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Abstract

The curvature properties of three-dimensional f -Kenmotsu manifolds have
been studied.
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1 Introduction

In 1972, K. Kenmotsu [9] introduced and studied a new class of almost contact
metric manifolds, later known as Kenmotsu manifolds. Z. Olszak and R. Rosca
[11] have studied f -Kenmotsu manifolds, an almost contact metric manifold which
is normal and locally conformal almost cosymplectic. Further, they gave a geo-
metric interpretation of f -Kenmotsu manifold and proved that a Ricci symmetric
f -Kenmotsu manifold is an Einstein manifold. Recently, f -Kenmotsu manifolds
have been studied by many authors in several ways to a different extent such as
[12, 14, 15].

The projective curvature tensor is an important tensor from the differential
geometric point of view. Let M be a (2n+1)-dimensional Riemannian manifold. If
there exists a one to one correspondence between each coordinate neighbourhood
of M and a domain in Euclidean space such that any geodesic of the Riemannian
manifold corresponds to a straight line in the Euclidean space, then M is said to
be locally projectively flat. For n ≥ 1, M is locally projectively flat if and only if
the well known projective curvature tensor P vanishes, the projective curvature
tensor is defined by [1, 13]

P (X,Y )Z = R(X,Y )Z − 1

2n
[S(Y,Z)X − S(X,Z)Y ], (1)
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where X,Y, Z ∈ χ(M), R is the curvature tensor and S is the Ricci tensor with
respect to the Levi-Civita connection.

A Ricci soliton (g, V, λ) on a Riemannian manifold (M, g) is a generalization
of an Einstein metric such that [5, 7, 10]

(£V g + 2S + 2λg)(X,Y ) = 0, (2)

where S is the Ricci tensor, £V is the Lie derivative operator along the vector
field V on M and λ is a real number. The Ricci soliton is said to be shrinking,
steady and expanding accordingly as λ is negative, zero and positive, respectively.
Ricci solitons, in the context of general relativity, have been studied by M. Ali
and Z. Ahsan [2− 4].

Motivated by the above studies, in this paper we study some curvature prop-
erties of 3-dimensional f -Kenmotsu manifolds. The paper is organized as follows:
In Section 2, we give a brief account of an f -Kenmotsu manifold. In Section 3,
we show that a projectively flat 3-dimensional f -Kenmotsu manifold is an Ein-
stein manifold of constant curvature −(f2 + f ′). Section 4 is devoted to study
φ-projectively semisymmetric 3-dimensional f -Kenmotsu manifolds. In Section 5,
we discuss projectively semisymmetric 3-dimensional f -Kenmotsu manifolds. In
Section 6, we show that a 3-dimensional f -Kenmotsu manifold satisfying the con-
dition P · S = 0 is an Einstein manifold. Moreover, the fact that a 3-dimensional
f -Kenmotsu manifold satisfying the condition S ·R = 0 is an η-Einstein manifold
is shown in Section 7. In Section 8, we show that a 3-dimensional f -Kenmotsu
manifold admitting Ricci soliton is an η-Einstein manifold and the Ricci soliton
is shrinking, steady and expanding if r + 2f > 0, r + 2f = 0 and r + 2f < 0,
respectively. Finally, we give an example of 3-dimensional f -Kenmotsu manifold.

2 f-Kenmotsu manifolds

Let M be a real (2n+ 1)-dimensional differentiable manifold endowed with an
almost contact metric structure (φ, ξ, η, g) which satisfies

φ2 = −I + η ⊗ ξ, η(ξ) = 1, (3)

φξ = 0, η ◦ φ = 0, η(X) = g(X, ξ), (4)

g(φX, φY ) = g(X,Y )− η(X)η(Y ) (5)

for all vector fields X, Y ∈ χ(M), where I is the identity of the tangent bundle
TM , φ is a tensor field of (1, 1) type, η is a 1-form, ξ is a vector field and g is a
metric tensor field. We say that (M,φ, ξ, η, g) is an f -Kenmotsu manifold if the
Levi-Civita connection of g satisfies

(∇Xφ)(Y ) = f [g(φX, Y )ξ − η(Y )φX], (6)

where f ∈ C∞(M) is strictly positive and df ∧ η = 0. If f = 0, then the manifold
is cosymplectic [8]. An f -Kenmotsu manifold is said to be regular if f2 + f ′ 6= 0,
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where f ′ = ξf .
In an f -Kenmotsu manifold, from (6) we have

∇Xξ = f [X − η(X)ξ]. (7)

The condition df ∧ η = 0 holds if dim M ≥ 5. This does not hold in general if
dim M = 3 [14]

(∇Xη)Y = f [g(X,Y )− η(X)η(Y )]. (8)

In a 3-dimensional Riemannian manifold, we have

R(X,Y )Z = g(Y, Z)QX − g(X,Z)QY + S(Y,Z)X − S(X,Z)Y (9)

−r
2

[g(Y,Z)X − g(X,Z)Y ].

