{\mu}^{*}(A) \subseteq U$, we have $c_{\mu}(A) \subseteq c_{\mu}(\wedge_{\mu}^{*}(A)) \subseteq U$ i.e., $c_{\mu}(A) \subseteq U$ and thus A is a μ^{*} -g-closed set.

Remark 2. The converse of the above theorem is false as shown in the following example.

Example 2. Consider a GT μ and a hereditary class \mathcal{H} on $X = \{a, b, c\}$, where $\mu = \{\phi, \{a, b\}, \{b, c\}, X\}$ and $\mathcal{H} = \{\phi, \{a\}, \{c\}\}$. Then $A = \{a\}$ is a μ^* -g-closed but $\wedge_{\mu}^*(A) = \{a, b\}$ which is not a μ^* -g-closed set, since $c_{\mu}(\{a, b\}) = X \not\subseteq \wedge_{\mu}^*(\{a, b\}) = \{a, b\}$ (refer to Theorem 6).

3 Generalized \wedge^*_{μ} and \vee^*_{μ} -sets

In this section, we introduce and study two other types of sets viz. $g.\wedge_{\mu}^{*}$ -sets, $g.\vee_{\mu}^{*}$ -sets. We discuss several properties of these sets, a few of which involve sets introduced in the previous section. We start this section by recalling the following definition from [16]:

Definition 6. A subset A of a GTS (X, μ) is said to be a generalized \wedge_{μ} -set $(g.\wedge_{\mu}$ -set, in short) if $\wedge_{\mu}(A) \subseteq F$, whenever $A \subseteq F$ and F is μ -closed in X. A subset A of X is said to be a $g.\vee_{\mu}$ -set if $X \setminus A$ is a $g.\wedge_{\mu}$ -set.

In an analogous way we define generalized \wedge^*_{μ} -sets in our setting as follows:

Definition 7. Let (X, μ) be a GTS with a hereditary class \mathcal{H} . A subset A of X is said to be a generalized \wedge_{μ}^* -set $(g \wedge_{\mu}^*$ -set, in short) if $\wedge_{\mu}^*(A) \subseteq F$, whenever F is μ -closed in X and $A \subseteq F$.

A subset A of X is said to be a $g. \vee_{\mu}^*$ -set if $X \setminus A$ is a $g. \wedge_{\mu}^*$ -set.

Remark 3. (i) Every $g \wedge_{\mu}$ -set $(g \vee_{\mu}$ -set) is a $g \wedge_{\mu}^{*}$ -set (resp. $g \vee_{\mu}^{*}$ -set). But the converse is false (see Example 3(a)).

(ii) Every \wedge_{μ}^* -set (\vee_{μ}^* -set) is a $g \wedge_{\mu}^*$ -set (resp. $g \vee_{\mu}^*$ -set). But the converse is false (see Example 3(b)).

Example 3. (a) Let $X = \{a, b, c\}, \mu = \{\phi, \{c\}, \{a, b\}, \{b, c\}, X\}$ and $\mathcal{H} = \{\phi, \{b\}, \{c\}\}$. Consider $A = \{a\}$. Then $\wedge_{\mu}(A) = \{a, b\}$ and $\wedge^{*}_{\mu}(A) = \{a\}$. Thus, it follows that A is a $g \wedge^{*}_{\mu}$ -set but not a $g \wedge_{\mu}$ -set.

(b) Consider $X = \{a, b, c, d\}, \mu = \{\phi, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\mathcal{H} = \{\phi, \{a\}, \{c\}\}.$ Let $A = \{a, c\}$. Then $\wedge_{\mu}^{*}(A) = \{a, b, c\}$. Thus A is a $g \wedge_{\mu}^{*}(A)$ -set, but not a $\wedge_{\mu}^{*}(A)$ -set.

Theorem 8. Let (X, μ) be a GTS with a hereditary class \mathcal{H} and $A \subseteq X$. Then A is a $g : \bigvee_{\mu}^*$ -set if and only if $U \subseteq \bigvee_{\mu}^*(A)$, whenever $U \subseteq A$ and U is μ -open in X.

