ON A CLASS OF THREE DIMENSIONAL f-KENMOTSU MANIFOLDS

Abdul HASEEB*1 and Rajendra PRASAD ${ }^{2}$

Abstract

The curvature properties of three-dimensional f-Kenmotsu manifolds have been studied.

2000 Mathematics Subject Classification: 53C20, 53C25.
Key words: f-Kenmotsu manifolds, projective curvature tensor, ϕ-semisymmetric f-Kenmotsu manifolds, Ricci solitons.

1 Introduction

In 1972, K. Kenmotsu [9] introduced and studied a new class of almost contact metric manifolds, later known as Kenmotsu manifolds. Z. Olszak and R. Rosca [11] have studied f-Kenmotsu manifolds, an almost contact metric manifold which is normal and locally conformal almost cosymplectic. Further, they gave a geometric interpretation of f-Kenmotsu manifold and proved that a Ricci symmetric f-Kenmotsu manifold is an Einstein manifold. Recently, f-Kenmotsu manifolds have been studied by many authors in several ways to a different extent such as [12, 14, 15].

The projective curvature tensor is an important tensor from the differential geometric point of view. Let M be a $(2 n+1)$-dimensional Riemannian manifold. If there exists a one to one correspondence between each coordinate neighbourhood of M and a domain in Euclidean space such that any geodesic of the Riemannian manifold corresponds to a straight line in the Euclidean space, then M is said to be locally projectively flat. For $n \geq 1, M$ is locally projectively flat if and only if the well known projective curvature tensor P vanishes, the projective curvature tensor is defined by $[1,13]$

$$
\begin{equation*}
P(X, Y) Z=R(X, Y) Z-\frac{1}{2 n}[S(Y, Z) X-S(X, Z) Y] \tag{1}
\end{equation*}
$$

[^0]where $X, Y, Z \in \chi(M), R$ is the curvature tensor and S is the Ricci tensor with respect to the Levi-Civita connection.

A Ricci soliton (g, V, λ) on a Riemannian manifold (M, g) is a generalization of an Einstein metric such that [5, 7, 10]

$$
\begin{equation*}
\left(£_{V} g+2 S+2 \lambda g\right)(X, Y)=0, \tag{2}
\end{equation*}
$$

where S is the Ricci tensor, $£_{V}$ is the Lie derivative operator along the vector field V on M and λ is a real number. The Ricci soliton is said to be shrinking, steady and expanding accordingly as λ is negative, zero and positive, respectively. Ricci solitons, in the context of general relativity, have been studied by M. Ali and Z. Ahsan [2-4].

Motivated by the above studies, in this paper we study some curvature properties of 3-dimensional f-Kenmotsu manifolds. The paper is organized as follows: In Section 2, we give a brief account of an f-Kenmotsu manifold. In Section 3, we show that a projectively flat 3 -dimensional f-Kenmotsu manifold is an Einstein manifold of constant curvature $-\left(f^{2}+f^{\prime}\right)$. Section 4 is devoted to study ϕ-projectively semisymmetric 3 -dimensional f-Kenmotsu manifolds. In Section 5, we discuss projectively semisymmetric 3 -dimensional f-Kenmotsu manifolds. In Section 6, we show that a 3 -dimensional f-Kenmotsu manifold satisfying the condition $P \cdot S=0$ is an Einstein manifold. Moreover, the fact that a 3 -dimensional f-Kenmotsu manifold satisfying the condition $S \cdot R=0$ is an η-Einstein manifold is shown in Section 7. In Section 8, we show that a 3 -dimensional f-Kenmotsu manifold admitting Ricci soliton is an η-Einstein manifold and the Ricci soliton is shrinking, steady and expanding if $r+2 f>0, r+2 f=0$ and $r+2 f<0$, respectively. Finally, we give an example of 3-dimensional f-Kenmotsu manifold.

