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SOME APPLICATIONS OF CERTAIN NEW TYPES OF SETS
IN GTS VIA HEREDITARY CLASSES
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Abstract

In this paper we introduce certain new types of sets in a generalized topo-
logical space via hereditary classes and investigate their several properties.
In the process we achieve some nice applications of these newly defined sets
to study a few lower separation properties viz µ∗-R0, µ∗-R1 and µ∗-T 1

2
spaces.
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1 Introduction

The idea of generalized topology [2] was introduced by A. Császár in 2002
and since then there has been a growing trend to study this concept in differ-
ent perspectives. In 2007, A. Császár [5] introduced the notion of hereditary
class in generalized topological space and subsequently many papers (e.g. see
[7, 8, 10, 11, 12, 13, 15]) appeared in the recent literature. In this article, there
is another attempt to introduce and investigate some new kind of sets in a gener-
alized topological space with a hereditary class. Also, we give some applications
of these sets by characterizing certain separation axioms viz. µ∗-R0, µ∗-R1 and
µ∗-T 1

2
.

A collection µ of subsets of a set X is called a generalized topology [2] on X
if φ ∈ µ and µ is closed under arbitrary union; the pair (X,µ) is called a gen-
eralized topological space (GTS, in short). The members of µ are called µ-open
sets and their complements are called µ-closed sets in (X,µ). According to [1],
for A ⊆ X, the union of all µ-open subsets of X, each contained in A is called
µ-interior of A and is denoted by iµ(A); the map iµ : expX → expX is monotone
(i.e., A ⊆ B ⇒ iµ(A) ⊆ iµ(B)), restricting (i.e., iµ(A) ⊆ A for A ⊆ X) and
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idempotent (i.e., iµ(iµ(A)) = iµ(A)), where expX denotes the set of all subsets of
X. The generalized closure of a subset A of X, denoted by cµ(A), is the intersec-
tion of all µ-closed subsets of X each containing A; the map cµ : expX → expX
is monotone, idempotent and enlarging (i.e., A ⊆ cµ(A) for A ⊆ X). Moreover
cµ(X \A) = X\iµ(A) [4].

A family H of subsets of X is said to be a hereditary class [5] on X if A ∈ H

and B ⊆ A implies B ∈ H. For a GTS (X,µ) with a hereditary class H, a subset
A∗(µ,H) or simply A∗ of X is defined by A∗ = {x ∈ X : U ∩ A /∈ H for every
U ∈ µ containing x } [5], for each A ⊆ X. In [5], it was also shown that for A ⊆ X
if c∗µ(A) = A ∪ A∗, then µ∗(µ,H) (or simply µ∗)= {A ⊆ X : c∗µ(X\A) = X\A}
is a generalized topology on X with µ ⊆ µ∗. Moreover, the map c∗µ is monotone,
enlarging and idempotent. The elements of µ∗ are called µ∗-open sets. The com-
plements of µ∗-open sets are called µ∗-closed sets and equivalently A is a µ∗-closed
set iff A∗ ⊆ A [5].

In Section 2 of this paper, we introduce two types of sets viz. ∧∗µ-set and ∨∗µ-
set in a GTS with a hereditary class and study some of their properties. In [9],
we investigated µ∗-R0, µ∗-R1 and µ∗-T 1

2
spaces in a GTS with a hereditary class.

In the last section of this article, we investigate some lower separation axioms
viz. µ∗-R0, µ∗-R1 and µ∗-T 1

2
with the help of different types of sets introduced in

Sections 2 and 3.

Definition 1. [6] Let (X,µ) be a GTS and A ⊆ X. The subsets ∧µ(A) and ∨µ(A)
are defined by

∧µ(A) =

{
∩{U : A ⊆ U,U is µ-open sets }, if ∃ U ∈ µ such that A ⊆ U ;

X, otherwise

∨µ(A) =

{
∪{F : F ⊆ A,F is µ-closed }, if ∃ µ-closed F such that F ⊆ A;

φ, otherwise

Definition 2. [6] A subset A of a GTS (X,µ) is called a ∧µ-set (∨µ-set) if
A = ∧µ(A) (respectively, if A = ∨µ(A)).

Theorem 1. [6] Let (X,µ) be a GTS and A be any subset of X. Then ∧µ(A) =
{x ∈ X : cµ({x}) ∩A 6= φ}.

2 ∧∗µ and ∨∗µ-sets
The intent of this section is to introduce two types of sets viz. ∧∗µ-sets and

∨∗µ-sets, and characterize µ∗-g-closed sets with the help of these types of sets.
Before we begin this section, we observe that Mµ = ∪{M | M ∈ µ} is the largest
µ-open set of X, and certainly if B is a µ-closed set then X\Mµ ⊆ B ⊆ X.