Proof. Let A be a $g.\vee_{\mu}^{*}$ -set and $U \subseteq A$, where U is μ -open in X. Then $X \setminus A \subseteq X \setminus U$, where $X \setminus U$ is μ -closed in X. Since $X \setminus A$ is a $g.\wedge_{\mu}^{*}$ -set, $\wedge_{\mu}^{*}(X \setminus A) \subseteq X \setminus U$ which implies by Lemma 1 that $X \setminus \vee_{\mu}^{*}(A) \subseteq X \setminus U$. Thus $U \subseteq \vee_{\mu}^{*}(A)$.

Conversely, let the condition hold. Let A be a subset of X such that $X \setminus A \subseteq F$, where F is μ -closed in X. Then $X \setminus F \subseteq A$ and $X \setminus F$ is μ -open in X and so by given condition, $X \setminus F \subseteq \vee_{\mu}^{*}(A)$. Thus $X \setminus \vee_{\mu}^{*}(A) \subseteq F$ and hence by Lemma 1, $\wedge_{\mu}^{*}(X \setminus A) \subseteq F$. Then $X \setminus A$ is a $g \cdot \wedge_{\mu}^{*}$ -set. Hence A is a $g \cdot \vee_{\mu}^{*}$ -set. \Box

Theorem 9. Let (X, μ) be a GTS with a hereditary class \mathcal{H} and $A \subseteq X$. If A is a $g. \lor_{\mu}^*$ -set, then F = X whenever $\lor_{\mu}^*(A) \cup (X \setminus A) \subseteq F$ and F is μ -closed in X.

Proof. Let A be a $g.\vee_{\mu}^{*}$ -set and $\vee_{\mu}^{*}(A) \cup (X \setminus A) \subseteq F$, where F is μ -closed in X. Then we have $X \setminus F \subseteq X \setminus (\vee_{\mu}^{*}(A) \cup (X \setminus A)) = (X \setminus \vee_{\mu}^{*}(A)) \cap A$. Thus $X \setminus F \subseteq (X \setminus \vee_{\mu}^{*}(A))$ and $X \setminus F \subseteq A$. It follows that $X \setminus F \subseteq \vee_{\mu}^{*}(A)$ (by Theorem 8). Thus $X \setminus F \subseteq (X \setminus \vee_{\mu}^{*}(A)) \cap \vee_{\mu}^{*}(A) = \phi$ and hence F = X.

Theorem 10. Let (X, μ) be a GTS with a hereditary class \mathcal{H} . Then a $g. \lor_{\mu}^*$ -set is a \lor_{μ}^* -set if and only if $\lor_{\mu}^*(A) \cup (X \setminus A)$ is a μ -closed set.

Proof. Suppose that a g. \vee_{μ}^* -set A is a \vee_{μ}^* -set. Then $\vee_{\mu}^*(A) = A$. Thus $\vee_{\mu}^*(A) \cup (X \setminus A) = A \cup (X \setminus A) = X$ which is μ -closed.

Conversely, let A be a $g.\vee_{\mu}^*$ -set such that $\vee_{\mu}^*(A) \cup (X \setminus A)$ is μ -closed in X. Then by Theorem 9, we have $\vee_{\mu}^*(A) \cup (X \setminus A) = X$ and hence $A \subseteq \vee_{\mu}^*(A)$. Again by Theorem 4(i), $A \supseteq \vee_{\mu}^*(A)$. Thus $\vee_{\mu}^*(A) = A$ and hence A is a \vee_{μ}^* -set. \Box

Corollary 4. Let (X, μ) be a GTS with a hereditary class \mathcal{H} . Then a $g \wedge_{\mu}^*$ -set is \wedge_{μ}^* -set if and only if $\wedge_{\mu}^*(A) \cup (X \setminus A)$ is μ -open.

Theorem 11. Let (X, μ) be a GTS with a hereditary class \mathcal{H} . Then for each $x \in X$, either $\{x\}$ is a μ -open set in X or a $g. \lor_{\mu}^*$ -set.

Proof. Let $x \in X$. Suppose $\{x\}$ is not μ -open in X, then X is the only μ -closed set containing $X \setminus \{x\}$ and hence $X \setminus \{x\}$ is a $g \land_{\mu}^*$ -set. Thus $\{x\}$ is a $g \lor_{\mu}^*$ -set. \Box

New types of sets in GTS

Theorem 12. Let (X, μ) be a GTS with a hereditary class \mathcal{H} . Then every singleton of X is a $g \wedge_{\mu}^{*}$ -set if and only if $U = \vee_{\mu}^{*}(U)$ for every μ -open set U in X.

