THE APPLICATIONS OF THE UNIVERSAL MORPHISMS OF CF-TOP THE CATEGORY OF ALL FUZZY TOPOLOGICAL SPACES

Farhan ISMAIL ${ }^{1}$ and Abdelkrim LATRECHE* ${ }^{2}$

Abstract

In the present work, we built a category of fuzzy topological spaces from Chang's definition of Fuzzy TOPological space, that we denoted CF-TOP. Firstly, we collected universal morphisms of TOP category, listed by Sander Mac Lane [6], then, we studied universal morphisms of CF-TOP. This study shows that these morphisms are just generalizations of TOP category morphisms, which confirms that Chang's fuzziness to topological space is weak. At the end of this work, we prove that TOP and CF-TOP are not isomorphic.

2000 Mathematics Subject Classification: 03E72, 18B30, 18A30.
Key words: category, functor, fuzzy topological space, TOP-category, universal morphisms.

1 Introduction

In the early 1940's Samuel Eilenberg and Saunders Mac Lane [7] invented Category theory, with the aim of bridging what may appear to be two quite different fields: Topology and Algebra. Later, it was propagated by Alexander Grothendieck in 1960's. From another side, L. A. Zadeh [10] introduced the fuzzy set in 1965, since then many researchers have used this tool to generalize different concepts of Mathematics.
General topology is considered to be one of the first branches of pure mathematics that appeared at the end of the 19th century. However, the fuzzification of topological space is defined by C. L. Chang [3] in 1968, that is, three years after Zadeh's paper.
Regarding the importance of fuzzy applications and category theory, it seems more interesting to join both. This leads us to speaking about the applications of the universal morphisms of the fuzzy category.

[^0]The present work is organized as follows: in the next section, we recall some of the basic definitions (fuzzy set and operations on it, the fuzzy topological space, fuzzy continuous application, fuzzy topological space, universal morphisms, ...). Then, we collect the universal morphisms of TOPological spaces category (TOP). In the 3rd section, we study the universal morphisms of fuzzy topological spaces category (CF-TOP). And finally, we chose category functor (simple) [8] for clarifying the relation between TOP and CF-TOP categories and we proved that this functor is not isomorphic.

2 PRELIMINARY NOTIONS

Let X be a set. A fuzzy set A in X is characterized by a membership function $\mu_{A}(x)$ from X into [0, 1]. [3]-[9]-[10]

Definition 1. [3]-[10] Let A and B be fuzzy sets in X. Then:

1. $A=B \Longleftrightarrow \mu_{A}(x)=\mu_{B}(x), \quad$ for all $x \in X$.
2. $A \subset B \Longleftrightarrow \mu_{A}(x) \leq \mu_{B}(x), \quad$ for all $x \in X$.
3. $C=A \cup B \Longleftrightarrow \mu_{C}(x)=\max \left\{\mu_{A}(x), \mu_{B}(x)\right\} \quad$ for all $x \in X$.
4. $D=A \cap B \Longleftrightarrow \mu_{D}(x)=\min \left\{\mu_{A}(x), \mu_{B}(x)\right\} \quad$ for all $x \in X$.

More generally, for a family of fuzzy sets, $A=\left\{A_{i}, i \in I\right\}$, the union, $C=\cup_{I} A_{i}$, and the intersection $D=\cap_{I} A_{i}$, are defined by:

$$
\begin{array}{ll}
\mu_{C}(x)=\sup _{I}\left\{\mu_{A_{i}}(x)\right\} & \text { for all } x \in X . \\
\mu_{D}(x)=\inf _{I}\left\{\mu_{A_{i}}(x)\right\} & \text { for all } x \in X .
\end{array}
$$

The symbol \varnothing will be used to denote an empty fuzzy set $\left(\mu_{\varnothing}(x)=0\right.$ for all $\left.x \in X\right)$. For X, we have by definition $\mu_{X}(x)=1$, for all $x \in X$.
Definition 2. [3] Let f be a function from X to Y. Let B be a fuzzy set in Y with membership function $\mu_{B}(y)$. Then the inverse of B, written as $f^{-1}(B)$, is a fuzzy set in X whose membership function is defined by:

$$
\mu_{f^{-1}(B)}(x)=\mu_{B}(f(x)) \text { for all } x \in X
$$

Definition 3. [3] A fuzzy topology is a family T of fuzzy sets in X which satisfies the following conditions:

1. $\varnothing, X \in T$.
2. Si $A_{1}, A_{2} \in T$, then $A_{1} \cap A_{2} \in T$.
3. Si $A_{i} \in T$ four all $i \in I$, then $\cup_{I} A_{i} \in T$.
T is called a fuzzy topology for X, and the pair (X, T) is a fuzzy topological space or (F-TOP) in short. Every member of T is called a T-open fuzzy set.