Definition 3. Let (X,µ) be a GTS with a hereditary class H and A ⊆ X. We
define
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∧∗µ(A) =

{
∩{U : A ⊆ U,U is µ∗-open sets }, for A ⊆Mµ;

X, otherwise

∨∗µ(A) =

{
∪{F : F ⊆ A,F is µ∗-closed sets }, for X\Mµ ⊆ A ⊆ X;

φ, otherwise

Theorem 2. Let (X,µ) be a GTS with a hereditary class H. Then
∧∗µ(A) = {x ∈ X : c∗µ({x}) ∩A 6= φ} for each A ⊆ X.

Proof. Let x ∈ ∧∗µ(A) be such that c∗µ({x})∩A = φ. Then A ⊆ X\c∗µ({x}), where
X\c∗µ({x}) is a µ∗-open set not containing x and hence x /∈ ∧∗µ(A), a contradiction.
Conversely, let c∗µ({x}) ∩A 6= φ. If x /∈ ∧∗µ(A), then by definition of ∧∗µ(A), there
exists a µ∗-open set U with x /∈ U such that A ⊆ U . Let y ∈ c∗µ({x}) ∩ A. Then
y ∈ c∗µ({x}) and y ∈ U . Thus x ∈ U , a contradiction.

Theorem 3. For subsets A,B,Aα(α ∈ ∆) of a GTS (X,µ) with a hereditary
class H, the following properties hold:
(i) A ⊆ ∧∗µ(A).
(ii) If A is µ∗-open, then A = ∧∗µ(A).
(iii) If A ⊆ B, then ∧∗µ(A) ⊆ ∧∗µ(B).
(iv) ∧∗µ(∧∗µ(A)) = ∧∗µ(A).
(v) ∧∗µ(∩{Aα : α ∈ ∆}) ⊆ ∩{∧∗µ(Aα) : α ∈ ∆}.
(vi) ∧∗µ(∪{Aα : α ∈ ∆}) = ∪{∧∗µ(Aα) : α ∈ ∆}.

Proof. (i) and (ii) follow from the definition.
(iii) Let A ⊆ B. If x /∈ ∧∗µ(B), then there exists a µ∗-open set U such that
B ⊆ U and x /∈ U . Since A ⊆ B ⊆ U , then from the definition of ∧∗µ(A), we have
x /∈ ∧∗µ(A) and hence ∧∗µ(A) ⊆ ∧∗µ(B).
(iv) By (i), we have ∧∗µ(∧∗µ(A)) ⊇ ∧∗µ(A). Suppose that x /∈ ∧∗µ(A). Then there
exists a µ∗-open set U such that A ⊆ U and x /∈ U . Since A ⊆ ∧∗µ(A) ⊆ U , from
the definition of ∧∗µ(∧∗µ(A)), we have ∧∗µ(∧∗µ(A)) ⊆ U , and hence x /∈ ∧∗µ(∧∗µ(A)),
that is ∧∗µ(∧∗µ(A)) ⊆ ∧∗µ(A). Thus ∧∗µ(∧∗µ(A)) = ∧∗µ(A).
(v) It follows from (i) and (iii).
(vi) We have ∧∗µ(Aα) ⊆ ∧∗µ(

⋃
α∈∆

Aα) and hence
⋃

α∈∆

∧∗µ(Aα) ⊆ ∧∗µ(
⋃

α∈∆

Aα). Next,

let x /∈
⋃

α∈∆

∧∗µ(Aα). Then x /∈ ∧∗µ(Aα) for each α ∈ ∆ and so there exists a

µ∗-open set Uα such that Aα ⊆ Uα and x /∈ Uα. Let U = ∪Uα. Then U ∈ µ∗ such
that ∪Aα ⊆ U and x /∈ U , and hence x /∈ ∧∗µ(∪Aα).

Remark 1. In (v) of Theorem 3, the equality does not hold in general, even if ∆
is a finite index set. See the following example.

Example 1. Let X = {a, b, c, d}. Consider a GT µ on X, where µ = {φ, {a},
{d}, {a, d}, {a, c}, {a, c, d}} and a hereditary class H = {φ, {b}, {c}}. Then µ∗

= {φ, {a}, {d}, {a, d}, {a, c}, {a, c, d}}. Let us consider A = {a, d} and B = {c, d}.
Then ∧∗µ(A) = {a, d}, ∧∗µ(B) = {a, c, d} and ∧∗µ(A∩B) = {d}. Thus ∧∗µ(A∩B) 6=
∧∗µ(A) ∩ ∧∗µ(B).
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Lemma 1. Let (X,µ) be a GTS with a hereditary class H. Then ∧∗µ(X\A) =
X\ ∨∗µ (A) for every A ⊆ X.