Proof. Let every singleton set of X be a $g.\wedge_{\mu}^*$ -set. Let U be a μ -open set in X and $x \in X \setminus U$. Since $\{x\}$ is a $g.\wedge_{\mu}^*$ -set, we have $\wedge_{\mu}^*\{x\} \subseteq X \setminus U$. It follows that $\bigcup \{\wedge_{\mu}^*\{x\} : x \in X \setminus U\} \subseteq X \setminus U$ and thus using Theorem 3(vi), we get $\wedge_{\mu}^*(\bigcup \{\{x\} : x \in X \setminus U\}) \subseteq X \setminus U$. Therefore $\wedge_{\mu}^*(X \setminus U) \subseteq X \setminus U$ and hence by Lemma 1, we have $X \setminus U = \wedge_{\mu}^*(X \setminus U) = X \setminus \vee_{\mu}^*(U)$. Thus $U = \vee_{\mu}^*(U)$.

Conversely, let $x \in X$ and $\{x\} \subseteq F$, where F is a μ -closed subset of X. Then $X \setminus F$ is μ -open in X and so by hypothesis, $X \setminus F = \vee_{\mu}^{*}(X \setminus F) = X \setminus \wedge_{\mu}^{*}(F)$ (by Lemma 1). It follows that $F = \wedge_{\mu}^{*}(F)$. Thus $\wedge_{\mu}^{*}\{x\} \subseteq \wedge_{\mu}^{*}(F) = F$ and hence $\{x\}$ is a g. \wedge_{μ}^{*} -set.

4 Applications

In [9], we introduced and studied the concept of $\mu^* - R_0$, $\mu^* - R_1$ and $\mu^* - T_{\frac{1}{2}}$ spaces. Here we deduce some characterizations of the above lower separation axioms in terms of \wedge_{μ}^* and \vee_{μ}^* sets.

Definition 8. [9] A GTS (X, μ) with a hereditary class \mathcal{H} is said to be a μ^* - R_0 -space if for every μ^* -open set U and each $x \in U$, one has $c_{\mu}(\{x\}) \subseteq U$ that is, every singleton is μ^* -g-closed.

Definition 9. [9] A GTS (X, μ) with a hereditary class \mathcal{H} is said to be $\mu^* - R_1$ if for each $x, y \in X$ with $c_{\mu}(\{x\}) \neq c_{\mu}^*(\{y\})$, there exist two disjoint μ^* -open sets Uand V such that $c_{\mu}(\{x\}) \subseteq U$ and $c_{\mu}^*(\{y\}) \subseteq V$.

Proposition 1. [9] Let (X, μ) be a GTS with a hereditary class \mathcal{H} . If it is μ^* - R_1 , then it is also μ^* - R_0 .

Theorem 13. (Theorem 3.2 of [9]) Let (X, μ) be a GTS with a hereditary class \mathcal{H} . Then the following are equivalent:

(a) A GTS (X, μ) with a hereditary class \mathcal{H} is μ^* - R_0 -space.

(b) $x \in c^*_{\mu}(\{y\})$ if and only if $y \in c_{\mu}(\{x\})$, where x and y are any two distinct points of X.

Theorem 14. (Theorem 3.3 of [9]) For a GTS (X, μ) with a hereditary class \mathcal{H} , the following are equivalent:

(a) A GTS (X, μ) with a hereditary class \mathcal{H} is μ^* - R_0 -space.

(b) If x and y are two distinct points of X then $x \notin c^*_{\mu}(\{y\}) \Rightarrow c_{\mu}(\{x\}) \cap c^*_{\mu}(\{y\}) = \phi$.

(c) Every μ^* -closed set F can be written as, $F = \cap \{U : U \text{ is } \mu\text{-open and } F \subseteq U\}$.