In a 3-dimensional f -Kenmotsu manifold, we have

R(X,Y )Z = (
r

2
+ 2f2 + 2f ′)[g(Y,Z)X − g(X,Z)Y ] (10)

−(
r

2
+ 3f2 + 3f ′)[g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y ],

S(X,Y ) = (
r

2
+ f2 + f ′)g(X,Y )− (

r

2
+ 3f2 + 3f ′)η(X)η(Y ), (11)

where R,S,Q and r are the Riemann curvature tensor, the Ricci tensor, the Ricci
operator and the scalar curvature, respectively.
Now from (10), we find

R(X,Y )ξ = −(f2 + f ′)[η(Y )X − η(X)Y ], (12)

R(ξ,X)Y = −(f2 + f ′)[g(X,Y )ξ − η(Y )X], (13)

R(X, ξ)ξ = −(f2 + f ′)[X − η(X)ξ], (14)

η(R(X,Y )Z) = −(f2 + f ′)[g(Y, Z)η(X)− g(X,Z)η(Y )]. (15)

And from (11), we get

S(X, ξ) = −2(f2 + f ′)η(X), (16)

Qξ = −2(f2 + f ′)ξ. (17)

Definition 1. An f -Kenmotsu manifold is said to be an η-Einstein manifold if
the Ricci tensor S of type (0, 2) is of the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ), (18)

where a and b are smooth functions on M . In particular, if b = 0, then the
manifold is said to be an Einstein manifold.
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3 Projectively flat 3-dimensional f-Kenmotsu mani-
folds

Let M be a projectively flat 3-dimensional f -Kenmotsu manifold, that is,
P = 0. Then from (1), it follows that

R(X,Y )Z =
1

2
[S(Y,Z)X − S(X,Z)Y ]. (19)

Taking inner product of (19) with ξ and using (4), we have

g[R(X,Y )Z, ξ] =
1

2
[S(Y,Z)η(X)− S(X,Z)η(Y )]. (20)

Putting X = ξ in (20) and using (3), (13) and (16), we get

S(Y,Z) = −2(f2 + f ′)g(Y,Z). (21)

Now using (21) in (19), we obtain

R(X,Y )Z = −(f2 + f ′)[g(Y, Z)X − g(X,Z)Y ] (22)

which can be written as

g[R(X,Y )Z,U ] = −(f2 + f ′)[g(Y, Z)g(X,U)− g(X,Z)g(Y,U)]. (23)

Thus we can state the following:

Theorem 1. A projectively flat 3-dimensional f -Kenmotsu manifold is an Ein-
stein manifold of constant curvature −(f2 + f ′) and consequently it is locally
isometric to the Hyperbolic space H3[−(f2 + f ′)].

4 φ-projectively semisymmetric 3-dimensional
f-Kenmotsu manifolds

Definition 2. A 3-dimensional f -Kenmotsu manifold is said to be φ-projectively
semisymmetric if [6]

P (X,Y ) · φ = 0

for all X,Y ∈ χ(M).

Let M be a φ-projectively semisymmetric 3-dimensional f -Kenmotsu mani-
fold. Therefore P (X,Y ) · φ = 0 turns into

(P (X,Y ) · φ)Z = P (X,Y )φZ − φP (X,Y )Z = 0 (24)

for any vector fields X,Y, Z ∈ χ(M). From (1), we write

P (X,Y )φZ = R(X,Y )φZ − 1

2
[S(Y, φZ)X − S(X,φZ)Y ] (25)
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and

φP (X,Y )Z = φR(X,Y )Z − 1

2
[S(Y,Z)φX − S(X,Z)φY ]. (26)

Now combining (24), (25) and (26), we have

R(X,Y )φZ − φR(X,Y )Z − 1

2
[S(Y, φZ)X − S(X,φZ)Y ] (27)

+
1

2
[S(Y,Z)φX − S(X,Z)φY ] = 0.