Proof. We have X\ ∨∗µ (A) = X\(∪{F : F ⊆ A and F is a µ∗-closed set}) =
∩{X\F : X\A ⊆ X\F and X\F is a µ∗-open set } = ∧∗µ(X\A).

Using the above lemma and Theorem 3, we have the following result:

Theorem 4. For subsets A,B,Aα(α ∈ ∆) of a GTS (X,µ) with a hereditary
class H, the following properties hold:
(i) ∨∗µ(A) ⊆ A.
(ii) If A is µ∗-closed, then A = ∨∗µ(A).
(iii) If A ⊆ B, then ∨∗µ(A) ⊆ ∨∗µ(B).
(iv) ∨∗µ(∨∗µ(A)) = ∨∗µ(A).
(v) ∨∗µ(∩{Aα : α ∈ ∆}) = ∩{∨∗µ(Aα) : α ∈ ∆}.
(vi) ∪{∨∗µ(Aα) : α ∈ ∆} ⊆ ∨∗µ(∪{Aα : α ∈ ∆}).

Definition 4. Let (X,µ) be a GTS with a hereditary class H. A subset A of X
is said to be a
(i) ∧∗µ-set if A = ∧∗µ(A),
(ii) ∨∗µ-set if A = ∨∗µ(A).
Therefore a subset A of X is a ∧∗µ-set if and only if X\A is a ∨∗µ-set.

Theorem 5. Let (X,µ) be a GTS with a hereditary class H. Then the following
statements hold:
(a) φ is a ∧∗µ-set and X is a ∨∗µ-set.
(b) Arbitrary union of ∧∗µ-sets is a ∧∗µ-set.
(c) Arbitrary intersection of ∨∗µ-sets is a ∨∗µ-set.

Proof. (a) Clear.
(b) Let {Aα : α ∈ ∆} be an arbitrary family of ∧∗µ-sets. Then Aα = ∧∗µ(Aα),
for each α ∈ ∆. Let A = ∪{Aα : α ∈ ∆}. Then by (vi) of Theorem 3, we have
∧∗µ(A) = A and hence A is a ∧∗µ-set.
(c) It follows from Lemma 1 and (b) above.

Definition 5. [9] A subset A of a GTS (X,µ) with a hereditary class H is said
to be µ∗-g-closed if cµ(A) ⊆ U whenever A ⊆ U and U is µ∗-open.
The complement of a µ∗-g-closed set is µ∗-g-open.

Theorem 6. Let (X,µ) be a GTS with a hereditary class H and A ⊆ X. Then
A is µ∗-g-closed if and only if cµ(A) ⊆ ∧∗µ(A).

Proof. Let A be a µ∗-g-closed set and x ∈ cµ(A). If x /∈ ∧∗µ(A), then there exists
a µ∗-open set U containing A such that x /∈ U . Now since A is µ∗-g-closed and
A ⊆ U , where U is µ∗-open, it follows that cµ(A) ⊆ U and thus x /∈ cµ(A), a
contradiction. Therefore cµ(A) ⊆ ∧∗µ(A).
Conversely suppose that cµ(A) ⊆ ∧∗µ(A). Let A ⊆ U , where U is µ∗-open. Then
∧∗µ(A) ⊆ U and hence cµ(A) ⊆ U . Therefore A is µ∗-g-closed.
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Corollary 1. Let (X,µ) be a GTS with a hereditary class H and A ⊆ X. Then
A is µ∗-g-open if and only if ∨∗µ(A) ⊆ iµ(A).

Corollary 2. Let (X,µ) be a GTS with a hereditary class H and A be a ∧∗µ-set.
Then A is µ∗-g-closed if and only if A is µ-closed in (X,µ).

Proof. Suppose that A is µ∗-g-closed. Then by using Theorem 6, we have cµ(A) ⊆
∧∗µ(A) = A. Thus A is µ-closed.
The converse is obvious.

Corollary 3. Let (X,µ) be a GTS with a hereditary class H and A be a ∨∗µ-set.
Then A is µ∗-g-open if and only if A is µ-open in (X,µ).

Theorem 7. Let (X,µ) be a GTS with a hereditary class H and A ⊆ X. Then
A is µ∗-g-closed if ∧∗µ(A) is µ∗-g-closed.

