AN INTEGRAL LINKED TO THE ARITHMETIC-GEOMETRIC MEAN

Ernest SCHEIBER ${ }^{1}$

Abstract

An integral involving hyperbolic functions is linked to the arithmetic-geometric mean in the same way as in the Gauss formula and a numerical method to compute the real elliptic integral of first kind is presented.

2010 Mathematics Subject Classification: 33C99, 33F99.
Key words: arithmetic-geometric mean, elliptic integrals.

1 Introduction

If $M(a, b)$ denotes the arithmetic-geometric mean of two positive numbers, a and b, then the following result established by Carl Friedrich GAUSS (1777-1855) in 1799 occurs, [5]:

Theorem 1. If a and b are positive reals then

$$
\begin{equation*}
\frac{1}{M(a, b)}=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{\mathrm{~d} x}{\sqrt{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x}} . \tag{1}
\end{equation*}
$$

We shall denote by $I\left(a, b, \alpha=\frac{\pi}{2}\right)$ the integral of the right hand side of (1). The definition of $I(a, b, \alpha)$ is given in (3).

For $a>b>0$ and $\alpha>0$ we shall take care of the integral

$$
\begin{equation*}
J(a, b, \alpha)=\int_{0}^{\alpha} \frac{\mathrm{d} x}{\sqrt{a^{2} \cosh ^{2} x-b^{2} \sinh ^{2} x}} \tag{2}
\end{equation*}
$$

First, we shall express $J\left(a, b, i \frac{\pi}{2}\right)$ through $I\left(a, b, \frac{\pi}{2}\right)$ involving an elliptic integral and then we present a pure real approach of $J(a, b, \alpha)$. We obtain a relation that links the integral $J(a, b, \alpha)$ with $M(a, b)$. In this case the computation is similar to the method presented in [5]. A simpler proof of (1) is given in [1], p.6.

Finally, using the same method for $I(a, b, \alpha)$ we obtain a numerical method to compute the real elliptic integral of first kind. The method will require the iterative computation of three sequences. For $\alpha=\frac{\pi}{2}$ the result is given in [3]. In [2], [4] other approaches to compute an elliptic integral of first kind are presented.

[^0]
$2 I(a, b, \alpha)$ and $J(a, b, \alpha)$ as elliptic integrals

We recall the following elliptic integrals, [6],

$$
F(\phi, m)=\int_{0}^{\phi} \frac{\mathrm{d} \theta}{\sqrt{1-m \sin ^{2} \theta}}, \quad \text { and } \quad K(m)=F\left(\frac{\pi}{2}, m\right)
$$

$K(\phi, m)$ is called the elliptic integral of first kind.
We have

$$
\begin{equation*}
I(a, b, \alpha)=\frac{1}{a} \int_{0}^{\alpha} \frac{\mathrm{d} x}{\sqrt{1-\left(1-\frac{b^{2}}{a^{2}}\right) \sin ^{2} x}}=\frac{1}{a} F\left(\alpha, 1-\frac{b^{2}}{a^{2}}\right) \tag{3}
\end{equation*}
$$

and

$$
I\left(a, b, \frac{\pi}{2}\right)=\frac{1}{a} K\left(1-\frac{b^{2}}{a^{2}}\right)
$$

Thus, equality (2) may be rewritten as $\frac{1}{M(a, b)}=\frac{2}{a \pi} K\left(1-\frac{b^{2}}{a^{2}}\right)$.
Using the changing of variable $x=i y$ we obtain

$$
J\left(a, b, i \frac{\pi}{2}\right)=i \int_{0}^{\frac{\pi}{2}} \frac{\mathrm{~d} y}{\sqrt{a^{2} \cos ^{2} y+b^{2} \sin ^{2} y}}=i I(a, b)=\frac{i}{a} K\left(1-\frac{b^{2}}{a^{2}}\right)
$$

