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Abstract

In this paper we have generalized the notion of λ-radial contraction in a
complete Riemannian manifold and developed the concept of pλ-convex func-
tions. We have also given a counter example proving the fact that in general
λ-radial contraction of a geodesic is not necessarily a geodesic. We have also
deduced some relations between geodesic convex sets and pλ-convex sets and
showed that under certain condition they are equivalent.
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1 Introduction

The notion of convexity is a basic topic of modern mathematics, especially, in
optimization theory and linear programming. But only convexity is not sufficient
to study the behavior of a set. Hence there are many generalization of convexity
not only in Euclidean space but also in manifold. Some related work on this topic
can be found in [3, 4, 5, 6].

In 2010 Beltagy and Shenawy [1] defined the notion of λ-radial contraction in
Euclidean space and proved that under such a contraction a line remains invari-
ant. In this paper we have defined λ-radial contraction in a complete Riemannian
manifold and showed that, in general, λ-radial contraction of a geodesic need not
be a geodesic. In fact convexity property of a subset in a Riemannian manifold is
not invariant under the λ-radial contraction and hence a new type of convexity is
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needed. Motivating by these ideas we have defined λ-convex set with respect to
a point p, briefly called pλ-convex set, and also p-convex set in a complete Rie-
mannian manifold. It is proved that in a complete Riemannian manifold geodesic
convexity and p-convexity are equivalent under certain conditions. We have also
proved that if a set contains an interior point p then there exists some λ such that
the set is pλ-convex. We have also showed that every pλ-convex set contains a
geodesic convex set.

2 Radial contraction and pλ-convexity

Let (M, g) be a complete n-dimensional Riemannian manifold with Levi-Civita
connection ∇. For any two points x, y ∈ M , let γxy : [0, 1] → M be the length
minimizing geodesic [2] from x to y such that γxy(0) = x and γxy(1) = y. For a
fixed p and x in M , consider the set

Gxp =
{
γ′px(0) : ∀γpx : [0, 1]→M,γpx(0) = p and γpx(1) = x

}
.

Now Gxp is a subset of Tp(M). Since (M, g) is complete, hence Gxp 6= φ. Let
ηp : M → Tp(M) be a function such that ηp(x) ∈ Gxp ∀x ∈M . The function ηp is
called direction function at p.

Definition 1. [4] A subset A of M is called geodesic convex if for any two points
x, y ∈ A there exists a geodesic γxy : [0, 1] → M such that γxy(0) = x and
γxy(1) = y and γxy(t) ∈ A,∀t ∈ [0, 1].

Definition 2. For a fixed point p ∈M and for fixed λ ∈ (0, 1] define ηpC
λ : M →

M by

ηpC
λ(x) = γpx(λ) for x ∈M,

where γpx : [0, 1] → M is a geodesic such that γ′px(0) = ηp(x). This function is
called λ-radial contraction of x based at p with respect to ηp.

Since there is exactly one length minimizing geodesic between any two points
p and x in (M, g) whose initial vector is ηp(x) hence ηpC

λ-function is well defined
in (M, g). Beltagy and Shenawy [1] studied such type of function in an Euclidean
space. They called it λ-radial contraction based at p.

Definition 3. [1] Let A be a nonempty subset of Rn. For a fixed point p ∈ A and
a fixed real number λ ∈ (0, 1], the λ-radial contraction of A based at p is denoted
by Cλp (A) and is defined by

Cλp (A) = {λx+ (1− λ)p : x ∈ A}.

We have generalized this notion in a complete Riemannian manifold and de-
veloped a new type of convex set in (M, g).
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For a fixed λ ∈ (0, 1], the λ-radial contraction of a non-empty subset A based
at p with respect to ηp can be defined as

ηpC
λ(A) =

{
ηpC

λ(x) : x ∈ A
}
.

In Rn, for each x ∈ Rn, ηp(x) has only one choice hence we denote ηpC
λ by Cλp .

In [1] it has been shown that λ-radial contraction of a line segment is also a line
segment. But in general this does not hold, see example below.

Example 1. Take M = S2 with the line element ds2 = dθ2 + sin2 θdφ2. Now
take two points x, y on the equator and take p as the north pole of S2. Then if
we choose λ = 1

2 , then α = ηpC
1
2 (γxy) is a curve joining x′ and y′ but it is not

a geodesic, see Figure 1, since the circle containing α has radius less than one,
hence it can not be a geodesic.

Figure 1:

Naturally the question arises. What is the sufficient condition that the map
ηpC

λ transforms geodesic to geodesic for a fixed ηp?

Definition 4. Let p ∈M and A 6= φ be a subset of M with the direction function
ηp. Then A is called pλ-convex with respect to ηp for a fixed λ ∈ (0, 1] if for
any two points x, y ∈ A there is a length minimizing geodesic connecting ηpC

λ(x)
and ηpC

λ(y) belongs to A, i.e, γx′y′(t) ∈ A,∀t ∈ [0, 1], where x′ = ηpC
λ(x) and

y′ = ηpC
λ(y).

Unless there are some confusion, by a pλ-convex set we always mean pλ-convex
with respect to some direction function ηp.

Definition 5. If a non-empty subset A of M is pλ-convex for all λ ∈ (0, 1], then
A is called totally p-convex.

Theorem 1. Let A be a subset of M containing more than two points. Then A
is geodesically convex set in (M, g) if and only if for each point p ∈ A there exists
a direction function ηp such that A is pλ-convex with respect to ηp ∀λ ∈ (0, 1], i.e,
A is totally pλ-convex.
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Proof. Let A be a geodesically convex subset of M . Take a point p ∈ A. By
convexity for any point x ∈ A there exists a geodesic γpx : [0, 1] → M such
that γpx(0) = p, γpx(1) = x and γpx(t) ∈ A ∀t ∈ [0, 1]. Define the function
ηp : M → Tp(M) by

ηp(x) = γ′px(0) ∀x ∈ A.