Definition 4. [3] A function f from an $F-T O P(X, T)$ to an $F-T O P(Y, U)$ is fuzzy continuous (F-continuous) iff the inverse of each U-open fuzzy set is T-open.

Definition 5. [9]
(a) Let T be a fuzzy topology. A subfamily B of T is a base for T iff each member of T can be expressed as the union of some members of B.
(b) A subfamily S of B is a sub-base for T iff the family of finite intersections of members of S forms a base for T.
(c) A sub-base for the product fuzzy topology on $(X, T)=\left(\prod_{i \in I} X_{i}, \prod_{i \in I} T_{i}\right)$ is given by $S=\left\{\pi_{i}^{-1} \theta_{i} ; \theta_{i} \in T_{i}, i \in I\right\}$ (π_{i} the projection from X onto X_{i}) so that a base can be taken to be

$$
B=\left\{\cap_{j=1}^{n} \pi_{i_{j}}^{-1} \theta_{i_{j}} ; \theta_{i_{j}} \in T_{i_{j}}, i_{j} \in I, j=1 \ldots n, n \in \mathbb{N}\right\} .
$$

Definition 6. [6] Let D, C be two categories, $S: D \longrightarrow C$ is a functor and c an object of C, a universal arrow from c to S is a pair $\langle r, u\rangle$ consisting of an object r of D and $u: c \longrightarrow S r$ an arrow of S, such that to every pair $<d, f>$ with d an object of D and $f: c \longrightarrow S d$ an arrow of C, there is a unique arrow $f^{\prime}: r \longrightarrow d$ of D with $S f^{\prime} \circ u=f$.

Proposition 1. [6](THE UNIVERSAL MORPHISMS OF TOP)
$\underline{T O P}$ is the category of all topological spaces and continuous maps.
(a) The element of Co-product of $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ in TOP is their disjoint union.
(b) The element of Co-equalizer of $f, g:\left(X, \tau_{X}\right) \longrightarrow\left(Y, \tau_{Y}\right)$ in TOP is the topological space $\left(Y / \sim, \tau_{Y / \sim}\right)$, where \sim is the least equivalence relation which contains all pairs $\langle f(x), g(x)\rangle$, for $x \in X$.
(c) The element of Push-out of $f:\left(X, \tau_{X}\right) \longrightarrow\left(Y, \tau_{Y}\right), g:\left(X, \tau_{X}\right) \longrightarrow\left(Z, \tau_{Z}\right)$ in TOP is the disjoint union $\left(Y \cup Z, \tau_{Y \cup Z}\right)$ with the elements $f(x)$ and $g(x)$ identified for each $x \in X$.
(d) The element of Product of $\left(X, \tau_{X}\right),\left(Y, \tau_{Y}\right)$ in TOP is their cartesian product.
(e) The element of Equalizer of $f, g:\left(X, \tau_{X}\right) \longrightarrow\left(Y, \tau_{Y}\right)$ in TOP is the topological space $\left(D, \tau_{D}\right)$, where $D=\{x \in X, f(x)=g(x)\}$.
(f) The element of Pull-back of $f:\left(X, \tau_{X}\right) \longrightarrow\left(Z, \tau_{Z}\right), g:\left(Y, \tau_{Y}\right) \longrightarrow\left(Z, \tau_{Z}\right)$ in $\underline{T O P}$ is the topological space $\left(C, \tau_{C}\right)$, where $C=\{(x, y) \in X \times Y, f(x)=g(y)\}$.

3 Main results

This section is devoted to present the main results of this paper.
The fuzzy topological spaces F-TOP and fuzzy continuous mappings form a category which we denote by CF-TOP. Now, we investigate the universal morphisms of this category.