and thus $J\left(a, b, i \frac{\pi}{2}\right)=\frac{i \pi}{2 M(a, b)}$.
Generally

$$
\begin{gathered}
J(a, b, \alpha)=i \int_{0}^{-i \alpha} \frac{\mathrm{~d} y}{\sqrt{a^{2} \cos ^{2} y+b^{2} \sin ^{2} y}}=\frac{i}{a} \int_{0}^{-i \alpha} \frac{\mathrm{~d} y}{\sqrt{1-\left(1-\frac{b^{2}}{a^{2}}\right) \sin ^{2} y}}= \\
=\frac{i}{a} F\left(-i \alpha, 1-\frac{b^{2}}{a^{2}}\right)=-\frac{i}{a} F\left(i \alpha, 1-\frac{b^{2}}{a^{2}}\right)
\end{gathered}
$$

and consequently $I(a, b, i \alpha)=i J(a, b, \alpha)$.

3 A pure real approach of $J(a, b, \alpha)$

If $a_{0}=a$ and $b_{0}=b$ then the sequences $\left(a_{k}\right)_{k \in \mathbb{N}},\left(b_{k}\right)_{k \in \mathbb{N}}$ defined by the recurrences

$$
a_{k+1}=\frac{a_{k}+b_{k}}{2}, \quad b_{k+1}=\sqrt{a_{k} b_{k}}, \quad k \in \mathbb{N}
$$

converge to $M(a, b)$.
In order to compute (2) the main ingredient is the changing of the variable

$$
\begin{equation*}
\sinh x=\frac{2 a \sinh \varphi}{a+b-(a-b) \sinh ^{2} \varphi} \tag{4}
\end{equation*}
$$

From (4) it results

$$
\begin{gather*}
\cosh ^{2} x=1+\sinh ^{2} x= \\
=\frac{(a+b)^{2}+2\left(a^{2}+b^{2}\right) \sinh ^{2} \varphi+(a-b)^{2} \sinh ^{4} \varphi}{\left(a+b-(a-b) \sinh ^{2} \varphi\right)^{2}} \tag{5}
\end{gather*}
$$

and then

$$
\begin{aligned}
a^{2} \cosh ^{2} x-b^{2} \sinh ^{2} x & =\frac{a^{2}\left((a+b)^{2}+2\left(a^{2}-b^{2}\right) \sinh ^{2} \varphi+(a-b)^{2} \sinh ^{4} \varphi\right)}{\left(a+b-(a-b) \sinh ^{2} \varphi\right)^{2}}= \\
& =a^{2}\left(\frac{a+b+(a-b) \sinh ^{2} \varphi}{a+b-(a-b) \sinh ^{2} \varphi}\right)^{2}
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\sqrt{a^{2} \cosh ^{2} x-b^{2} \sinh ^{2} x}=a \frac{a+b+(a-b) \sinh ^{2} \varphi}{a+b-(a-b) \sinh ^{2} \varphi} \tag{6}
\end{equation*}
$$

In (5), using the relations

$$
(a+b)^{2}=4 a_{1}^{2}, \quad a^{2}+b^{2}=4 a_{1}^{2}-2 b_{1}^{2}, \quad(a-b)^{2}=4 a_{1}^{2}-4 b_{1}^{2}
$$

the numerator expressions are linked to a_{1} and b_{1} and we get

$$
\begin{gathered}
\cosh ^{2} x=\frac{4\left(\left(1+2 \sinh ^{2} \varphi+\sinh ^{4} \varphi\right) a_{1}^{2}-\left(\sinh ^{2} \varphi+\sinh ^{4} \varphi\right) b_{1}^{2}\right)}{\left(a+b-(a-b) \sinh ^{2} \varphi\right)^{2}}= \\
=\frac{4 \cosh ^{2} \varphi\left(a_{1}^{2} \cosh ^{2} \varphi-b_{1}^{2} \sinh ^{2} \varphi\right)}{\left(a+b-(a-b) \sinh ^{2} \varphi\right)^{2}}
\end{gathered}
$$

or

$$
\begin{equation*}
\cosh x=\frac{2 \cosh \varphi \sqrt{a_{1}^{2} \cosh ^{2} \varphi-b_{1}^{2} \sinh ^{2} \varphi}}{a+b-(a-b) \sinh ^{2} \varphi} \tag{7}
\end{equation*}
$$

