Bulletin of the *Transilvania* University of Braşov • Vol 11(60), No. 2 - 2018 Series III: Mathematics, Informatics, Physics, 119-124

A NOTE ON p^{λ} -CONVEX SETS IN A COMPLETE RIEMANNIAN MANIFOLD

Akhlad IQBAL¹, Chandan Kumar MONDAL² and Absos Ali SHAIKH^{*3}

Abstract

In this paper we have generalized the notion of λ -radial contraction in a complete Riemannian manifold and developed the concept of p^{λ} -convex functions. We have also given a counter example proving the fact that in general λ -radial contraction of a geodesic is not necessarily a geodesic. We have also deduced some relations between geodesic convex sets and p^{λ} -convex sets and showed that under certain condition they are equivalent.

2000 Mathematics Subject Classification: 52A20, 52A30, 53B20, 53C20, 53C22.

Key words: λ -radial contraction, p^{λ} -convex, Riemannian manifold.

1 Introduction

The notion of convexity is a basic topic of modern mathematics, especially, in optimization theory and linear programming. But only convexity is not sufficient to study the behavior of a set. Hence there are many generalization of convexity not only in Euclidean space but also in manifold. Some related work on this topic can be found in [3, 4, 5, 6].

In 2010 Beltagy and Shenawy [1] defined the notion of λ -radial contraction in Euclidean space and proved that under such a contraction a line remains invariant. In this paper we have defined λ -radial contraction in a complete Riemannian manifold and showed that, in general, λ -radial contraction of a geodesic need not be a geodesic. In fact convexity property of a subset in a Riemannian manifold is not invariant under the λ -radial contraction and hence a new type of convexity is

¹Department of Mathematics, Aligarh Muslim University, Aligarh-202002, UP, India, e-mail: akhlad6star@gmail.com

²Department of Mathematics, University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India, e-mail: chan.alge@gmail.com

³**Corresponding author*, Department of Mathematics, University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India, e-mail: aask2003@yahoo.co.in, aashaikh@math.buruniv.ac.in

needed. Motivating by these ideas we have defined λ -convex set with respect to a point p, briefly called p^{λ} -convex set, and also p-convex set in a complete Riemannian manifold. It is proved that in a complete Riemannian manifold geodesic convexity and p-convexity are equivalent under certain conditions. We have also proved that if a set contains an interior point p then there exists some λ such that the set is p^{λ} -convex. We have also showed that every p^{λ} -convex set contains a geodesic convex set.

2 Radial contraction and p^{λ} -convexity

Let (M, g) be a complete *n*-dimensional Riemannian manifold with Levi-Civita connection ∇ . For any two points $x, y \in M$, let $\gamma_{xy} : [0, 1] \to M$ be the length minimizing geodesic [2] from x to y such that $\gamma_{xy}(0) = x$ and $\gamma_{xy}(1) = y$. For a fixed p and x in M, consider the set

$$G_p^x = \Big\{\gamma_{px}'(0) : \forall \gamma_{px} : [0,1] \to M, \gamma_{px}(0) = p \text{ and } \gamma_{px}(1) = x\Big\}.$$

Now G_p^x is a subset of $T_p(M)$. Since (M,g) is complete, hence $G_p^x \neq \phi$. Let $\eta_p: M \to T_p(M)$ be a function such that $\eta_p(x) \in G_p^x \ \forall x \in M$. The function η_p is called direction function at p.

Definition 1. [4] A subset A of M is called geodesic convex if for any two points $x, y \in A$ there exists a geodesic $\gamma_{xy} : [0,1] \to M$ such that $\gamma_{xy}(0) = x$ and $\gamma_{xy}(1) = y$ and $\gamma_{xy}(t) \in A, \forall t \in [0,1].$

Definition 2. For a fixed point $p \in M$ and for fixed $\lambda \in (0,1]$ define $\eta_p C^{\lambda} : M \to M$ by

$$\eta_p C^{\lambda}(x) = \gamma_{px}(\lambda) \quad for \ x \in M,$$

where $\gamma_{px} : [0,1] \to M$ is a geodesic such that $\gamma'_{px}(0) = \eta_p(x)$. This function is called λ -radial contraction of x based at p with respect to η_p .