3.1 Co-product

Definition 7. (Disjoint union of fuzzy topological spaces)
Let $\left(X_{1}, \tau_{1}\right),\left(X_{2}, \tau_{2}\right)$ be two fuzzy topological spaces, μ and μ^{\prime} denote the membership functions of the elements of τ_{1} and τ_{2} respectively.

The disjoint union of $\left(X_{1}, \tau_{1}\right),\left(X_{2}, \tau_{2}\right)$ is defined as:

$$
\left(X_{1}, \tau_{1}\right) \cup\left(X_{2}, \tau_{2}\right)=\left(X_{1} \cup X_{2}, \tau_{X_{1} \cup X_{2}}\right) .
$$

where

$$
X_{1} \cup X_{2}=\left\{X_{1} \times\{1\}\right\} \cup\left\{X_{2} \times\{2\}\right\} .
$$

and

$$
\tau_{X_{1} \cup X_{2}}=\left\{\theta, \theta \text { is a fuzzy set on } X_{1} \cup X_{2}\right\} .
$$

The membership function of the elements of $\tau_{X_{1} \cup X_{2}}$ is defined by:

$$
\begin{aligned}
\left(\mu \cup \mu^{\prime}\right)_{\theta}: X_{1} \cup X_{2} & \longrightarrow[0,1] \\
(x, k) & \longmapsto\left(\mu \cup \mu^{\prime}\right)_{\theta}(x, k)= \begin{cases}\mu_{\varphi_{1}^{-1}(\theta)}(x) & \text { if } k=1 . \\
\mu_{\varphi_{2}^{-1}(\theta)}^{\prime}(x) & \text { if } k=2 .\end{cases}
\end{aligned}
$$

where

$$
\begin{aligned}
\varphi_{1}:\left(X_{1}, \tau_{1}\right) & \longrightarrow\left(X_{1} \cup X_{2}, \tau_{X_{1} \cup X_{2}}\right) \\
x & \longmapsto \varphi_{1}(x)=(x, 1)
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi_{2}:\left(X_{2}, \tau_{2}\right) & \longrightarrow\left(X_{1} \cup X_{2}, \tau_{X_{1} \cup X_{2}}\right) \\
x & \longmapsto \varphi_{2}(x)=(x, 2)
\end{aligned}
$$

Proposition 2. The disjoint union $\left(X_{1} \cup X_{2}, \tau_{X_{1} \cup X_{2}}\right)$ is a fuzzy topological space.
Proof. (1) We have:

$$
\begin{gathered}
\left(\mu \cup \mu^{\prime}\right)_{\varnothing}(x, k)=\left\{\begin{array}{ll}
\mu_{\varphi_{1}^{-1}(\varnothing)}(x) & \text { if } k=1 . \\
\mu_{\varphi_{2}^{-1}(\varnothing)}^{\prime}(x) & \text { if } k=2 .
\end{array}=\left\{\begin{array}{ll}
\mu_{\varnothing}(x) & \text { if } k=1 . \\
\mu_{\varnothing}^{\prime}(x) & \text { if } k=2 .
\end{array}=0 .\right.\right. \\
\left(\mu \cup \mu^{\prime}\right)_{X_{1} \cup X_{2}}(x, k) \\
= \begin{cases}\mu_{\varphi_{1}}^{-1}\left(X_{1} \cup X_{2}\right) & (x) \\
\text { if } k=1 . \\
\mu_{\varphi_{2}^{1}\left(X_{1} \cup X_{2}\right)}^{\prime}(x) & \text { if } k=2 .\end{cases} \\
= \begin{cases}\mu_{X_{1}}(x) & \text { if } k=1 . \\
\mu_{X_{2}}^{\prime}(x) & \text { if } k=2 .\end{cases}
\end{gathered}
$$

So $\varnothing, X_{1} \cup X_{2} \in \tau_{X_{1} \cup X_{2}}$.
(2) If $\theta_{1}, \theta_{2} \in \tau_{X_{1} \cup X_{2}}$, then $\theta_{1} \cap \theta_{2}$ is a fuzzy set on $X \cup X^{\prime}, \lambda_{\theta_{1} \cap \theta_{2}}$ denotes the membership function of $\theta_{1} \cap \theta_{2}$. By definition(1) we have :

$$
\begin{aligned}
\lambda_{\theta_{1} \cap \theta_{2}}: \quad X \cup X^{\prime} & \longrightarrow[0,1] \\
(x, k) & \longmapsto \lambda_{\theta_{1} \cap \theta_{2}}(x, k)=\min \left\{\lambda_{\theta_{1}}(x, k), \lambda_{\theta_{2}}(x, k)\right\}
\end{aligned}
$$