$2 \quad$-Kenmotsu manifolds

Let M be a real $(2 n+1)$-dimensional differentiable manifold endowed with an almost contact metric structure (ϕ, ξ, η, g) which satisfies

$$
\begin{gather*}
\phi^{2}=-I+\eta \otimes \xi, \quad \eta(\xi)=1, \tag{3}\\
\phi \xi=0, \quad \eta \circ \phi=0, \quad \eta(X)=g(X, \xi), \tag{4}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{5}
\end{gather*}
$$

for all vector fields $X, Y \in \chi(M)$, where I is the identity of the tangent bundle $T M, \phi$ is a tensor field of $(1,1)$ type, η is a 1 -form, ξ is a vector field and g is a metric tensor field. We say that (M, ϕ, ξ, η, g) is an f-Kenmotsu manifold if the Levi-Civita connection of g satisfies

$$
\begin{equation*}
\left(\nabla_{X} \phi\right)(Y)=f[g(\phi X, Y) \xi-\eta(Y) \phi X], \tag{6}
\end{equation*}
$$

where $f \in C^{\infty}(M)$ is strictly positive and $d f \wedge \eta=0$. If $f=0$, then the manifold is cosymplectic [8]. An f-Kenmotsu manifold is said to be regular if $f^{2}+f^{\prime} \neq 0$,
where $f^{\prime}=\xi f$.
In an f-Kenmotsu manifold, from (6) we have

$$
\begin{equation*}
\nabla_{X} \xi=f[X-\eta(X) \xi] . \tag{7}
\end{equation*}
$$

The condition $d f \wedge \eta=0$ holds if $\operatorname{dim} M \geq 5$. This does not hold in general if $\operatorname{dim} M=3[14]$

$$
\begin{equation*}
\left(\nabla_{X} \eta\right) Y=f[g(X, Y)-\eta(X) \eta(Y)] \tag{8}
\end{equation*}
$$

In a 3 -dimensional Riemannian manifold, we have

$$
\begin{gather*}
R(X, Y) Z=g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y \tag{9}\\
-\frac{r}{2}[g(Y, Z) X-g(X, Z) Y]
\end{gather*}
$$

In a 3 -dimensional f-Kenmotsu manifold, we have

$$
\begin{gather*}
R(X, Y) Z=\left(\frac{r}{2}+2 f^{2}+2 f^{\prime}\right)[g(Y, Z) X-g(X, Z) Y] \tag{10}\\
-\left(\frac{r}{2}+3 f^{2}+3 f^{\prime}\right)[g(Y, Z) \eta(X) \xi-g(X, Z) \eta(Y) \xi+\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y] \\
S(X, Y)=\left(\frac{r}{2}+f^{2}+f^{\prime}\right) g(X, Y)-\left(\frac{r}{2}+3 f^{2}+3 f^{\prime}\right) \eta(X) \eta(Y) \tag{11}
\end{gather*}
$$

where R, S, Q and r are the Riemann curvature tensor, the Ricci tensor, the Ricci operator and the scalar curvature, respectively.
Now from (10), we find

$$
\begin{gather*}
R(X, Y) \xi=-\left(f^{2}+f^{\prime}\right)[\eta(Y) X-\eta(X) Y], \tag{12}\\
R(\xi, X) Y=-\left(f^{2}+f^{\prime}\right)[g(X, Y) \xi-\eta(Y) X], \tag{13}\\
R(X, \xi) \xi=-\left(f^{2}+f^{\prime}\right)[X-\eta(X) \xi], \tag{14}\\
\eta(R(X, Y) Z)=-\left(f^{2}+f^{\prime}\right)[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] . \tag{15}
\end{gather*}
$$

And from (11), we get

$$
\begin{align*}
S(X, \xi) & =-2\left(f^{2}+f^{\prime}\right) \eta(X) \tag{16}\\
Q \xi & =-2\left(f^{2}+f^{\prime}\right) \xi \tag{17}
\end{align*}
$$

Definition 1. An f-Kenmotsu manifold is said to be an η-Einstein manifold if the Ricci tensor S of type $(0,2)$ is of the form

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y) \tag{18}
\end{equation*}
$$

where a and b are smooth functions on M. In particular, if $b=0$, then the manifold is said to be an Einstein manifold.

3 Projectively flat 3-dimensional f-Kenmotsu manifolds

Let M be a projectively flat 3-dimensional f-Kenmotsu manifold, that is, $P=0$. Then from (1), it follows that

$$
\begin{equation*}
R(X, Y) Z=\frac{1}{2}[S(Y, Z) X-S(X, Z) Y] . \tag{19}
\end{equation*}
$$

Taking inner product of (19) with ξ and using (4), we have

$$
\begin{equation*}
g[R(X, Y) Z, \xi]=\frac{1}{2}[S(Y, Z) \eta(X)-S(X, Z) \eta(Y)] . \tag{20}
\end{equation*}
$$

Putting $X=\xi$ in (20) and using (3), (13) and (16), we get

$$
\begin{equation*}
S(Y, Z)=-2\left(f^{2}+f^{\prime}\right) g(Y, Z) . \tag{21}
\end{equation*}
$$