Since there is exactly one length minimizing geodesic between any two points p and x in (M, g) whose initial vector is $\eta_p(x)$ hence $\eta_p C^{\lambda}$ -function is well defined in (M, g). Beltagy and Shenawy [1] studied such type of function in an Euclidean space. They called it λ -radial contraction based at p.

Definition 3. [1] Let A be a nonempty subset of \mathbb{R}^n . For a fixed point $p \in A$ and a fixed real number $\lambda \in (0, 1]$, the λ -radial contraction of A based at p is denoted by $C_p^{\lambda}(A)$ and is defined by

$$C_p^{\lambda}(A) = \{\lambda x + (1 - \lambda)p : x \in A\}.$$

We have generalized this notion in a complete Riemannian manifold and developed a new type of convex set in (M, g). For a fixed $\lambda \in (0, 1]$, the λ -radial contraction of a non-empty subset A based at p with respect to η_p can be defined as

$$\eta_p C^{\lambda}(A) = \Big\{ \eta_p C^{\lambda}(x) : x \in A \Big\}.$$

In \mathbb{R}^n , for each $x \in \mathbb{R}^n$, $\eta_p(x)$ has only one choice hence we denote $\eta_p C^{\lambda}$ by C_p^{λ} . In [1] it has been shown that λ -radial contraction of a line segment is also a line segment. But in general this does not hold, see example below.

Example 1. Take $M = \mathbb{S}^2$ with the line element $ds^2 = d\theta^2 + \sin^2 \theta d\phi^2$. Now take two points x, y on the equator and take p as the north pole of \mathbb{S}^2 . Then if we choose $\lambda = \frac{1}{2}$, then $\alpha = \eta_p C^{\frac{1}{2}}(\gamma_{xy})$ is a curve joining x' and y' but it is not a geodesic, see Figure 1, since the circle containing α has radius less than one, hence it can not be a geodesic.

Figure 1:

Naturally the question arises. What is the sufficient condition that the map $\eta_p C^{\lambda}$ transforms geodesic to geodesic for a fixed η_p ?

Definition 4. Let $p \in M$ and $A \neq \phi$ be a subset of M with the direction function η_p . Then A is called p^{λ} -convex with respect to η_p for a fixed $\lambda \in (0,1]$ if for any two points $x, y \in A$ there is a length minimizing geodesic connecting $\eta_p C^{\lambda}(x)$ and $\eta_p C^{\lambda}(y)$ belongs to A, i.e, $\gamma_{x'y'}(t) \in A, \forall t \in [0,1]$, where $x' = \eta_p C^{\lambda}(x)$ and $y' = \eta_p C^{\lambda}(y)$.

Unless there are some confusion, by a p^{λ} -convex set we always mean p^{λ} -convex with respect to some direction function η_p .

Definition 5. If a non-empty subset A of M is p^{λ} -convex for all $\lambda \in (0, 1]$, then A is called totally p-convex.

Theorem 1. Let A be a subset of M containing more than two points. Then A is geodesically convex set in (M, g) if and only if for each point $p \in A$ there exists a direction function η_p such that A is p^{λ} -convex with respect to $\eta_p \ \forall \lambda \in (0, 1]$, i.e, A is totally p^{λ} -convex. *Proof.* Let A be a geodesically convex subset of M. Take a point $p \in A$. By convexity for any point $x \in A$ there exists a geodesic $\gamma_{px} : [0,1] \to M$ such that $\gamma_{px}(0) = p$, $\gamma_{px}(1) = x$ and $\gamma_{px}(t) \in A \ \forall t \in [0,1]$. Define the function $\eta_p : M \to T_p(M)$ by

$$\eta_p(x) = \gamma'_{px}(0) \quad \forall x \in A.$$

Now for any two points x, y in A, the points $\eta_p C^{\lambda}(x), \eta_p C^{\lambda}(y) \in A \ \forall \lambda \in (0, 1]$. Hence there exists a unique geodesic connecting $\eta_p C^{\lambda}(x)$ and $\eta_p C^{\lambda}(y)$ that will belongs to A for each $\lambda \in (0, 1]$. Hence A is totally p^{λ} -convex with respect to η_p .