Now for any two points x, y in A, the points ηpC
λ(x), ηpC

λ(y) ∈ A ∀λ ∈ (0, 1].
Hence there exists a unique geodesic connecting ηpC

λ(x) and ηpC
λ(y) that will

belongs to A for each λ ∈ (0, 1]. Hence A is totally pλ-convex with respect to ηp.
Conversely let A be totally p-convex for each p ∈ A. Take any two points x, y

in A. But x = ηpC
λ(x) and y = ηpC

λ(y), where λ = 1. So using the definition
of totally p-convex we can say that there is a geodesic arc connecting x and y
belongs to A. So A is geodesically convex.

Corollary 1. For a subset A in M containing more than two points the following
statements are equivalent:

1. A is geodesically convex,

2. A is totally p-convex for any p ∈ A.

Proposition 1. In Rn, a subset A is pλ-convex for some p ∈ A and λ ∈ (0, 1] if
and only if Cλp (A) is pµ-convex for some µ ∈ (0, 1].

Proof. The proof can be easily deduced from the fact that in Rn, the λ-contraction
of a straight line is also a straight line [1].

But in case of manifold the above proposition is not true, see Example 2.

Example 2. Take M = S2 and for two fixed points x, y on the equator let A be
the set {γxy(t) : t ∈ [0, 1]} ∪ {p}, where p is the north pole, see Figure 1. Then
A is p-convex. Now for some fixed ηp, the p1/2-radial contraction of A is the set

= {the shortest latitude joining ηpC
1
2 (x) and ηpC

1
2 (y)} ∪ {p} but this set is not

pλ-convex for any λ ∈ (0, 1].

One of the main difference between geodesically convex set and pλ-convex set
is that geodesically convex sets are always path-connected and hence, geodesically
connected, but pλ-convex set may be disconnected. For example, consider M = S2

and take upper hemisphere together with two distinct points in lower hemisphere,
then this set is not path connected but it is pλ-convex set for some λ ∈ (0, 1],
where p is the noth pole of S2. We also mention that not all disconnected sets
are pλ-convex. For example, any finite set containing more than two points in Rn
which is disconnected but not pλ-convex for some λ ∈ (0, 1].

Proposition 2. If a subset A ⊂M contains an interior point p then ∃ ζ ∈ (0, 1]
such that A is pλ-convex ∀λ ∈ (0, ζ].
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Proof. Let p ∈ A be an interior point. Then B(p, r) ⊂ A for some r > 0. Take
Vp = B(p, r) ∩ Np, where Bp is the geodesic ball p. Now Vp looks like a flat n-
dimensional Euclidean space. For each x in A take λx = inf{λ ∈ (0, 1] : ηpC

λ(x) ∈
Vp}. Now λx 6= 0 since Vp is open so sufficiently small portion of any geodesic
emitting from p must lies in Vp. Again take ζ = inf{λx : x ∈ A}. Hence A is
pλ-convex for all λ ∈ (0, ζ].

Proposition 3. Let A be a nonempty subset of M and λ, β ∈ (0, 1]. Then for
p ∈M

Cλp (Cβp (x)) = Cλβp (x) for x ∈ A.

Proposition 4. Let A ⊂ M be a pλ-convex set. Then A is also pλ
n

-convex
∀n ∈ N.

Proof. Fixed m ∈ N and choose two distinct points x, y from A. Since A is pλ-
convex, so the geodesic γx1y1 belongs to A where x1 = Cλp (x) and y1 = Cλp (y).

Again by similar argument taking x2 = Cλp (x1) and y2 = Cλp (y1) we get γx2y2
belongs to A. Hence continuing this way we get γxnyn ∈ A where xn = Cλp (xn−1)

and yn = Cλp (yn−1). Thus from Proposition 3 we get xm = Cλp ◦ Cλp ◦ · · · ◦ Cλp (x)

(m-times) and ym = Cλp ◦ Cλp ◦ · · · ◦ Cλp (y) (m-times). So, Cλ
m

p (x), Cλ
m

p (y) and

the geodesic arc joining these two points belong to A. Hence A is pλ
m

-convex for
any m ∈ N.

Theorem 2. Let {Ai}i∈λ be an arbitrary collection of pλ-convex sets and
⋂
i∈ΛAi

is nonempty. Then
⋂
i∈ΛAi is also pλ-convex.

Proof. Let x, y ∈
⋂
i∈ΛAi. Hence x, y ∈ Ai for all i ∈ Λ. Now by definition

of pλ-convex set, we have ηpC
λ(x), ηpC

λ(y) ∈ Ai ∀i ∈ Λ. Hence
⋂
i∈ΛAi is pλ-

convex.

Theorem 3. For any pλ-convex set A ⊂ M there exists a geodesically convex
subset V containing p such that V ⊂ A.

Proof. Let A be a pλ-convex set. Take

V =
⋃

x,y∈A

{
γx′y′ : x′ = Cλp (x), y′ = Cλp (y)

}
.

We shall show that V is geodesically convex. Choose any two points x, y from B.
Then x = Cλp (x′) and y = Cλp (y′) for some x′, y′ ∈ A. Since A is pλ-convex, the
geodesic γxy ∈ A implies γxy belongs to V . Hence V is geodesically convex.
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[6] Udrişte, C., Convex functions and optimization methods on Riemannian
manifolds, Kluwer Academic Publisher, 1994.