Now using (21) in (19), we obtain

$$
\begin{equation*}
R(X, Y) Z=-\left(f^{2}+f^{\prime}\right)[g(Y, Z) X-g(X, Z) Y] \tag{22}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
g[R(X, Y) Z, U]=-\left(f^{2}+f^{\prime}\right)[g(Y, Z) g(X, U)-g(X, Z) g(Y, U)] \tag{23}
\end{equation*}
$$

Thus we can state the following:
Theorem 1. A projectively flat 3-dimensional f-Kenmotsu manifold is an Einstein manifold of constant curvature $-\left(f^{2}+f^{\prime}\right)$ and consequently it is locally isometric to the Hyperbolic space $H^{3}\left[-\left(f^{2}+f^{\prime}\right)\right]$.

$4 \quad \phi$-projectively semisymmetric 3 -dimensional f-Kenmotsu manifolds

Definition 2. A 3-dimensional f-Kenmotsu manifold is said to be ϕ-projectively semisymmetric if [6]

$$
P(X, Y) \cdot \phi=0
$$

for all $X, Y \in \chi(M)$.
Let M be a ϕ-projectively semisymmetric 3 -dimensional f-Kenmotsu manifold. Therefore $P(X, Y) \cdot \phi=0$ turns into

$$
\begin{equation*}
(P(X, Y) \cdot \phi) Z=P(X, Y) \phi Z-\phi P(X, Y) Z=0 \tag{24}
\end{equation*}
$$

for any vector fields $X, Y, Z \in \chi(M)$. From (1), we write

$$
\begin{equation*}
P(X, Y) \phi Z=R(X, Y) \phi Z-\frac{1}{2}[S(Y, \phi Z) X-S(X, \phi Z) Y] \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi P(X, Y) Z=\phi R(X, Y) Z-\frac{1}{2}[S(Y, Z) \phi X-S(X, Z) \phi Y] . \tag{26}
\end{equation*}
$$

Now combining (24), (25) and (26), we have

$$
\begin{gather*}
R(X, Y) \phi Z-\phi R(X, Y) Z-\frac{1}{2}[S(Y, \phi Z) X-S(X, \phi Z) Y] \tag{27}\\
+\frac{1}{2}[S(Y, Z) \phi X-S(X, Z) \phi Y]=0 .
\end{gather*}
$$

Taking $X=\xi$ in (27) and then using (4), (11), (13) and (16), we get

$$
\begin{equation*}
r=-6\left(f^{2}+f^{\prime}\right), \quad g(Y, \phi Z) \neq 0 \tag{28}
\end{equation*}
$$

Using this value of r in (11), we obtain

$$
\begin{equation*}
S(Y, Z)=-2\left(f^{2}+f^{\prime}\right) g(Y, Z) . \tag{29}
\end{equation*}
$$

Thus in view of (10), (28) and (29), we have the following:
Theorem 2. In a 3-dimensional f-Kenmotsu manifold M, the following conditions are equivalent:
(a) ϕ-projectively semisymmetric,
(b) the scalar curvature $r=-6\left(f^{2}+f^{\prime}\right)$,
(c) the manifold M is of constant curvature,
(d) M is an Einstein manifold.

5 Projectively semisymmetric 3-dimensional f-Kenmotsu manifolds

In this section, we suppose that a 3 -dimensional f-Kenmotsu manifold is projectively semisymmetric, that is,

$$
(R(X, Y) \cdot P)(U, V) W=0
$$

for any vector fields X, Y, U, V and $W \in \chi(M)$. This implies that

$$
\begin{gather*}
R(X, Y) P(U, V) W-P(R(X, Y) U, V) W-P(U, R(X, Y) V) W \tag{30}\\
-P(U, V) R(X, Y) W=0 .
\end{gather*}
$$

Putting $U=W=Y=\xi$ in (30), we have

$$
R(X, \xi) P(\xi, V) \xi-P(R(X, \xi) \xi, V) \xi-P(\xi, R(X, \xi) V) \xi-P(\xi, V) R(X, \xi) \xi=0
$$

which in view of (1), (13) and (14) reduces to

$$
P(\xi, V) R(X, \xi) \xi=0
$$

which by using (14) gives

$$
P(\xi, V) X=0, \quad \text { as } \quad f^{2}+f^{\prime} \neq 0 .
$$

This implies that

$$
\begin{equation*}
R(\xi, V) X-\frac{1}{2}[S(V, X) \xi-S(\xi, X) V]=0 . \tag{31}
\end{equation*}
$$