Taking X = ξ in (27) and then using (4), (11), (13) and (16), we get

r = −6(f2 + f ′), g(Y, φZ) 6= 0. (28)

Using this value of r in (11), we obtain

S(Y, Z) = −2(f2 + f ′)g(Y,Z). (29)

Thus in view of (10), (28) and (29), we have the following:

Theorem 2. In a 3-dimensional f -Kenmotsu manifold M , the following condi-
tions are equivalent:

(a) φ-projectively semisymmetric,

(b) the scalar curvature r = −6(f2 + f ′),

(c) the manifold M is of constant curvature,

(d) M is an Einstein manifold.

5 Projectively semisymmetric 3-dimensional
f-Kenmotsu manifolds

In this section, we suppose that a 3-dimensional f -Kenmotsu manifold is pro-
jectively semisymmetric, that is,

(R(X,Y ) · P )(U, V )W = 0

for any vector fields X,Y, U, V and W ∈ χ(M). This implies that

R(X,Y )P (U, V )W − P (R(X,Y )U, V )W − P (U,R(X,Y )V )W (30)

−P (U, V )R(X,Y )W = 0.

Putting U = W = Y = ξ in (30), we have

R(X, ξ)P (ξ, V )ξ − P (R(X, ξ)ξ, V )ξ − P (ξ,R(X, ξ)V )ξ − P (ξ, V )R(X, ξ)ξ = 0
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which in view of (1), (13) and (14) reduces to

P (ξ, V )R(X, ξ)ξ = 0

which by using (14) gives

P (ξ, V )X = 0, as f2 + f ′ 6= 0.

This implies that

R(ξ, V )X − 1

2
[S(V,X)ξ − S(ξ,X)V ] = 0. (31)

By virtue of (11), (13) and (16), (31) takes the form

(
r

2
+ 3f2 + 3f ′)[g(V,X)ξ − η(X)η(V )ξ] = 0. (32)

Now by replacing X by φX, V by φV in (32) and using (5), we get

r = −6(f2 + f ′). (33)

Using this value of r in (11), we obtain

S(Y, Z) = −2(f2 + f ′)g(Y,Z). (34)

Thus in view of (10), (33) and (34), we have the following:

Theorem 3. In a 3-dimensional f -Kenmotsu manifold M , the following condi-
tions are equivalent:

(a) projectively semisymmetric,

(b) the scalar curvature r = −6(f2 + f ′),

(c) the manifold M is of constant curvature,

(d) M is an Einstein manifold.

6 3-dimensional f-Kenmotsu manifolds satisfying P ·
S = 0

In this section, we study a 3-dimensional f -Kenmotsu manifold satisfying the
condition P · S = 0. Therefore we have

(P (X,Y ) · S)(U, V ) = 0

for any vector fields X,Y, U and V ∈ χ(M). This implies that

S(P (X,Y )U, V ) + S(U,P (X,Y )V ) = 0. (35)
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Putting U = ξ in (35), we have

S(P (X,Y )ξ, V ) + S(ξ, P (X,Y )V ) = 0

which by using the fact that P (X,Y )ξ = 0 reduces to

S(ξ, P (X,Y )V ) = 0. (36)

In view of (16), (36) becomes

g[R(X,Y )V, ξ]− 1

2
[S(Y, V )η(X)− S(X,V )η(Y )] = 0. (37)

Taking Y = ξ in (37) and using (3), (13) and (16), we obtain

S(Y, Z) = −2(f2 + f ′)g(Y,Z).

Thus we have the following:

Theorem 4. A 3-dimensional f -Kenmotsu manifold satisfying P · S = 0 is an
Einstein manifold.

7 3-dimensional f-Kenmotsu manifolds satisfying S ·
R = 0

In this section, we study a 3-dimensional f -Kenmotsu manifold satisfying the
condition

(S(X,Y ) ·R)(U, V )W = 0

for any vector fields X,Y, U, V and W ∈ χ(M). Therefore we have

(X∧SY )R(U, V )W +R((X∧SY )U, V )W +R(U, (X∧SY )V )W (38)

+R(U, V )(X∧SY )W = 0,

where the endomorphism X∧SY is defined by

(X∧SY )W = S(Y,W )X − S(X,W )Y. (39)

Taking Y = ξ in (38) and using (39), we have

2(f2 + f ′)[η(R(U, V )W )X + η(U)R(X,V )W + η(V )R(U,X)W

+η(W )R(U, V )X] + S[X,R(U, V )W ]ξ + S(X,U)R(ξ, V )W

+S(X,V )R(U, ξ)W + S(X,W )R(U, V )ξ = 0

which by taking inner product with ξ and using (4) takes the form

2(f2 + f ′)[η(R(U, V )W )η(X) + η(U)η(R(X,V )W ) + η(V )η(R(U,X)W ) (40)
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+η(W )η(R(U, V )X)] + S[X,R(U, V )W ] + S(X,U)η(R(ξ, V )W )

+S(X,V )η(R(U, ξ)W ) + S(X,W )η(R(U, V )ξ) = 0.