Proof. Let ∧∗µ(A) be µ∗-g-closed. Suppose that A ⊆ U , where U is µ∗-open.
Then ∧∗µ(A) ⊆ U . Since ∧∗µ(A) is µ∗-g-closed, it follows that cµ(∧∗µ(A)) ⊆ U .
Since A ⊆ ∧∗µ(A) ⊆ U , we have cµ(A) ⊆ cµ(∧∗µ(A)) ⊆ U i.e., cµ(A) ⊆ U and thus
A is a µ∗-g-closed set.

Remark 2. The converse of the above theorem is false as shown in the following
example.

Example 2. Consider a GT µ and a hereditary class H on X = {a, b, c}, where
µ = {φ, {a, b}, {b, c}, X} and H = {φ, {a}, {c}}. Then A = {a} is a µ∗-g-
closed but ∧∗µ(A) = {a, b} which is not a µ∗-g-closed set, since cµ({a, b}) = X 6⊆
∧∗µ({a, b}) = {a, b}(refer to Theorem 6).

3 Generalized ∧∗µ and ∨∗µ-sets

In this section, we introduce and study two other types of sets viz. g.∧∗µ-sets,
g.∨∗µ-sets. We discuss several properties of these sets, a few of which involve sets
introduced in the previous section. We start this section by recalling the following
definition from [16]:

Definition 6. A subset A of a GTS (X,µ) is said to be a generalized ∧µ-set
(g.∧µ-set, in short) if ∧µ(A) ⊆ F , whenever A ⊆ F and F is µ-closed in X.
A subset A of X is said to be a g.∨µ-set if X\A is a g.∧µ-set.

In an analogous way we define generalized ∧∗µ-sets in our setting as follows:

Definition 7. Let (X,µ) be a GTS with a hereditary class H. A subset A of X
is said to be a generalized ∧∗µ-set (g.∧∗µ-set, in short) if ∧∗µ(A) ⊆ F , whenever F
is µ-closed in X and A ⊆ F .
A subset A of X is said to be a g.∨∗µ-set if X\A is a g.∧∗µ-set.
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Remark 3. (i) Every g.∧µ-set (g.∨µ-set) is a g.∧∗µ-set (resp. g.∨∗µ-set). But the
converse is false (see Example 3(a)).
(ii) Every ∧∗µ-set (∨∗µ-set) is a g.∧∗µ-set (resp. g.∨∗µ-set). But the converse is false
(see Example 3(b)).

Example 3. (a) Let X= {a, b, c}, µ = {φ, {c}, {a, b}, {b, c}, X} and H = {φ, {b}, {c}}.
Consider A = {a}. Then ∧µ(A) = {a, b} and ∧∗µ(A) = {a}. Thus, it follows that
A is a g.∧∗µ-set but not a g.∧µ-set.
(b) Consider X = {a, b, c, d}, µ = {φ, {a, b}, {b, c}, {a, b, c}} and H = {φ, {a}, {c}}.
Let A = {a, c}. Then ∧∗µ(A) = {a, b, c}. Thus A is a g.∧∗µ(A)-set, but not a
∧∗µ(A)-set.

Theorem 8. Let (X,µ) be a GTS with a hereditary class H and A ⊆ X. Then A
is a g.∨∗µ-set if and only if U ⊆ ∨∗µ(A), whenever U ⊆ A and U is µ-open in X.

Proof. Let A be a g.∨∗µ-set and U ⊆ A, where U is µ-open in X. Then X\A ⊆
X\U , where X\U is µ-closed in X. Since X\A is a g.∧∗µ-set, ∧∗µ(X\A) ⊆ X\U
which implies by Lemma 1 that X\ ∨∗µ (A) ⊆ X\U . Thus U ⊆ ∨∗µ(A).
Conversely, let the condition hold. Let A be a subset of X such that X\A ⊆ F ,
where F is µ-closed in X. Then X\F ⊆ A and X\F is µ-open in X and so by
given condition, X\F ⊆ ∨∗µ(A). Thus X\ ∨∗µ (A) ⊆ F and hence by Lemma 1,
∧∗µ(X\A) ⊆ F . Then X\A is a g.∧∗µ-set. Hence A is a g.∨∗µ-set.

Theorem 9. Let (X,µ) be a GTS with a hereditary class H and A ⊆ X. If A is
a g.∨∗µ-set, then F = X whenever ∨∗µ(A) ∪ (X\A) ⊆ F and F is µ-closed in X.