Conversely let A be totally p-convex for each $p \in A$. Take any two points x, y in A. But $x = \eta_p C^{\lambda}(x)$ and $y = \eta_p C^{\lambda}(y)$, where $\lambda = 1$. So using the definition of totally p-convex we can say that there is a geodesic arc connecting x and y belongs to A. So A is geodesically convex.

Corollary 1. For a subset A in M containing more than two points the following statements are equivalent:

- 1. A is geodesically convex,
- 2. A is totally p-convex for any $p \in A$.

Proposition 1. In \mathbb{R}^n , a subset A is p^{λ} -convex for some $p \in A$ and $\lambda \in (0,1]$ if and only if $C_p^{\lambda}(A)$ is p^{μ} -convex for some $\mu \in (0,1]$.

Proof. The proof can be easily deduced from the fact that in \mathbb{R}^n , the λ -contraction of a straight line is also a straight line [1].

But in case of manifold the above proposition is not true, see Example 2.

Example 2. Take $M = \mathbb{S}^2$ and for two fixed points x, y on the equator let A be the set $\{\gamma_{xy}(t) : t \in [0,1]\} \cup \{p\}$, where p is the north pole, see Figure 1. Then A is p-convex. Now for some fixed η_p , the $p^{1/2}$ -radial contraction of A is the set = {the shortest latitude joining $\eta_p C^{\frac{1}{2}}(x)$ and $\eta_p C^{\frac{1}{2}}(y)\} \cup \{p\}$ but this set is not p^{λ} -convex for any $\lambda \in (0,1]$.

One of the main difference between geodesically convex set and p^{λ} -convex set is that geodesically convex sets are always path-connected and hence, geodesically connected, but p^{λ} -convex set may be disconnected. For example, consider $M = \mathbb{S}^2$ and take upper hemisphere together with two distinct points in lower hemisphere, then this set is not path connected but it is p^{λ} -convex set for some $\lambda \in (0, 1]$, where p is the noth pole of \mathbb{S}^2 . We also mention that not all disconnected sets are p^{λ} -convex. For example, any finite set containing more than two points in \mathbb{R}^n which is disconnected but not p^{λ} -convex for some $\lambda \in (0, 1]$.

Proposition 2. If a subset $A \subset M$ contains an interior point p then $\exists \zeta \in (0,1]$ such that A is p^{λ} -convex $\forall \lambda \in (0, \zeta]$.

Proof. Let $p \in A$ be an interior point. Then $B(p,r) \subset A$ for some r > 0. Take $V_p = B(p,r) \cap N_p$, where B_p is the geodesic ball p. Now V_p looks like a flat n-dimensional Euclidean space. For each x in A take $\lambda_x = \inf\{\lambda \in (0,1] : \eta_p C^{\lambda}(x) \in V_p\}$. Now $\lambda_x \neq 0$ since V_p is open so sufficiently small portion of any geodesic emitting from p must lies in V_p . Again take $\zeta = \inf\{\lambda_x : x \in A\}$. Hence A is p^{λ} -convex for all $\lambda \in (0, \zeta]$.

Proposition 3. Let A be a nonempty subset of M and $\lambda, \beta \in (0, 1]$. Then for $p \in M$

$$C_p^{\lambda}(C_p^{\beta}(x)) = C_p^{\lambda\beta}(x) \text{ for } x \in A.$$

Proposition 4. Let $A \subset M$ be a p^{λ} -convex set. Then A is also p^{λ^n} -convex $\forall n \in \mathbb{N}$.