By virtue of (11), (13) and (16), (31) takes the form

$$
\begin{equation*}
\left(\frac{r}{2}+3 f^{2}+3 f^{\prime}\right)[g(V, X) \xi-\eta(X) \eta(V) \xi]=0 . \tag{32}
\end{equation*}
$$

Now by replacing X by $\phi X, V$ by ϕV in (32) and using (5), we get

$$
\begin{equation*}
r=-6\left(f^{2}+f^{\prime}\right) \tag{33}
\end{equation*}
$$

Using this value of r in (11), we obtain

$$
\begin{equation*}
S(Y, Z)=-2\left(f^{2}+f^{\prime}\right) g(Y, Z) . \tag{34}
\end{equation*}
$$

Thus in view of (10), (33) and (34), we have the following:
Theorem 3. In a 3-dimensional f-Kenmotsu manifold M, the following conditions are equivalent:
(a) projectively semisymmetric,
(b) the scalar curvature $r=-6\left(f^{2}+f^{\prime}\right)$,
(c) the manifold M is of constant curvature,
(d) M is an Einstein manifold.

6 3-dimensional f-Kenmotsu manifolds satisfying P. $S=0$

In this section, we study a 3 -dimensional f-Kenmotsu manifold satisfying the condition $P \cdot S=0$. Therefore we have

$$
(P(X, Y) \cdot S)(U, V)=0
$$

for any vector fields X, Y, U and $V \in \chi(M)$. This implies that

$$
\begin{equation*}
S(P(X, Y) U, V)+S(U, P(X, Y) V)=0 \tag{35}
\end{equation*}
$$

Putting $U=\xi$ in (35), we have

$$
S(P(X, Y) \xi, V)+S(\xi, P(X, Y) V)=0
$$

which by using the fact that $P(X, Y) \xi=0$ reduces to

$$
\begin{equation*}
S(\xi, P(X, Y) V)=0 \tag{36}
\end{equation*}
$$

In view of (16), (36) becomes

$$
\begin{equation*}
g[R(X, Y) V, \xi]-\frac{1}{2}[S(Y, V) \eta(X)-S(X, V) \eta(Y)]=0 . \tag{37}
\end{equation*}
$$

Taking $Y=\xi$ in (37) and using (3), (13) and (16), we obtain

$$
S(Y, Z)=-2\left(f^{2}+f^{\prime}\right) g(Y, Z) .
$$

Thus we have the following:
Theorem 4. A 3-dimensional f-Kenmotsu manifold satisfying $P \cdot S=0$ is an Einstein manifold.

7 3-dimensional f-Kenmotsu manifolds satisfying S. $R=0$

In this section, we study a 3 -dimensional f-Kenmotsu manifold satisfying the condition

$$
(S(X, Y) \cdot R)(U, V) W=0
$$

for any vector fields X, Y, U, V and $W \in \chi(M)$. Therefore we have

$$
\begin{gather*}
\left(X_{\wedge S} Y\right) R(U, V) W+R\left(\left(X_{\wedge S} Y\right) U, V\right) W+R\left(U,\left(X_{\wedge S} Y\right) V\right) W \tag{38}\\
+R(U, V)\left(X_{\wedge S} Y\right) W=0
\end{gather*}
$$

where the endomorphism $X_{\wedge S} Y$ is defined by

$$
\begin{equation*}
\left(X_{\wedge S} Y\right) W=S(Y, W) X-S(X, W) Y \tag{39}
\end{equation*}
$$

Taking $Y=\xi$ in (38) and using (39), we have

$$
\begin{gathered}
2\left(f^{2}+f^{\prime}\right)[\eta(R(U, V) W) X+\eta(U) R(X, V) W+\eta(V) R(U, X) W \\
+\eta(W) R(U, V) X]+S[X, R(U, V) W] \xi+S(X, U) R(\xi, V) W \\
+S(X, V) R(U, \xi) W+S(X, W) R(U, V) \xi=0
\end{gathered}
$$

which by taking inner product with ξ and using (4) takes the form

$$
\begin{equation*}
2\left(f^{2}+f^{\prime}\right)[\eta(R(U, V) W) \eta(X)+\eta(U) \eta(R(X, V) W)+\eta(V) \eta(R(U, X) W) \tag{40}
\end{equation*}
$$

$$
\begin{gathered}
+\eta(W) \eta(R(U, V) X)]+S[X, R(U, V) W]+S(X, U) \eta(R(\xi, V) W) \\
+S(X, V) \eta(R(U, \xi) W)+S(X, W) \eta(R(U, V) \xi)=0
\end{gathered}
$$