Theorem 15. In a μ^* - R_0 -space, for any two points x, y in X, the following are equivalent:

 $\begin{array}{l} (a) \ c_{\mu}(\{x\}) \neq c_{\mu}(\{y\}) \\ (b) \ c_{\mu}(\{x\}) \neq c_{\mu}^{*}(\{y\}) \\ (c) \ either \ c_{\mu}(\{x\}) \cap c_{\mu}^{*}(\{y\}) = \phi \ or \ c_{\mu}^{*}(\{x\}) \cap c_{\mu}(\{y\}) = \phi. \end{array}$

Proof. (**a**) \Rightarrow (**b**) : Let $x, y \in X$ be such that $c_{\mu}(\{x\}) \neq c_{\mu}(\{y\})$. Then either $x \notin c_{\mu}(\{y\})$ or $y \notin c_{\mu}(\{x\})$. If $x \notin c_{\mu}(\{y\})$ then $x \notin c_{\mu}^{*}(\{y\})$ and hence $c_{\mu}(\{x\}) \neq c_{\mu}^{*}(\{y\})$. If $y \notin c_{\mu}(\{x\})$ then $c_{\mu}(\{x\}) \neq c_{\mu}^{*}(\{y\})$.

(**b**) \Rightarrow (**c**) : Let $x, y \in X$ be such that $c_{\mu}(\{x\}) \neq c_{\mu}^{*}(\{y\})$. Then either $x \notin c_{\mu}^{*}(\{y\})$ or $y \notin c_{\mu}(\{x\})$. If $x \notin c_{\mu}^{*}(\{y\})$ then by Theorem 14((a) \Leftrightarrow (b)), $c_{\mu}(\{x\}) \cap c_{\mu}^{*}(\{y\}) = \phi$. Next, suppose $y \notin c_{\mu}(\{x\})$ which implies that $y \notin c_{\mu}^{*}(\{x\})$ and hence again by Theorem 14((a) \Leftrightarrow (b)), $c_{\mu}(\{y\}) \cap c_{\mu}^{*}(\{x\}) = \phi$.

 $(\mathbf{c}) \Rightarrow (\mathbf{a}) : \text{Let } x, y \in X \text{ be such that either } c_{\mu}(\{x\}) \cap c_{\mu}^{*}(\{y\}) = \phi \text{ or } c_{\mu}^{*}(\{x\}) \cap c_{\mu}(\{x\}) = \phi \text{ then } y \notin c_{\mu}(\{x\}) \text{ and hence } c_{\mu}(\{x\}) \neq c_{\mu}(\{y\}). \text{ Next if } c_{\mu}^{*}(\{x\}) \cap c_{\mu}(\{y\}) = \phi \text{ then } x \notin c_{\mu}(\{y\}) \text{ and thus } c_{\mu}(\{x\}) \neq c_{\mu}(\{y\}).$

Theorem 16. For a GTS (X, μ) with a hereditary class \mathcal{H} the following are equivalent:

(a) A GTS (X, μ) with a hereditary class \mathcal{H} is a μ^* - R_0 space.

(b) If F is μ^* -closed and $x \in F$, then $\wedge^*_{\mu}(\{x\}) \subseteq F$ and $F = \wedge_{\mu}(F) = \wedge^*_{\mu}(F)$. (c) If $x \in X$, then $\wedge^*_{\mu}(\{x\}) = c_{\mu}(\{x\})$.

Proof. (**a**) \Rightarrow (**b**) : Let *F* be μ^* -closed and $x \in F$. We first prove that $F = \wedge_{\mu}(F) = \wedge_{\mu}^*(F)$. By $((a) \Rightarrow (c))$ of Theorem 14 and Definition 1, we have $F = \wedge_{\mu}(F)$. Again obviously $\wedge_{\mu}^*(F) \subseteq \wedge_{\mu}(F)$ and by Theorem 3, $F \subseteq \wedge_{\mu}^*(F)$. Thus $F = \wedge_{\mu}^*(F)$ and hence $F = \wedge_{\mu}(F) = \wedge_{\mu}^*(F)$. Now $x \in F$, we get $\wedge_{\mu}^*(\{x\}) \subseteq \wedge_{\mu}^*(F) = F$.