Denoting $f(t)=\frac{2 a t}{a+b-(a-b) t^{2}}$ we have

$$
f^{\prime}(t)=2 a \frac{a+b+(a-b) t^{2}}{\left(a+b-(a-b) t^{2}\right)^{2}}>0
$$

which means that $f(t)$ is increasing.
The new variable φ will belong to the interval $\left[0, \alpha_{1}\right]$, where α_{1} is given by the equation

$$
\sinh \alpha=\frac{2 a \sinh \alpha_{1}}{a+b-(a-b) \sinh ^{2} \alpha_{1}}
$$

Below we will return to this equation.
From (4) we find

$$
\cosh x \mathrm{~d} x=2 a \frac{a+b+(a-b) \sinh ^{2} \varphi}{\left(a+b-(a-b) \sinh ^{2} \varphi\right)^{2}} \cosh \varphi \mathrm{~d} \varphi
$$

Using (6) the above equality may be rewritten as

$$
\cosh x \mathrm{~d} x=\sqrt{a^{2} \cosh ^{2} x-b^{2} \sinh ^{2} x} \frac{2 \cosh \varphi}{a+b-(a-b) \sinh ^{2} \varphi} \mathrm{~d} \varphi,
$$

otherwise

$$
\frac{\mathrm{d} x}{\sqrt{a^{2} \cosh ^{2} x-b^{2} \sinh ^{2} x}}=\frac{2 \cosh \varphi}{\cosh x\left(a+b-(a-b) \sinh ^{2} \varphi\right)} \mathrm{d} \varphi .
$$

Finally, using (7), from the right hand side we obtain

$$
\frac{\mathrm{d} x}{\sqrt{a^{2} \cosh ^{2} x-b^{2} \sinh ^{2} x}}=\frac{\mathrm{d} \varphi}{\sqrt{a_{1}^{2} \cosh ^{2} \varphi-b_{1}^{2} \sinh ^{2} \varphi}}
$$

and then

$$
\begin{equation*}
\int_{0}^{\alpha} \frac{\mathrm{d} x}{\sqrt{a^{2} \cosh ^{2} x-b^{2} \sinh ^{2} x}}=\int_{0}^{\alpha_{1}} \frac{\mathrm{~d} \varphi}{\sqrt{a_{1}^{2} \cosh ^{2} \varphi-b_{1}^{2} \sinh ^{2} \varphi}} \tag{8}
\end{equation*}
$$

Iterating (8) it results

$$
\begin{equation*}
J(a, b, \alpha) \stackrel{\text { def }}{=} J_{0}\left(a_{0}, b_{0}, \alpha_{0}\right)=J_{1}\left(a_{1}, b_{1}, \alpha_{1}\right)=J_{2}\left(a_{2}, b_{2}, \alpha_{2}\right)=\ldots \tag{9}
\end{equation*}
$$

where

$$
J_{k}\left(a_{k}, b_{k} \cdot \alpha_{k}\right)=\int_{0}^{\alpha_{k}} \frac{\mathrm{~d} \varphi}{\sqrt{a_{k}^{2} \cosh ^{2} \varphi-b_{k}^{2} \sinh ^{2} \varphi}}
$$

The integration limit α_{k} is given by the equation

$$
\begin{equation*}
\sinh \alpha_{k-1}=\frac{2 a_{k-1} \sinh \alpha_{k}}{a_{k-1}+b_{k-1}-\left(a_{k-1}-b_{k-1}\right) \sinh ^{2} \alpha_{k}} . \tag{10}
\end{equation*}
$$