Now taking $U=W=\xi$ in (40) and using (3), (12), (13) and (16), we get

$$
\begin{equation*}
S(X, V)=2\left(f^{2}+f^{\prime}\right) g(X, V)-4\left(f^{2}+f^{\prime}\right) \eta(X) \eta(V) \tag{41}
\end{equation*}
$$

Contracting (41) over X and V, we obtain

$$
r=2\left(f^{2}+f^{\prime}\right)
$$

Thus we have the following:
Theorem 5. A 3-dimensional f-Kenmotsu manifold satisfying $S \cdot R=0$ is an η-Einstein manifold with the scalar curvature $2\left(f^{2}+f^{\prime}\right)$.

8 Ricci solitons in 3-dimensional f-Kenmotsu manifolds

Suppose that a 3 -dimensional f-Kenmotsu manifold admits a Ricci soliton. Then

$$
\left(£_{V} g+2 S+2 \lambda g\right)(X, Y)=0
$$

which implies that

$$
\begin{equation*}
g\left(\nabla_{X} \xi, Y\right)+g\left(X, \nabla_{Y} \xi\right)+2 S(X, Y)+2 \lambda g(X, Y)=0 \tag{42}
\end{equation*}
$$

By using (7) in (42), we have

$$
\begin{equation*}
S(X, Y)+(\lambda+f) g(X, Y)-f \eta(X) \eta(Y)=0 \tag{43}
\end{equation*}
$$

Contracting (43) over X and Y yields

$$
\begin{equation*}
\lambda=-\frac{r+2 f}{3} . \tag{44}
\end{equation*}
$$

Putting this value of λ in (43), we obtain

$$
\begin{equation*}
S(X, Y)=\left(\frac{r-f}{3}\right) g(X, Y)+f \eta(X) \eta(Y) \tag{45}
\end{equation*}
$$

Thus we can state the following:
Theorem 6. If a 3-dimensional f-Kenmotsu manifold admits a Ricci soliton, then the manifold is an η-Einstein manifold and its Ricci soliton is shrinking, steady or expanding accordingly as $r+2 f>0, r+2 f=0$ or $r+2 f<0$, respectively.

Example of a 3-dimensional f-Kenmotsu manifold. We consider the 3dimensional manifold $M=\left\{(x, y, z) \in R^{3}\right\}$, where (x, y, z) are the standard coordinates in R^{3}. Let e_{1}, e_{2} and e_{3} be the vector fields on M given by

$$
e_{1}=e^{-2 z} \frac{\partial}{\partial x}, \quad e_{2}=e^{-2 z} \frac{\partial}{\partial y}, \quad e_{3}=e^{-z} \frac{\partial}{\partial z}=\xi
$$

which are linearly independent at each point of M and hence form a basis of $T_{p} M$. Let g be the Riemannian metric defined by

$$
g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1, \quad g\left(e_{1}, e_{2}\right)=g\left(e_{1}, e_{3}\right)=g\left(e_{2}, e_{3}\right)=0 .
$$

Let η be the 1-form on M defined as $\eta(X)=g\left(X, e_{3}\right)=g(X, \xi)$ for all $X \in \chi(M)$, and let ϕ be the $(1,1)$ tensor field on M defined as

$$
\phi e_{1}=-e_{2}, \quad \phi e_{2}=e_{1}, \quad \phi e_{3}=0 .
$$

By applying linearity of ϕ and g, we have

$$
\begin{gathered}
\eta(\xi)=g(\xi, \xi)=1, \quad \phi^{2} X=-X+\eta(X) \xi, \quad \eta(\phi X)=0 \\
g(X, \xi)=\eta(X), \quad g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y)
\end{gathered}
$$

for all $X, Y \in \chi(M)$.
Now, by direct computations we obtain

$$
\left[e_{1}, e_{2}\right]=0, \quad\left[e_{3}, e_{1}\right]=-2 e^{-z} e_{1}, \quad\left[e_{2}, e_{3}\right]=2 e^{-z} e_{2} .
$$