 $(\mathbf{b}) \Rightarrow (\mathbf{c}) : \text{Let } x \in X. \text{ Then } x \in c_{\mu}^{*}(\{x\}) \text{ where } c_{\mu}^{*}(\{x\}) \text{ is a } \mu^{*}\text{-closed set and so}$ by $(b), \wedge_{\mu}^{*}(\{x\}) \subseteq c_{\mu}(\{x\}) \text{ and thus } \wedge_{\mu}^{*}(\{x\}) \subseteq c_{\mu}(\{x\}) \dots (1). \text{ Next we show that }$ $c_{\mu}(\{x\}) \subseteq \wedge_{\mu}^{*}(\{x\}). \text{ For that, let } y \notin \wedge_{\mu}^{*}(\{x\}). \text{ Then there exists } V \in \mu^{*} \text{ such that }$ $x \in V \text{ and } y \notin V. \text{ So } c_{\mu}^{*}(\{y\}) \cap V = \phi. \text{ By } (b), \text{ we have } c_{\mu}^{*}(\{y\}) = \wedge_{\mu}(c_{\mu}^{*}(\{y\})) =$ $\cap \{G \in \mu : c_{\mu}^{*}(\{y\}) \subseteq G\} \text{ which implies that } \cap \{G \in \mu : c_{\mu}^{*}(\{y\}) \subseteq G\} \cap V = \phi.$ Thus, there exists $G \in \mu$ such that $x \notin G$ with $c_{\mu}^{*}(\{y\}) \subseteq G. \text{ Since } x \notin G,$ $c_{\mu}(\{x\}) \cap G = \phi \text{ and hence } y \notin c_{\mu}(\{x\}). \text{ Thus } c_{\mu}^{*}(\{x\}) \subseteq c_{\mu}(\{x\}) \subseteq \wedge_{\mu}^{*}(\{x\}).$...(2). Therefore, from (1) and (2), we have $\wedge_{\mu}^{*}(\{x\}) = c_{\mu}(\{x\}).$

(c) \Rightarrow (a) : Let $x, y \in X$ with $x \neq y$. Then $x \in c_{\mu}^{*}(\{y\})$ if and only if $y \in \wedge_{\mu}^{*}(\{x\})$ (by using Theorem 2) i.e., $x \in c_{\mu}^{*}(\{y\})$ if and only if $y \in c_{\mu}(\{x\})$ (by using (c)). Hence by Theorem 13, (X, μ) with a hereditary class \mathcal{H} is a $\mu^{*}-R_{0}$ space. \Box

Theorem 17. The following are equivalent for a GTS (X, μ) with a hereditary class \mathcal{H} :

(a) (X, μ) with a hereditary class \mathcal{H} is a μ^* - R_0 space.

(b) $x \in \wedge_{\mu}^{*}(\{y\})$ if and only if $y \in \wedge_{\mu}(\{x\})$, for any two distinct points $x, y \in X$.

Proof. (a) \Rightarrow (b) : Suppose that (X, μ) with a hereditary class \mathcal{H} is a μ^* - R_0 space. Let $x, y \in X$ with $x \neq y$. First let $x \in \wedge_{\mu}^*(\{y\})$. Then by Theorem 2, $y \in c_{\mu}^*(\{x\})$. We now show that $y \in \wedge_{\mu}(\{x\})$. Indeed, if $y \notin \wedge_{\mu}(\{x\})$ then there exists $V \in \mu$ such that $x \in V$ and $y \notin V$ and so $c_{\mu}(\{y\}) \cap V = \phi$. Thus $\cap\{G \in \mu : c_{\mu}(\{y\}) \subseteq G\} \cap V = \phi$ (refer to Theorem 14((a) \Rightarrow (c)) and hence there exists $G \in \mu$ such that $x \notin G$ with $c_{\mu}(\{y\}) \subseteq G$ and hence $c_{\mu}(\{x\}) \cap G = \phi$. This implies that $y \notin c_{\mu}(\{x\})$ and hence $y \notin c_{\mu}^{*}(\{x\})$, a contradiction. Next, let $y \in \wedge_{\mu}(\{x\})$. Then by Theorem 1, $x \in c_{\mu}(\{y\})$. Since (X, μ) with a hereditary class \mathcal{H} is μ^{*} - R_{0} , by $((a) \Rightarrow (c))$ of Theorem 16, we have $\wedge_{\mu}^{*}(\{y\}) = c_{\mu}(\{y\})$ and hence $x \in \wedge_{\mu}^{*}(\{y\})$. (b) \Rightarrow (a) : Let the condition (b) hold. Let U be any μ^{*} -open set and $x \in U$. Claim: $c_{\mu}(\{x\}) \subseteq U$. In fact, let $y \notin U$. Then $x \notin c_{\mu}^{*}(\{y\})$ and so by Theorem 2, $y \notin \wedge_{\mu}^{*}(\{x\})$. Therefore by hypothesis, we have $x \notin \wedge_{\mu}(\{y\})$ and consequently $y \notin c_{\mu}(\{x\})$ (by Theorem 1). Hence (X, μ) with a hereditary class \mathcal{H} is a μ^{*} - R_{0} space.