Rewriting (10) we deduce that

$$
\frac{\sinh \alpha_{k-1}}{\sinh \alpha_{k}}=\frac{2 a_{k-1}}{a_{k-1}+b_{k-1}-\left(a_{k-1}-b_{k-1}\right) \sinh ^{2} \alpha_{k}}>1 \quad \Leftrightarrow \quad 1+\sinh ^{2} a_{k}>0
$$

Consequently, the sequence $\left(\sinh \alpha_{k}\right)_{k \in \mathbb{N}}$ is decreasing and therefore the sequence $\left(\alpha_{k}\right)_{k \in \mathbb{N}}$ is decreasing, too. Because $\alpha_{k}>0$, the sequence converges to some α_{∞}.

The limit in (10) does not generate an equation for α_{∞}. In order to compute an approximation of α_{∞} the elements of the sequence must be sequentially computed using a stopping rule which assures that the last computed element is near the limit.

From (10) we get

$$
\begin{equation*}
\sinh \alpha_{k}=\frac{\sqrt{a_{k-1}^{2} \cosh ^{2} \alpha_{k-1}-b_{k-1}^{2} \sinh ^{2} \alpha_{k-1}}-a_{k-1}}{\left(a_{k-1}-b_{k-1}\right) \sinh \alpha_{k-1}}=y_{k} \tag{11}
\end{equation*}
$$

and

$$
\alpha_{k}=\ln \left(y_{k}+\sqrt{y_{k}^{2}+1}\right)
$$

If $a=5, b=3$ and $\alpha=\alpha_{0}=1$ then after 4 iterations we obtained $\alpha_{\infty} \approx 0.71093896$. The stopping rule was $\left|\alpha_{k}-\alpha_{k-1}\right|<10^{-7}$ or $a_{k-1}-b_{k-1}<10^{-10}$.

From (9) it results that

$$
\begin{equation*}
J(a, b, \alpha)=\lim _{k \rightarrow \infty} J_{k}\left(a_{k}, b_{k}, \alpha_{k}\right)=\frac{\alpha_{\infty}}{M(a, b)} . \tag{12}
\end{equation*}
$$

4 Numerical computation of $F(\alpha, m)$

For $0<b<a$ and $0<\alpha<1$, as in [5], for $I(a, b, \alpha)$ the changing of variables

$$
\sin x=\frac{2 a \sin \varphi}{a+b+(a-b) \sin ^{2} \varphi}
$$

leads to the sequence

$$
\begin{equation*}
I(a, b, \alpha) \stackrel{\text { def }}{=} I_{0}\left(a_{0}, b_{0}, \alpha_{0}\right)=I_{1}\left(a_{1}, b_{1}, \alpha_{1}\right)=I_{2}\left(a_{2}, b_{2}, \alpha_{2}\right)=\ldots \tag{13}
\end{equation*}
$$

where

$$
I_{k}\left(a_{k}, b_{k}, \alpha_{k}\right)=\int_{0}^{\alpha_{k}} \frac{\mathrm{~d} \varphi}{\sqrt{a_{k}^{2} \cos ^{2} \varphi+b_{k}^{2} \sin ^{2} \varphi}}
$$

and the upper integration limits are generated by the sequence

$$
\sin \alpha_{k-1}=\frac{2 a_{k-1} \sin \alpha_{k}}{a_{k-1}+b_{k-1}+\left(a_{k-1}-b_{k-1}\right) \sin ^{2} \alpha_{k}} .
$$

The sequence $\left(\alpha_{k}\right)_{k \in \mathbb{N}}$ is convergent and

$$
\begin{align*}
\sin \alpha_{k} & =\frac{a_{k-1}-\sqrt{a_{k-1}^{2} \cos ^{2} \alpha_{k-1}+b_{k-1}^{2} \sin ^{2} \alpha_{k-1}}}{\left(a_{k-1}-b_{k-1}\right) \sin \alpha_{k-1}}=y_{k} \tag{14}\\
\alpha_{k} & =\arcsin y_{k} .
\end{align*}
$$