We have two cases:
case (1): If $k=1$, we have:

$$
\begin{aligned}
\lambda_{\theta_{1} \cap \theta_{2}}(x, 1) & =\min \left\{\lambda_{\theta_{1}}(x, 1), \lambda_{\theta_{2}}(x, 1)\right\} \\
& =\min \left\{\left(\mu \cup \mu^{\prime}\right)_{\theta_{1}}(x, 1),\left(\mu \cup \mu^{\prime}\right)_{\theta_{2}}(x, 1)\right\} \\
& =\min \left\{\mu_{\varphi_{1}^{-1}\left(\theta_{1}\right)}(x), \mu_{\varphi_{1}^{-1}\left(\theta_{2}\right)}(x)\right\} \\
& =\mu_{\varphi_{1}^{-1}\left(\theta_{1}\right) \cap \varphi_{1}^{-1}\left(\theta_{2}\right)}(x)=\mu_{\varphi_{1}^{-1}\left(\theta_{1} \cap \theta_{2}\right)}(x) .
\end{aligned}
$$

case (2): If $k=2$, using the same method with $k=1$ we prove that:

$$
\lambda_{\theta_{1} \cap \theta_{2}}(x, 2)=\mu_{\varphi_{1}^{-1}\left(\theta_{1} \cap \theta_{2}\right)}^{\prime}(x) .
$$

So $\lambda_{\theta_{1} \cap \theta_{2}}(x, k)= \begin{cases}\mu_{\varphi_{1}^{-1}\left(\theta_{1} \cap \theta_{2}\right)}(x) & \text { if } k=1 . \\ \mu_{\varphi_{2}^{-1}\left(\theta_{1} \cap \theta_{2}\right)}^{\prime}(x) & \text { if } k=2 .\end{cases}$
then $\theta_{1} \cap \theta_{2} \in \tau_{X_{1} \cup X_{2}}$.
(3) If $\theta_{h} \in \tau_{X_{1} \cup X_{2}}, \forall h \in \Delta$, then $\cup_{h \in \Delta} \theta_{h}$ is a fuzzy set on $X \cup X^{\prime}, \lambda_{\cup_{h \in \Delta} \theta_{h}}$ denotes the membership function of $\cup_{h \in \Delta} \theta_{h}$. By definition(1) we have :

$$
\begin{aligned}
\lambda_{\cup_{h \in \Delta} \theta_{h}}: X \cup X^{\prime} & \longrightarrow[0,1] \\
(x, k) & \longmapsto \lambda_{\cup_{h \in \Delta} \theta_{h}}(x, k)=\sup _{h \in \Delta}\left\{\lambda_{\theta_{h}}(x, k)\right\}
\end{aligned}
$$

We have two cases:
case (1): If $k=1$, then:

$$
\begin{aligned}
\lambda_{U_{h \in \Delta} \theta_{h}}(x, 1) & =\sup _{h \in \Delta}\left\{\lambda_{\theta_{h}}(x, 1)\right\}=\sup _{h \in \Delta}\left\{\left(\mu \odot \mu^{\prime}\right)_{\theta_{h}}(x, 1)\right\} \\
& =\mu_{\cup_{h \in \Delta} \varphi_{1}^{-1}\left(\theta_{h}\right)}(x)=\mu_{\varphi_{1}^{-1}\left(\cup_{h \in \Delta} \theta_{h}\right)}(x) .
\end{aligned}
$$

case (2): If $k=2$, using the same method with $k=1$ we prove that:

$$
\lambda_{\cup_{h \in \Delta} \theta_{h}}(x, 2)=\mu_{\varphi_{2}^{-1}\left(\cup_{h \in \Delta} \theta_{h}\right)}^{\prime}(x)
$$

So $\lambda_{U_{h \in \Delta} \theta_{h}}(x, k)= \begin{cases}\mu_{\varphi_{1}^{-1}\left(U_{h \in \Delta} \theta_{h}\right)}(x) & \text { if } k=1 . \\ \mu_{\varphi_{2}^{-1}\left(U_{h \in \Delta} \theta_{h}\right)}(x) & \text { if } k=2 .\end{cases}$
then $\cup_{h \in \Delta} \theta_{h} \in \tau_{X_{1} \cup X_{2}}$.