Theorem 18. A GTS (X, μ) with a hereditary class \mathcal{H} is $\mu^* \cdot R_1$ if and only if for any two distinct points $x, y \in X$ with $\wedge^*_{\mu}(\{x\}) \neq \wedge_{\mu}(\{y\})$, there exist two disjoint μ^* -open sets U and V such that $c_{\mu}(\{x\}) \subseteq U$ and $c^*_{\mu}(\{y\}) \subseteq V$.

Proof. Suppose that (X, μ) with a hereditary class \mathcal{H} is $\mu^* - R_1$. Let x, y be any two distinct points in X such that $\wedge_{\mu}^*(\{x\}) \neq \wedge_{\mu}(\{y\})$. Then we have either $x \notin \wedge_{\mu}(\{y\})$ or $y \notin \wedge_{\mu}^*(\{x\})$. If not then $x \in \wedge_{\mu}(\{y\})$ and $y \in \wedge_{\mu}^*(\{x\})$ and so $\wedge_{\mu}(\{x\}) \subseteq \wedge_{\mu}(\wedge_{\mu}(\{y\})) = \wedge_{\mu}(\{y\})$ and thus $\wedge_{\mu}^*(\{x\}) \subseteq \wedge_{\mu}(\{y\})$. By hypothesis, we have $\wedge_{\mu}^*(\{x\}) \subsetneqq \wedge_{\mu}(\{y\})$. Since (X, μ) with the hereditary class \mathcal{H} is $\mu^* - R_1$, by Proposition 1, it is a $\mu^* - R_0$ space. Now by using $((a) \Rightarrow (c))$ of Theorem 16, we have $c_{\mu}(\{x\}) \varsubsetneq \wedge_{\mu}(\{y\})...(1)$. Let $z \in \wedge_{\mu}(\{y\})$. Then by Theorem 1, we have $y \in c_{\mu}(\{z\})$. It follows that $c_{\mu}^*(\{y\}) \subseteq c_{\mu}(\{z\})$ and hence by Theorem 15 $((b) \Rightarrow (c))$, we must have $c_{\mu}^*(\{y\}) = c_{\mu}(\{z\})$. Thus $z \in c_{\mu}^*(\{y\})$ and hence $\wedge_{\mu}(\{y\} \subseteq c_{\mu}^*(\{y\})...(2)$. From (1) and (2), we get $c_{\mu}(\{x\}) \subsetneqq c_{\mu}^*(\{y\})$ and hence there are no two disjoint μ^* -open sets U and V such that $c_{\mu}(\{x\}) \subseteq U$ and $c_{\mu}^*(\{y\}) \subseteq V$ which contradicts the fact that the space is $\mu^* - R_1$.

Now we show that $c_{\mu}(\{x\}) \neq c_{\mu}^*(\{y\})$.

Case I: If $x \notin \wedge_{\mu}(\{y\})$ then $y \notin c_{\mu}(\{x\})$ which implies $c_{\mu}(\{x\}) \neq c_{\mu}^{*}(\{y\})$. Case II: If $y \notin \wedge_{\mu}^{*}(\{x\})$ then $x \notin c_{\mu}^{*}(\{y\})$ which implies $c_{\mu}(\{x\}) \neq c_{\mu}^{*}(\{y\})$. Thus, in both the cases, we have $c_{\mu}(\{x\}) \neq c_{\mu}^{*}(\{y\})$. Then by definition of $\mu^{*}-R_{1}$ space, there exist two disjoint μ^{*} -open sets U and V such that $c_{\mu}(\{x\}) \subseteq U$ and $c_{\mu}^{*}(\{y\}) \subseteq V$.