From (13) it results

$$
I(a, b, \alpha)=\lim _{k \rightarrow \infty} I_{k}\left(a_{k}, b_{k}, \alpha_{k}\right)=\frac{\alpha_{\infty}}{M(a, b)},
$$

with $\alpha_{\infty}=\lim _{k \rightarrow \infty} \alpha_{k}$. Using (3) we get

$$
I(a, b, \alpha)=\frac{1}{a} F\left(\alpha, 1-\frac{b^{2}}{a^{2}}\right)=\frac{\alpha_{\infty}}{M(a, b)}
$$

and consequently

$$
F\left(\alpha, 1-\frac{b^{2}}{a^{2}}\right)=\frac{a \alpha_{\infty}}{M(a, b)}=\frac{\alpha_{\infty}}{\frac{1}{a} M(a, b)}=\frac{\alpha_{\infty}}{M\left(1, \frac{b}{a}\right)} .
$$

Denoting $m=1-\frac{b^{2}}{a^{2}},(a>b>0 \Leftrightarrow 0<m<1)$, the above equation becomes

$$
F(\alpha, m)=\frac{\alpha_{\infty}}{M(1, \sqrt{1-m})}
$$

Therefore, the computation of $F(\alpha, m)$ returns to generate iteratively the sequences $\left(a_{k}\right)_{k},\left(b_{k}\right)_{k},\left(\alpha_{k}\right)_{k}$ until a stopping condition is fulfilled. The initial values are $a_{0}=$ $1, b_{0}=\sqrt{1-m}$ and $\alpha_{0}=\alpha$. For $a_{0}=1$, instead of the sequences $\left(a_{k}\right)_{k},\left(b_{k}\right)_{k}$ we may compute the sequences, [3],

$$
\begin{array}{ll}
s_{0}=b_{0} & p_{0}=\frac{1}{2}\left(1+s_{0}\right) \\
s_{k+1}=\frac{2 \sqrt{s_{k}}}{1+s_{k}} & p_{k+1}=\frac{1}{2}\left(1+s_{k}\right) p_{k}
\end{array}
$$

Then $\lim _{k \rightarrow \infty} p_{k}=M\left(1, b_{0}\right)$.
If $\alpha=\frac{\pi}{2}$ then from the relation of recurrence (14) of α_{k} it follows that $\alpha_{k}=\frac{\pi}{2}$, for any $k \in \mathbb{N}$, and hence $\alpha_{\infty}=\frac{\pi}{2}$ Consequently $K(m)=\frac{\pi}{2 M(1, \sqrt{1-m})}$.

As a drawback from a practical point of view the method is not applicable when α is small, e.g. $0<\alpha<10^{-5}$.

References

[1] Borwein J.M., Borwein P.B., Pi and the AGM. John Wiley \& Sons, New York, 1986.
[2] Fukuskima T., Numerical computation of inverse complete elliptic integrals of first and second kinds. J. Computation and Applied Mathematics, 249 (2013), 37-50.
[3] Jameson G.J.O., Elliptic integrals, the arithmetic-geometric mean and the BrentSalamin algorithm for π. http://www.maths.lancs.ac.uk/jameson/ellagm. pdf.
[4] Rösch N., The derivation of algorithms to compute elliptic integrals of the first and second kind by Landen transformation. Boletin de Ciências Geodésicas (Online), 17 (2011), no.1, http://dx.doi.org/10.1590/S1982-21702011000100001.
[5] Tkachev V.G., Elliptic functions: Introduction course. http://users.mai.liu. se/vlatk48/teaching/lect2-agm.pdf.
[6] ***, NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.17 of 2017-12-22. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, and B. V. Saunders, eds.

[^0]: ${ }^{1}$ scheiber@unitbv.ro