Proof. Let A be a g.∨∗µ-set and ∨∗µ(A) ∪ (X\A) ⊆ F , where F is µ-closed in X.
Then we have X\F ⊆ X\(∨∗µ(A) ∪ (X\A)) = (X\ ∨∗µ (A)) ∩ A. Thus X\F ⊆
(X\∨∗µ (A)) and X\F ⊆ A. It follows that X\F ⊆ ∨∗µ(A) (by Theorem 8 ). Thus
X\F ⊆ (X\ ∨∗µ (A)) ∩ ∨∗µ(A) = φ and hence F = X.

Theorem 10. Let (X,µ) be a GTS with a hereditary class H. Then a g.∨∗µ-set
is a ∨∗µ-set if and only if ∨∗µ(A) ∪ (X\A) is a µ-closed set.

Proof. Suppose that a g.∨∗µ-set A is a ∨∗µ-set. Then ∨∗µ(A) = A. Thus ∨∗µ(A) ∪
(X\A) = A ∪ (X\A) = X which is µ-closed.

Conversely, let A be a g.∨∗µ-set such that ∨∗µ(A) ∪ (X\A) is µ-closed in X.
Then by Theorem 9, we have ∨∗µ(A) ∪ (X\A) = X and hence A ⊆ ∨∗µ(A). Again
by Theorem 4(i), A ⊇ ∨∗µ(A). Thus ∨∗µ(A) = A and hence A is a ∨∗µ-set.

Corollary 4. Let (X,µ) be a GTS with a hereditary class H. Then a g.∧∗µ-set is
∧∗µ-set if and only if ∧∗µ(A) ∪ (X\A) is µ-open.

Theorem 11. Let (X,µ) be a GTS with a hereditary class H. Then for each
x ∈ X, either {x} is a µ-open set in X or a g.∨∗µ-set.

Proof. Let x ∈ X. Suppose {x} is not µ-open in X, then X is the only µ-closed
set containing X\{x} and hence X\{x} is a g.∧∗µ-set. Thus {x} is a g.∨∗µ-set.
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Theorem 12. Let (X,µ) be a GTS with a hereditary class H. Then every sin-
gleton of X is a g.∧∗µ-set if and only if U = ∨∗µ(U) for every µ-open set U in
X.

Proof. Let every singleton set of X be a g.∧∗µ-set. Let U be a µ-open set in X
and x ∈ X\U . Since {x} is a g.∧∗µ-set, we have ∧∗µ{x} ⊆ X\U . It follows that⋃
{∧∗µ{x} : x ∈ X\U} ⊆ X\U and thus using Theorem 3(vi), we get ∧∗µ(

⋃
{{x} :

x ∈ X\U}) ⊆ X\U . Therefore ∧∗µ(X\U) ⊆ X\U and hence by Lemma 1, we
have X\U = ∧∗µ(X\U) = X\ ∨∗µ (U). Thus U = ∨∗µ(U).
Conversely, let x ∈ X and {x} ⊆ F , where F is a µ-closed subset of X. Then
X\F is µ-open in X and so by hypothesis, X\F = ∨∗µ(X\F ) = X\ ∧∗µ (F ) (by
Lemma 1). It follows that F = ∧∗µ(F ). Thus ∧∗µ{x} ⊆ ∧∗µ(F ) = F and hence {x}
is a g.∧∗µ-set.

4 Applications

In [9], we introduced and studied the concept of µ∗-R0, µ∗-R1 and µ∗-T 1
2

spaces. Here we deduce some characterizations of the above lower separation
axioms in terms of ∧∗µ and ∨∗µ sets.

Definition 8. [9] A GTS (X,µ) with a hereditary class H is said to be a µ∗-R0-
space if for every µ∗-open set U and each x ∈ U , one has cµ({x}) ⊆ U that is,
every singleton is µ∗-g-closed.

Definition 9. [9] A GTS (X,µ) with a hereditary class H is said to be µ∗-R1 if
for each x, y ∈ X with cµ({x}) 6= c∗µ({y}), there exist two disjoint µ∗-open sets U
and V such that cµ({x}) ⊆ U and c∗µ({y}) ⊆ V .

Proposition 1. [9] Let (X,µ) be a GTS with a hereditary class H. If it is µ∗-R1,
then it is also µ∗-R0.

Theorem 13. (Theorem 3.2 of [9]) Let (X,µ) be a GTS with a hereditary class
H. Then the following are equivalent:
(a) A GTS (X,µ) with a hereditary class H is µ∗-R0-space.
(b) x ∈ c∗µ({y}) if and only if y ∈ cµ({x}), where x and y are any two distinct
points of X.