Conversely, let the condition hold. Let x and y be two distinct points of X such that $c_{\mu}(\{x\}) \neq c_{\mu}^{*}(\{y\})$. Then either $y \notin c_{\mu}(\{x\})$ or $x \notin c_{\mu}^{*}(\{y\})$.

Case I: If $y \notin c_{\mu}(\{x\})$ then there exists a μ -open set G containing y such that $x \notin G$ and hence from the definition $x \notin \wedge_{\mu}(\{y\})$ which follows that $\wedge_{\mu}(\{y\}) \neq \wedge_{\mu}^{*}(\{x\})$. Case II: If $x \notin c_{\mu}^{*}(\{y\})$ then by Theorem 2, $y \notin \wedge_{\mu}^{*}(\{x\})$ which shows that $\wedge_{\mu}^{*}(\{x\}) \neq \wedge_{\mu}(\{y\})$.

Thus, in both the cases, we have $\wedge_{\mu}^{*}(\{x\}) \neq \wedge_{\mu}(\{y\})$ and hence by hypothesis, there exist two disjoint μ^{*} -open sets U and V such that $c_{\mu}(\{x\}) \subseteq U$ and $c_{\mu}^{*}(\{y\}) \subseteq V$. This shows that (X, μ) with a hereditary class \mathcal{H} is $\mu^{*}-R_{1}$. \Box

Definition 10. [9] A GTS (X, μ) with a hereditary class \mathcal{H} is said to be $\mu^* - T_{\frac{1}{2}}$ if every μ^* -g-closed set is μ -closed in X.

Theorem 19. [9] A GTS (X, μ) with a hereditary class \mathcal{H} is a μ^* - $T_{\frac{1}{2}}$ space if and only if for each $x \in X$, either $\{x\}$ is μ^* -closed or μ -open in X.

Theorem 20. Let (X, μ) be a GTS with a hereditary class \mathcal{H} . Then it is a $\mu^* - T_{\frac{1}{2}}$ -space if and only if every $g : \bigvee_{\mu}^*$ -set is a \bigvee_{μ}^* -set.

Proof. Let a GTS (X, μ) with a hereditary class \mathcal{H} be a μ^* - $T_{\frac{1}{2}}$ -space. We prove by contradiction. Suppose that A is a $g.\vee_{\mu}^*$ -set but not a \vee_{μ}^* -set. Then there exists an element $x \in A$ such that $x \notin \vee_{\mu}^*(A)$. Thus by definition of $\vee_{\mu}^*(A)$, $\{x\}$ is not μ^* -closed. Thus by Theorem 19, we have $\{x\}$ is μ -open, that is, $X\setminus\{x\}$ is μ -closed in X. Since $x \in A$ and $x \notin \vee_{\mu}^*(A)$, we have $\vee_{\mu}^*(A) \cup (X\setminus A) \subseteq X\setminus\{x\}$. Therefore by Theorem 9, $X\setminus\{x\} = X$, a contradiction.

Conversely, let every $g.\vee_{\mu}^{*}$ -set be a \vee_{μ}^{*} -set. Suppose the GTS (X, μ) with a hereditary class \mathcal{H} is not a μ^{*} - $T_{\frac{1}{2}}$ -space. Then there exists a μ^{*} -g-closed set A which is not μ -closed in X. Thus, there exists an element $x \in X$ such that $x \in c_{\mu}(A)$ but $x \notin A$. Now by Theorem 11, $\{x\}$ is either a μ -open set or a $g.\vee_{\mu}^{*}$ -set.

Case I: Let $\{x\}$ be μ -open. Then $x \in c_{\mu}(A)$ implies that $\{x\} \cap A \neq \phi$ and so $x \in A$, a contradiction.

Case II: Let $\{x\}$ be a $g. \vee_{\mu}^*$ -set. Then by hypothesis $\{x\}$ is a \vee_{μ}^* -set and so $\{x\} = \vee_{\mu}^*(\{x\})$ and hence by definition of \vee_{μ}^* -set, we have $\{x\}$ is μ^* -closed. Since A is μ^* -g-closed and $A \subseteq X \setminus \{x\}$, $c_{\mu}(A) \subseteq X \setminus \{x\}$, which contradict that $x \in c_{\mu}(A)$.

Hence (X, μ) with a hereditary class \mathcal{H} is a $\mu^* - T_{\frac{1}{2}}$ -space.

