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A CRITERION FOR THE LIMIT OF A RATIO OF
FUNCTIONS
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Abstract

In this paper we establish a criterion for the existence of the limit of
a ratio of real functions. In particular, this criterion offers a converse of
l’Hôpital’s rule.
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1 Introduction

L’Hospital’s theorem is one of the most popular mathematical tools in one-
variable calculus. In this paper we propose a converse theorem. Namely, we
investigate the implication:

lim
x↑b

∫ x
a f(t) dt∫ x
a g(t) dt

= L ⇒ lim
x↑b

f(x)

g(x)
= L, (1)

where f and g are two locally Riemann integrable positive functions on [a, b). Our
main result (Theorem 1) states sufficient conditions for the above implication.
These conditions are motivated by suitable counterexamples. A particular case of
(1) was formulated by Călin Popescu (see [1], pages 320-321).

2 Main results

Our aim is to formulate sufficient conditions for the implication (1). The
theorem below shows that (1) holds under certain conditions of monotony. In this
paper, an increasing function means a non-decreasing function.

Theorem 1. Let f, g : [a, b)→ (0,∞) be two Riemann locally integrable functions,
where −∞ < a < b ≤ ∞. Assume that
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1. f is increasing on [a, b);

2. lim
x↑b

x∫
a
g(t) dt =∞;

3.

x∫
a
g(t) dt

g(x)
is an increasing function in x ∈ [a, b);

4. there exists the limit lim
x↑b

∫ x
a f(t) dt∫ x
a g(t) dt

= L.

If L is finite, i.e. L ∈ [0,∞), then lim
x↑b

f(x)

g(x)
= L.

Proof. Let us denote F (x) =

∫ x

a
f(t) dt and G(x) =

∫ x

a
g(t) dt, for x ∈ [a, b).

Case I. Firstly, suppose L ∈ (0,∞). Since f/L is increasing and
∫ x
a f(t)/L dt∫ x
a g(t) dt

→ 1,

we observe that it suffices to prove the theorem for L = 1. Thus, we assume that

lim
x↑b

F (x)

G(x)
= 1. (2)

We will prove by reductio ad absurdum that

lim
x↑b

f(x)

g(x)
= 1. (3)

Assume r(x) :=
f(x)

g(x)
6→ 1 for x ↑ b. Then, there are L′ ∈ [0,∞] \ {1} and a

strictly increasing sequence (xn)n≥1, with the terms in the interval [a, b), such
that xn ↑ b and lim

n→∞
r (xn) = L′.

Assume L′ > 1. Let us consider two fixed numbers c ∈ (1, L′) and λ ∈ (1, c).
Since r (xn) → L′, there is a positive integer n0 such that r (xn) > c, ∀ n ≥ n0.
Seeing that G is strictly increasing and continuous, with G(x)→∞ for x ↑ b, we
can associate to each term xn (n ≥ n0) a unique number yn ∈ (xn, b) with the
property G (yn) = λG (xn). From the assumption 1, we find

F (yn) = F (xn) +

∫ yn

xn

f(t) dt ≥ F (xn) + f (xn) (yn − xn)

> F (xn) + cg (xn) (yn − xn) ,

for all n ≥ n0. From the condition 3 of the hypothesis, we obtain

g (xn) ≥ g (t)G (xn)

G(t)
≥ g (t)G (xn)

G(yn)
=
g (t)

λ
,
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for all t ∈ [xn, yn]. Hence

g (xn) (yn − xn) ≥ 1

λ

∫ yn

xn

g(t)dt =
1

λ
[G (yn)−G (xn)] .

Therefore, for n ≥ n0, we have

F (yn)

G (yn)
>
F (xn) + c [G (yn)−G (xn)] /λ

G (yn)
=

F (xn)

λG (xn)
+
c(λ− 1)

λ2
.