The Riemannian connection ∇ of the metric tensor g is given by

$$
\begin{aligned}
2 g\left(\nabla_{X} Y, Z\right)= & X g(Y, Z)+Y g(Z, X)-Z g(X, Y)-g(X,[Y, Z])+g(Y,[Z, X]) \\
& +g(Z,[X, Y]),
\end{aligned}
$$

which is known as Koszul's formula. Using Koszul's formula, we can easily calculate

$$
\begin{gathered}
\nabla_{e_{1}} e_{1}=-2 e^{-z} e_{3}, \quad \nabla_{e_{1}} e_{2}=0, \quad \nabla_{e_{1}} e_{3}=2 e^{-z} e_{1}, \quad \nabla_{e_{2}} e_{1}=0, \\
\nabla_{e_{2}} e_{2}=-2 e^{-z} e_{3}, \quad \nabla_{e_{2}} e_{3}=2 e^{-z} e_{2}, \quad \nabla_{e_{3}} e_{1}=0, \quad \nabla_{e_{3}} e_{2}=0, \quad \nabla_{e_{3}} e_{3}=0 . \\
\text { Let } \quad X=\sum_{i=1}^{3} X^{i} e_{i}=X^{1} e_{1}+X^{2} e_{2}+X^{3} e_{3} \in \chi(M) .
\end{gathered}
$$

It can be easily verified that the manifold satisfies

$$
\nabla_{X} \xi=f[X-\eta(X) \xi] \quad \text { and } \quad\left(\nabla_{X} \phi\right) Y=f[g(\phi X, Y) \xi-\eta(Y) \phi X]
$$

for $\xi=e_{3}$, where $f=2 e^{-z}$.
Hence we conclude that M is a 3 -dimensional f-Kenmotsu manifold. Also $f^{2}+$ $f^{\prime} \neq 0$. Hence M is a regular f-Kenmotsu manifold.

References

[1] Ahsan, Z., Tensors: Mathematics of Differential Geometry and Relativity, PHI Learning Pvt. Ltd., Delhi (December 2017, Second Printing).
[2] Ali, M. and Ahsan, Z., Ricci solitons and the symmetries of the spacetime manifold of general relativity, Global J. Advanced Research on Classical and Modern Geometries 1 (2012), no. 2, 75-84.
[3] Ali, M. and Ahsan, Z., Geometry of Schwarzschild soliton, J. Tensor Soc. 7 (2013), 49-57.
[4] Ali, M. and Ahsan, Z., Gravitational field of Schwarzschild soliton, Arab J. Math. Sci. 21 (2015), 15-21.
[5] De, U. C., Ricci soliton and gradient Ricci soliton on P-Sasakian manifolds, The Aligarh Bull. of Maths. 29 (2010), 29-34.
[6] De, U. C. and Majhi, P., ϕ-semisymmetric generalized Sasakian space-forms, Arab J. Math. Sci. 21 (2015), 170-178.
[7] Hamilton, R. S., The Ricci flow on surfaces, Mathematics and general relativity, Contemp. Math. 71 (1988), 237-262.
[8] Janssens, D. and Vanhecke, L., Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), no. 1, 1-27.
[9] Kenmotsu, K., A class of almost contact Riemannian manifolds, Tohoku Math. J. 24 (1972), 93-103.
[10] Mandal, K. and De, U. C., Ricci solitons on almost Kenmotsu manifolds, An. Univ. Oradea Fasc. Mat. 2 (2016), no. 2, 109-116.
[11] Olszak, Z. and Rosca, R., Normal locally conformal almost cosymplectic manifolds, Publ. Math. Debrecen 39 (1991), 315-323.
[12] Venkatesha and G. Divyashree, Three dimensional f-Kenmotsu manifold satisfying certain curvature conditions, CUBO A Mathematical Journal 19 (2017), no. 1, 79-87.
[13] Yano, K. and Kon, M., Structures on Manifolds, Series in Pure Math. volume 3, World Sci., 1984.
[14] Yildiz, A., f-Kenmotsu manifolds with the Schouten-van Kampen connection, Publications De L'Institut Mathematique, Nouvelle Serie, 102(116) (2017), 93-105.
[15] Yildiz, A., De, U. C. and Turan, M., On 3-dimensional f-Kenmotsu manifolds and Ricci solitons, Ukrainian Mathematical Journal 65(2013), no. 5, 684-693.

[^0]: ${ }^{1 *}$ Corresponding author, Department of Mathematics, Faculty of Science, Jazan University, Jazan-2097, Kingdom of Saudi Arabia, e-mail: malikhaseeb80@gmail.com, haseeb@jazanu.edu.sa
 ${ }^{2}$ Department of Mathematics and Astronomy, Lucknow University, Lucknow-226007, India, e-mail: rp.manpur@rediffmail.com