Corollary 5. Let (X, μ) be a GTS with a hereditary class \mathcal{H} . Then it is a μ^* - $T_{\frac{1}{2}}$ -space if and only if every $g \wedge_{\mu}^*$ -set is a \wedge_{μ}^* -set.

Corollary 6. Let (X, μ) be a GTS with a hereditary class \mathcal{H} . Then it is a μ^* - $T_{\frac{1}{2}}$ -space if and only if for each $x \in X$, either $\{x\}$ is a \vee_{μ}^* -set or μ -open in X.

Proof. Let X be a μ^* - $T_{\frac{1}{2}}$ -space. Now we have from Theorem 11 that for each $x \in X$, either $\{x\}$ is a μ -open set or a $g : \vee_{\mu}^*$ -set in X. If $\{x\}$ is μ -open in (X, μ) then we are done. So suppose that $\{x\}$ is not a μ -open set in X. Then it must be a $g : \vee_{\mu}^*$ -set and so by Theorem 20, we get $\{x\}$ is a \vee_{μ}^* -set.

Conversely, let $x \in X$. Then either $\{x\}$ is a \vee_{μ}^* -set or μ -open in X.

Case I: If $\{x\}$ is a \vee_{μ}^* -set in X, then $\{x\} = \vee_{\mu}^*(\{x\})$ and so by definition of \vee_{μ}^* -set, we have $\{x\}$ is μ^* -closed. Hence by Theorem 19, X is a μ^* - $T_{\frac{1}{2}}$ -space.

Case II: If $\{x\}$ is μ -open in X, then by Theorem 19, X is a μ^* - $T_{\frac{1}{2}}$ -space.

Acknowledgements: The authors are thankful to the referee for some suggestions towards the improvement of the paper.

References

- [1] Császár, A., Generalized open sets, Acta Math. Hungar. 75 (1997), 65-87.
- [2] Császár, A., Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002), 351-357.

- [3] Császár, A., Extremally disconnected generalized topologies, Annales Univ. Sci. Budapest. 47 (2004), 91-96.
- [4] Császár, A., Generalized open sets in generalized topologies, Acta Math. Hungar. 106 (2005), 53-66.
- [5] Császár, A., Modifications of generalized topologies via hereditary classes, Acta Math. Hungar. 115 (2007), 29-36.
- [6] Ekici, E., and Roy, B., New generalized topologies on generalized topological spaces due to Császár, Acta Math. Hungar. 132 (2011), no. 1, 117-124.
- [7] Karuppayi, K., Some subsets of GTS with hereditary classes, J. Adv. Stud. Topol. 5 (2014), no. 1, 25-33.
- [8] Kim, Y.K., and Min, W.K., On operations induced by hereditary classes on generalized topological spaces, Acta Math. Hungar. 137 (2012), 130-138
- [9] Mandal, D., and Das, M., On a new type of generalized closed sets in a GTS via hereditary classes and certain applications, An. Univ. Oradea, Fasc. Mat. 24 (2017), no. 1, 117-135.
- [10] Mariappan, R., and Murugalingam, M., Weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuity in Generalized Topologies, Inter. J. Current Res. Sc. and Tech. 2 (2016), no. 2, 1-8.
- [11] Ramesh, R., and Mariappan, R., Generalized open sets in hereditary generalized topological spaces, J. Math. Comput. Sci. 5 (2015), no. 2, 149-159.
- [12] Renukadevi, V., and Karuppayi, K., On modifications of generalized topologies via hereditary classes, J. Adv. Res. Pure. Math. 2 (2010), 14-20.
- [13] Renukadevi, V., and Vimaladevi, P., Compatible hereditary classes in GTS, Acta Math. Hunger. 147 (2015), no. 2, 259-271.
- [14] Roy, B., On generalized R_0 and R_1 spaces, Acta Math. Hungar. **127** (2010), no. 3, 291-300.
- [15] Scaria, S., and Renukadevi, V., On hereditary classes in generalized topological spaces, J. Adv. Res. Pure. Math. 3 (2011), no. 2, 21-30.
- [16] Sivagami, P., and Sivaraj, D., ∨ and ∧- sets of generalized topologies, Scientia Magna. 5(2009), no. 1, 83-93.

Manik Das and Dhananjoy Mandal

102