Based on (2), the above inequality becomes for n→∞

1 ≥ 1

λ
+
c(λ− 1)

λ2
,

or (λ− 1)(λ− c) ≥ 0, in contradiction with our assumption 1 < λ < c.
Let us suppose now that L′ ∈ [0, 1). Consider the fixed numbers c ∈ (L′, 1),
λ ∈ (c, 1) and a1 ∈ (a, b). Since G is continuous, G (a1) > 0 and lim

x↑b
G(x) = ∞,

we can find a2 ∈ (a1, b) such that G (a2) = G (a1) /λ. There is a positive integer
n0 such that xn > a2 and r (xn) < c, ∀ n ≥ n0. We can associate to each term
xn (n ≥ n0) a unique number yn ∈ (a1, xn) with the property G (yn) = λG (xn).
Then we have

F (xn) = F (yn) +

∫ xn

yn

f(t)dt ≤ F (yn) + f (xn) (xn − yn)

< F (yn) + cg (xn) (xn − yn) , ∀ n ≥ n0.

From the hypothesis, we get

g (xn) ≤ g (t)G (xn)

G(t)
≤ g (t)G (xn)

G(yn)
=
g (t)

λ
, ∀ t ∈ [yn, xn] .

By integrating on [yn, xn], we find g (xn) (xn − yn) ≤ 1

λ
[G (xn)−G (yn)]. Thus,

F (xn)

G (xn)
<
F (yn) + c [G (xn)−G (yn)] /λ

G (xn)
= λ

F (yn)

G (yn)
+
c(1− λ)

λ
, ∀ n ≥ n0.

Since xn ↑ b, we also have yn ↑ b. Then, passing to the limit for n → ∞, we get
1 ≤ λ+ c(1− λ)/λ, that is (λ− 1)(λ− c) ≥ 0, in contradiction with the condition
c < λ < 1.

Thus, we conclude that the relation (3) holds.

Case II. Assume L = 0. If we suppose that r(x) :=
f(x)

g(x)
6→ 0, for x ↑ b, then there

are L′ ∈ (0,∞] and a strictly increasing sequence (xn)n≥1, with the terms in the
interval [a, b), such that xn ↑ b and lim

n→∞
r (xn) = L′. Let us consider c ∈ (0, L′)

and λ > 1. There is n0 ∈ N such that r (xn) > c, ∀ n ≥ n0. We associate to each
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term xn the term yn ∈ (xn, b) such that G (yn) = λG (xn). Thus, following the
arguments used in the previous case, we obtain

F (yn)

G (yn)
>

F (xn)

λG (xn)
+
c(λ− 1)

λ2
,

for all n ≥ n0. Hence lim
n→∞

F (yn)

G (yn)
≥ lim

n→∞

F (xn)

λG (xn)
+
c(λ− 1)

λ2
, or

c(λ− 1)

λ2
≤ 0,

in contradiction with the inequalities c > 0 and λ > 1. So, lim
x↑b

f(x)

g(x)
= 0.

3 Comments and examples

If in Theorem 1 the functions f and g are supposed to be continuous on [a, b),
then F and G are their primitive functions on [a, b), with F (a) = G(a) = 0. In
this case, Theorem 1 is a converse of the theorem of l’Hospital (for the case ” ·∞”).

Further, we will comment on the hypothesis of Theorem 1. An implication of
type (1) does not hold without some monotony requirements. This statement is
confirmed by the following elementary example (see also [1]).

Counterexample 1. Consider f, g : [a,∞) → (0,∞), with a > 0, given by
f(x) = x(2 + sinx) and g(x) = 2x, for x ≥ 0. We obtain

lim
x→∞

F (x)

G(x)
= lim

x→∞

x2 − x cosx+ sinx− a2 + a cos a− sin a

x2 − a2
= 1.

But the function
f(x)

g(x)
= 1 +

sinx

2
has no limit at infinity.