Now taking U = W = ξ in (40) and using (3), (12), (13) and (16), we get

S(X,V ) = 2(f2 + f ′)g(X,V )− 4(f2 + f ′)η(X)η(V ). (41)

Contracting (41) over X and V , we obtain

r = 2(f2 + f ′).

Thus we have the following:

Theorem 5. A 3-dimensional f -Kenmotsu manifold satisfying S · R = 0 is an
η-Einstein manifold with the scalar curvature 2(f2 + f ′).

8 Ricci solitons in 3-dimensional f-Kenmotsu mani-
folds

Suppose that a 3-dimensional f -Kenmotsu manifold admits a Ricci soliton.
Then

(£V g + 2S + 2λg)(X,Y ) = 0

which implies that

g(∇Xξ, Y ) + g(X,∇Y ξ) + 2S(X,Y ) + 2λg(X,Y ) = 0. (42)

By using (7) in (42), we have

S(X,Y ) + (λ+ f)g(X,Y )− fη(X)η(Y ) = 0. (43)

Contracting (43) over X and Y yields

λ = −r + 2f

3
. (44)

Putting this value of λ in (43), we obtain

S(X,Y ) = (
r − f

3
)g(X,Y ) + fη(X)η(Y ). (45)

Thus we can state the following:

Theorem 6. If a 3-dimensional f -Kenmotsu manifold admits a Ricci soliton,
then the manifold is an η-Einstein manifold and its Ricci soliton is shrinking,
steady or expanding accordingly as r + 2f > 0, r + 2f = 0 or r + 2f < 0,
respectively.
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Example of a 3-dimensional f-Kenmotsu manifold. We consider the 3-
dimensional manifold M =

{
(x, y, z) ∈ R3

}
, where (x, y, z) are the standard co-

ordinates in R3. Let e1, e2 and e3 be the vector fields on M given by

e1 = e−2z
∂

∂x
, e2 = e−2z

∂

∂y
, e3 = e−z

∂

∂z
= ξ,

which are linearly independent at each point of M and hence form a basis of TpM .
Let g be the Riemannian metric defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1, g(e1, e2) = g(e1, e3) = g(e2, e3) = 0.

Let η be the 1-form on M defined as η(X) = g(X, e3) = g(X, ξ) for all X ∈ χ(M),
and let φ be the (1, 1) tensor field on M defined as

φe1 = −e2, φe2 = e1, φe3 = 0.

By applying linearity of φ and g, we have

η(ξ) = g(ξ, ξ) = 1, φ2X = −X + η(X)ξ, η(φX) = 0,

g(X, ξ) = η(X), g(φX, φY ) = g(X,Y )− η(X)η(Y )

for all X,Y ∈ χ(M).
Now, by direct computations we obtain

[e1, e2] = 0, [e3, e1] = −2e−ze1, [e2, e3] = 2e−ze2.

The Riemannian connection ∇ of the metric tensor g is given by

2g(∇XY, Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )− g(X, [Y, Z]) + g(Y, [Z,X])

+g(Z, [X,Y ]),

which is known as Koszul’s formula. Using Koszul’s formula, we can easily calcu-
late

∇e1e1 = −2e−ze3, ∇e1e2 = 0, ∇e1e3 = 2e−ze1, ∇e2e1 = 0,

∇e2e2 = −2e−ze3, ∇e2e3 = 2e−ze2, ∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

Let X =

3∑
i=1

Xiei = X1e1 +X2e2 +X3e3 ∈ χ(M).

It can be easily verified that the manifold satisfies

∇Xξ = f [X − η(X)ξ] and (∇Xφ)Y = f [g(φX, Y )ξ − η(Y )φX]

for ξ = e3, where f = 2e−z.
Hence we conclude that M is a 3-dimensional f -Kenmotsu manifold. Also f2 +
f ′ 6= 0. Hence M is a regular f -Kenmotsu manifold.
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