Theorem 14. (Theorem 3.3 of [9]) For a GTS (X,µ) with a hereditary class H,
the following are equivalent:
(a) A GTS (X,µ) with a hereditary class H is µ∗-R0-space.
(b) If x and y are two distinct points of X then x /∈ c∗µ({y})⇒ cµ({x})∩ c∗µ({y}) =
φ.
(c) Every µ∗-closed set F can be written as, F = ∩{U : U is µ-open and F ⊆ U}.
Theorem 15. In a µ∗-R0-space, for any two points x, y in X, the following are
equivalent:
(a) cµ({x}) 6= cµ({y})
(b) cµ({x}) 6= c∗µ({y})
(c) either cµ({x}) ∩ c∗µ({y}) = φ or c∗µ({x}) ∩ cµ({y}) = φ.
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Proof. (a)⇒ (b) : Let x, y ∈ X be such that cµ({x}) 6= cµ({y}). Then either
x /∈ cµ({y}) or y /∈ cµ({x}). If x /∈ cµ({y}) then x /∈ c∗µ({y}) and hence cµ({x}) 6=
c∗µ({y}). If y /∈ cµ({x}) then cµ({x}) 6= c∗µ({y}).

(b)⇒ (c) : Let x, y ∈ X be such that cµ({x}) 6= c∗µ({y}). Then either x /∈
c∗µ({y}) or y /∈ cµ({x}). If x /∈ c∗µ({y}) then by Theorem 14((a)⇔ (b)), cµ({x})∩
c∗µ({y}) = φ. Next, suppose y /∈ cµ({x}) which implies that y /∈ c∗µ({x}) and
hence again by Theorem 14((a)⇔ (b)), cµ({y}) ∩ c∗µ({x}) = φ.

(c)⇒ (a) : Let x, y ∈ X be such that either cµ({x})∩c∗µ({y}) = φ or c∗µ({x})∩
cµ({y}) = φ. If cµ({x}) ∩ c∗µ({y}) = φ then y /∈ cµ({x}) and hence cµ({x}) 6=
cµ({y}). Next if c∗µ({x}) ∩ cµ({y}) = φ then x /∈ cµ({y}) and thus cµ({x}) 6=
cµ({y}).

Theorem 16. For a GTS (X,µ) with a hereditary class H the following are
equivalent:
(a) A GTS (X,µ) with a hereditary class H is a µ∗-R0 space.
(b) If F is µ∗-closed and x ∈ F , then ∧∗µ({x}) ⊆ F and F = ∧µ(F ) = ∧∗µ(F ).
(c) If x ∈ X, then ∧∗µ({x}) = cµ({x}).

Proof. (a)⇒ (b) : Let F be µ∗-closed and x ∈ F . We first prove that F =
∧µ(F ) = ∧∗µ(F ). By ((a) ⇒ (c)) of Theorem 14 and Definition 1, we have F =
∧µ(F ). Again obviously ∧∗µ(F ) ⊆ ∧µ(F ) and by Theorem 3, F ⊆ ∧∗µ(F ). Thus
F = ∧∗µ(F ) and hence F = ∧µ(F ) = ∧∗µ(F ). Now x ∈ F , we get ∧∗µ({x}) ⊆
∧∗µ(F ) = F .
(b)⇒ (c) : Let x ∈ X. Then x ∈ c∗µ({x}) where c∗µ({x}) is a µ∗-closed set and so
by (b), ∧∗µ({x}) ⊆ c∗µ({x}) and thus ∧∗µ({x}) ⊆ cµ({x}) ...(1). Next we show that
cµ({x}) ⊆ ∧∗µ({x}). For that, let y /∈ ∧∗µ({x}). Then there exists V ∈ µ∗ such that
x ∈ V and y /∈ V . So c∗µ({y}) ∩ V = φ. By (b), we have c∗µ({y}) = ∧µ(c∗µ({y})) =
∩{G ∈ µ : c∗µ({y}) ⊆ G} which implies that ∩{G ∈ µ : c∗µ({y}) ⊆ G} ∩ V = φ.
Thus, there exists G ∈ µ such that x /∈ G with c∗µ({y}) ⊆ G. Since x /∈ G,
cµ({x}) ∩ G = φ and hence y /∈ cµ({x}). Thus c∗µ({x}) ⊆ cµ({x}) ⊆ ∧∗µ({x}).
...(2). Therefore, from (1) and (2), we have ∧∗µ({x}) = cµ({x}).
(c)⇒ (a) : Let x, y ∈ X with x 6= y. Then x ∈ c∗µ({y}) if and only if y ∈ ∧∗µ({x})
(by using Theorem 2) i.e., x ∈ c∗µ({y}) if and only if y ∈ cµ({x}) ( by using (c)).
Hence by Theorem 13, (X,µ) with a hereditary class H is a µ∗-R0 space.