Proof. Fixed $m \in \mathbb{N}$ and choose two distinct points x, y from A. Since A is p^{λ} convex, so the geodesic $\gamma_{x_1y_1}$ belongs to A where $x_1 = C_p^{\lambda}(x)$ and $y_1 = C_p^{\lambda}(y)$. Again by similar argument taking $x_2 = C_p^{\lambda}(x_1)$ and $y_2 = C_p^{\lambda}(y_1)$ we get $\gamma_{x_2y_2}$ belongs to A. Hence continuing this way we get $\gamma_{x_ny_n} \in A$ where $x_n = C_p^{\lambda}(x_{n-1})$ and $y_n = C_p^{\lambda}(y_{n-1})$. Thus from Proposition 3 we get $x_m = C_p^{\lambda} \circ C_p^{\lambda} \circ \cdots \circ C_p^{\lambda}(x)$ (m-times) and $y_m = C_p^{\lambda} \circ C_p^{\lambda} \circ \cdots \circ C_p^{\lambda}(y)$ (m-times). So, $C_p^{\lambda m}(x), C_p^{\lambda m}(y)$ and
the geodesic arc joining these two points belong to A. Hence A is $p^{\lambda m}$ -convex for
any $m \in \mathbb{N}$.

Theorem 2. Let $\{A_i\}_{i \in \lambda}$ be an arbitrary collection of p^{λ} -convex sets and $\bigcap_{i \in \Lambda} A_i$ is nonempty. Then $\bigcap_{i \in \Lambda} A_i$ is also p^{λ} -convex.

Proof. Let $x, y \in \bigcap_{i \in \Lambda} A_i$. Hence $x, y \in A_i$ for all $i \in \Lambda$. Now by definition of p^{λ} -convex set, we have $\eta_p C^{\lambda}(x), \eta_p C^{\lambda}(y) \in A_i \ \forall i \in \Lambda$. Hence $\bigcap_{i \in \Lambda} A_i$ is p^{λ} -convex.

Theorem 3. For any p^{λ} -convex set $A \subset M$ there exists a geodesically convex subset V containing p such that $V \subset A$.

Proof. Let A be a p^{λ} -convex set. Take

$$V = \bigcup_{x,y \in A} \Big\{ \gamma_{x'y'} : x' = C_p^{\lambda}(x), y' = C_p^{\lambda}(y) \Big\}.$$

We shall show that V is geodesically convex. Choose any two points x, y from B. Then $x = C_p^{\lambda}(x')$ and $y = C_p^{\lambda}(y')$ for some $x', y' \in A$. Since A is p^{λ} -convex, the geodesic $\gamma_{xy} \in A$ implies γ_{xy} belongs to V. Hence V is geodesically convex. \Box

Acknowledgment

The work was initiated when the author A. A. Shaikh was working as a professor of Aligarh Muslim University. The first author greatly acknowledges to The University Grants Commission, Government of India for the award of Junior Research Fellowship.

References

- Beltagy, M. and Shenawy, S., Note on convexity and starshapedness, Applied Math. Sci., 4 (2010), no. 53, 2599–2608.
- [2] Lang, S., *Fundamentals of differential geometry*, Grad. Texts in Math., Springer, New York, 1994.
- [3] Lay, S. R., Convex sets and their applications, John Wiley and Sons, New York, 1982.
- [4] Rapcsak, T., Smooth nonlinear optimization in \mathbb{R}^n , Kluwer Academic Publishers, 1994.
- [5] Shaikh, A. A, Iqbal, A. and Mondal, C. K., Some results on φ-convex functions and geodesic φ-convex functions, Differ. Geom. Dyn. Syst., 20 (2018), 159–170.
- [6] Udrişte, C., Convex functions and optimization methods on Riemannian manifolds, Kluwer Academic Publisher, 1994.