Note that, in the above example, only the condition 1 of the hypothesis of
Theorem 1 is not fulfilled. Observe that this condition ensures the convexity of
F on [a, b). A natural question is the following: for the conclusion, is it sufficient
to assume the monotony of the two positive functions f and g? More precisely:
can we replace in the hypothesis of Theorem 1 the increasing monotony of G/g
by the increasing monotony of g? The following counterexample shows that this
replacement does not provide the desired conclusion.

Counterexample 2. Let us consider the increasing functions f, g : [0,∞) →
(0,∞), defined by f(x) = 2[x], for x ∈ [0,∞), and g(x) = 2[x], for x ∈ [0,∞) \ N,
with g(n) = 2n−1, for n ∈ N. We have F (x) = G(x) = 2[x](1+{x})−1, for x ≥ 0.

Thus lim
x→∞

G(x) =∞ and lim
x→∞

F (x)

G(x)
= 1, but

f(n)

g(n)
= 2, for all n ∈ N.

Observe that, in this counterexample, the function
G

g
is not increasing on

[0,∞). Indeed, we have

G(n)

g(n)
= 2− 1

2n−1
>

3

2
− 1

2n
=
G
(
n+ 1

2

)
g
(
n+ 1

2

) , for n ∈ N, n > 1.
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Remark that, if the condition 3 of the hypothesis of Theorem 1 is fulfilled by an
integrable function g : [a, b)→ (0,∞), then

lim sup
t↓x

g(t) ≤ lim
t↓x

G(t)g(x)

G(x)
= g(x)

and

lim inf
t↑x

g(t) ≥ lim
t↑x

G(t)g(x)

G(x)
= g(x),

for all x ∈ (a, b). Therefore, if g is increasing on (a, b) then g is continuous
on (a, b). Of course, a function g satisfying the condition 3 is not necessarily

increasing. For example, g(x) =
1

x
is decreasing on [1,∞) and

G(x)

g(x)
= x lnx is

increasing on [1,∞).

Finally, let us show that Theorem 1 does not hold for L =∞.

Counterexample 3. Consider g : [0,∞) → (0,∞), g(x) = ex. We define the
strictly increasing and divergent sequence (xn)n≥0, by x0 = 0 and xn+1 = exn,
for n ∈ N. Let f : [0,∞) → (0,∞) be the increasing function defined by f(x) =
xn+2 = exn+1, for x ∈ (xn, xn+1] , n ∈ N (with f(0) = 1). The assumptions 1-4

of Theorem 1 are met, with L =∞. But we have
f (xn)

g (xn)
= 1, for all n ∈ N \ {0}.

To prove that lim
x→∞

F (x)

G(x)
= ∞, we can use the following method. From

lim
n→∞

xn = ∞, lim
n→∞

(xn+1 − xn) = lim
n→∞

(exn − xn) = ∞ and lim
t→∞

t

1− e−t
= ∞,

we obtain

lim
n→∞

F (xn+1)− F (xn)

G (xn+1)−G (xn)
= lim

n→∞

exn+1 (xn+1 − xn)

exn+1 − exn
= lim

n→∞

xn+1 − xn
1− e−(xn+1−xn)

=∞.

Hence, by using Stolz-Cesàro’s Theorem, we find lim
n→∞

F (xn)

G (xn)
= ∞. Then, for

x > 0, there is n ∈ N such that x ∈ (xn, xn+1]. We have

F (x)− F (xn)

G (x)−G (xn)
=
exn+1 (x− xn)

ex − exn
= exn+1−xn · x− xn

ex−xn − 1
.

Since the function ϕ(t) =
t

et − 1
is decreasing on (0,∞), we find

F (x)− F (xn)

G (x)−G (xn)
≥ exn+1−xn · xn+1 − xn

exn+1−xn − 1
=
F (xn+1)− F (xn)

G (xn+1)−G (xn)
, ∀ x ∈ (xn, xn+1] .

So, we easily deduce that lim
x→∞

F (x)

G(x)
=∞.
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