Theorem 17. The following are equivalent for a GTS (X,µ) with a hereditary
class H:
(a) (X,µ) with a hereditary class H is a µ∗-R0 space.
(b) x ∈ ∧∗µ({y}) if and only if y ∈ ∧µ({x}), for any two distinct points x, y ∈ X.

Proof. (a)⇒ (b) : Suppose that (X,µ) with a hereditary class H is a µ∗-R0 space.
Let x, y ∈ X with x 6= y. First let x ∈ ∧∗µ({y}). Then by Theorem 2, y ∈ c∗µ({x}).
We now show that y ∈ ∧µ({x}). Indeed, if y /∈ ∧µ({x}) then there exists V ∈ µ
such that x ∈ V and y /∈ V and so cµ({y}) ∩ V = φ. Thus ∩{G ∈ µ : cµ({y}) ⊆
G} ∩ V = φ (refer to Theorem 14((a) ⇒ (c)) and hence there exists G ∈ µ such
that x /∈ G with cµ({y}) ⊆ G and hence cµ({x}) ∩ G = φ. This implies that
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y /∈ cµ({x}) and hence y /∈ c∗µ({x}), a contradiction. Next, let y ∈ ∧µ({x}). Then
by Theorem 1, x ∈ cµ({y}). Since (X,µ) with a hereditary class H is µ∗-R0, by
((a)⇒ (c)) of Theorem 16, we have ∧∗µ({y}) = cµ({y}) and hence x ∈ ∧∗µ({y}).
(b)⇒ (a) : Let the condition (b) hold. Let U be any µ∗-open set and x ∈ U .
Claim: cµ({x}) ⊆ U . In fact, let y /∈ U . Then x /∈ c∗µ({y}) and so by Theorem
2, y /∈ ∧∗µ({x}). Therefore by hypothesis, we have x /∈ ∧µ({y}) and consequently
y /∈ cµ({x}) ( by Theorem 1). Hence (X,µ) with a hereditary class H is a µ∗-R0

space.

Theorem 18. A GTS (X,µ) with a hereditary class H is µ∗-R1 if and only if for
any two distinct points x, y ∈ X with ∧∗µ({x}) 6= ∧µ({y}), there exist two disjoint
µ∗-open sets U and V such that cµ({x}) ⊆ U and c∗µ({y}) ⊆ V .

Proof. Suppose that (X,µ) with a hereditary class H is µ∗-R1. Let x, y be any
two distinct points in X such that ∧∗µ({x}) 6= ∧µ({y}). Then we have either
x /∈ ∧µ({y}) or y /∈ ∧∗µ({x}). If not then x ∈ ∧µ({y}) and y ∈ ∧∗µ({x}) and so
∧µ({x}) ⊆ ∧µ(∧µ({y})) = ∧µ({y}) and thus ∧∗µ({x}) ⊆ ∧µ({y}). By hypoth-
esis, we have ∧∗µ({x}) & ∧µ({y}). Since (X,µ) with the hereditary class H is
µ∗-R1, by Proposition 1, it is a µ∗-R0 space. Now by using ((a) ⇒ (c)) of The-
orem 16, we have cµ({x}) & ∧µ({y})...(1). Let z ∈ ∧µ({y}). Then by Theorem
1, we have y ∈ cµ({z}). It follows that c∗µ({y}) ⊆ cµ({z}) and hence by The-
orem 15 ((b) ⇒ (c)), we must have c∗µ({y}) = cµ({z}). Thus z ∈ c∗µ({y}) and
hence ∧µ({y} ⊆ c∗µ({y})...(2). From (1) and (2), we get cµ({x}) & c∗µ({y}) and
hence there are no two disjoint µ∗-open sets U and V such that cµ({x}) ⊆ U and
c∗µ({y}) ⊆ V which contradicts the fact that the space is µ∗-R1.
Now we show that cµ({x}) 6= c∗µ({y}).
Case I: If x /∈ ∧µ({y}) then y /∈ cµ({x}) which implies cµ({x}) 6= c∗µ({y}).
Case II: If y /∈ ∧∗µ({x}) then x /∈ c∗µ({y}) which implies cµ({x}) 6= c∗µ({y}).
Thus, in both the cases, we have cµ({x}) 6= c∗µ({y}). Then by definition of µ∗-R1

space, there exist two disjoint µ∗-open sets U and V such that cµ({x}) ⊆ U and
c∗µ({y}) ⊆ V .
Conversely, let the condition hold. Let x and y be two distinct points of X such
that cµ({x}) 6= c∗µ({y}). Then either y /∈ cµ({x}) or x /∈ c∗µ({y}).
Case I: If y /∈ cµ({x}) then there exists a µ-open setG containing y such that x /∈ G
and hence from the definition x /∈ ∧µ({y}) which follows that ∧µ({y}) 6= ∧∗µ({x}).
Case II: If x /∈ c∗µ({y}) then by Theorem 2, y /∈ ∧∗µ({x}) which shows that
∧∗µ({x}) 6= ∧µ({y}).
Thus, in both the cases, we have ∧∗µ({x}) 6= ∧µ({y}) and hence by hypothe-
sis, there exist two disjoint µ∗-open sets U and V such that cµ({x}) ⊆ U and
c∗µ({y}) ⊆ V . This shows that (X,µ) with a hereditary class H is µ∗-R1.

Definition 10. [9] A GTS (X,µ) with a hereditary class H is said to be µ∗-T 1
2

if every µ∗-g-closed set is µ-closed in X.

Theorem 19. [9] A GTS (X,µ) with a hereditary class H is a µ∗-T 1
2

space if

and only if for each x ∈ X, either {x} is µ∗-closed or µ-open in X.
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Theorem 20. Let (X,µ) be a GTS with a hereditary class H. Then it is a
µ∗-T 1

2
-space if and only if every g.∨∗µ-set is a ∨∗µ-set.

Proof. Let a GTS (X,µ) with a hereditary class H be a µ∗-T 1
2
-space. We prove

by contradiction. Suppose that A is a g.∨∗µ-set but not a ∨∗µ-set. Then there
exists an element x ∈ A such that x /∈ ∨∗µ(A). Thus by definition of ∨∗µ(A), {x}
is not µ∗-closed. Thus by Theorem 19, we have {x} is µ-open, that is, X\{x} is
µ-closed in X. Since x ∈ A and x /∈ ∨∗µ(A), we have ∨∗µ(A) ∪ (X\A) ⊆ X\{x}.
Therefore by Theorem 9, X\{x} = X, a contradiction.
Conversely, let every g.∨∗µ-set be a ∨∗µ-set. Suppose the GTS (X,µ) with a hered-
itary class H is not a µ∗-T 1

2
-space. Then there exists a µ∗-g-closed set A which is

not µ-closed in X. Thus, there exists an element x ∈ X such that x ∈ cµ(A) but
x /∈ A. Now by Theorem 11, {x} is either a µ-open set or a g.∨∗µ-set.
Case I: Let {x} be µ-open. Then x ∈ cµ(A) implies that {x} ∩ A 6= φ and so
x ∈ A, a contradiction.
Case II: Let {x} be a g.∨∗µ-set. Then by hypothesis {x} is a ∨∗µ-set and so
{x} = ∨∗µ({x}) and hence by definition of ∨∗µ-set, we have {x} is µ∗-closed. Since
A is µ∗-g-closed and A ⊆ X\{x}, cµ(A) ⊆ X\{x}, which contradict that x ∈
cµ(A).
Hence (X,µ) with a hereditary class H is a µ∗-T 1

2
-space.

Corollary 5. Let (X,µ) be a GTS with a hereditary class H. Then it is a µ∗-
T 1

2
-space if and only if every g.∧∗µ-set is a ∧∗µ-set.

Corollary 6. Let (X,µ) be a GTS with a hereditary class H. Then it is a µ∗-
T 1

2
-space if and only if for each x ∈ X, either {x} is a ∨∗µ-set or µ-open in X.

Proof. Let X be a µ∗-T 1
2
-space. Now we have from Theorem 11 that for each

x ∈ X, either {x} is a µ-open set or a g.∨∗µ-set in X. If {x} is µ-open in (X,µ)
then we are done. So suppose that {x} is not a µ-open set in X. Then it must
be a g.∨∗µ-set and so by Theorem 20, we get {x} is a ∨∗µ-set.
Conversely, let x ∈ X. Then either {x} is a ∨∗µ-set or µ-open in X.
Case I: If {x} is a ∨∗µ-set in X, then {x} = ∨∗µ({x}) and so by definition of ∨∗µ-set,
we have {x} is µ∗-closed. Hence by Theorem 19, X is a µ∗-T 1

2
-space.

Case II: If {x} is µ-open in X, then by Theorem 19, X is a µ∗-T 1
2
-space.
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