Proposition 3. The applications φ_{1}, φ_{2} are F-continuous.

Proof. First, let's prove that φ_{1} is F-continuous.
Let $\theta \in \tau_{X_{1} \cup X_{2}}$, from the definition (2), the inverse of θ by φ_{1} is a fuzzy set in X_{1}, $\lambda_{\varphi_{1}^{-1}(\theta)}$ denotes the membership function of $\varphi_{1}^{-1}(\theta)$, then:

$$
\lambda_{\varphi_{1}^{-1}(\theta)}(x)=\lambda_{\theta} \varphi_{1}(x)=\left(\mu \cup \mu^{\prime}\right)_{\theta}(x, 1)=\mu_{\varphi_{1}^{-1}(\theta)}(x) .
$$

Using the same method we prove that φ_{2} is F -continuous.
Theorem 1. Let $f:\left(X_{1}, \tau_{1}\right) \longrightarrow\left(C, \tau_{C}\right), g:\left(X_{2}, \tau_{2}\right) \longrightarrow\left(C, \tau_{C}\right)$ be two F continuous applications ($\mu^{\prime \prime}$ denotes the membership function of the elements of τ_{C}), then there exists an F-continuous application
$h:\left(X_{1} \cup X_{2}, \tau_{X_{1} \cup X_{2}}\right) \longrightarrow\left(C, \tau_{C}\right)$ such that $f=h \circ \varphi_{1}$ and $g=h \circ \varphi_{2}$.
Proof. Let's define h by :

$$
\begin{align*}
h:\left(X_{1} \cup X_{2}, \tau_{X_{1} \cup X_{2}}\right) & \longrightarrow \quad\left(C, \tau_{C}\right) \tag{1}\\
(x, k) & \longmapsto h(x, k)= \begin{cases}f(x) & \text { if } k=1 . \\
g(x) & \text { if } k=2 .\end{cases}
\end{align*}
$$

It is clear that : $f=h \circ \varphi_{1}$ and $g=h \circ \varphi_{2}$.
Let $\theta_{k} \in \tau_{C}$, by definition(2) and (1) we have:

$$
\lambda_{h^{-1}\left(\theta_{k}\right)}(x, k)=\lambda_{\theta_{k}} h(x, k)=\mu_{\theta_{k}}^{\prime \prime} h(x, k)= \begin{cases}\mu_{\theta_{k}}^{\prime \prime} f(x) & \text { if } k=1 . \\ \mu_{\theta_{k}}^{\prime \prime} g(x) & \text { if } k=2 .\end{cases}
$$

As f, g are F-continuous then:

$$
\begin{aligned}
\lambda_{h^{-1}\left(\theta_{k}\right)}(x, k) & = \begin{cases}\mu_{f^{-1}\left(\theta_{k}\right)}(x) & \text { if } k=1 . \\
\mu_{g^{-1}\left(\theta_{k}\right)}^{\prime}(x) & \text { if } k=2 .\end{cases} \\
& = \begin{cases}\mu_{\left(h \circ \varphi_{1}\right)^{-1}\left(\theta_{k}\right)}(x) & \text { if } k=1 . \\
\mu_{\left(h \circ \varphi_{2}\right)^{-1}\left(\theta_{k}\right)}^{\prime}(x) & \text { if } k=2 .\end{cases} \\
& = \begin{cases}\mu_{\varphi_{1}^{-1}\left(h^{-1}\left(\theta_{k}\right)\right)}^{\prime}(x) & \text { if } k=1 . \\
\mu_{\varphi_{2}^{-1}\left(h^{-1}\left(\theta_{k}\right)\right)}^{\prime}(x) & \text { if } k=2 .\end{cases}
\end{aligned}
$$

which gives $h^{-1}\left(\theta_{k}\right) \in \tau_{X_{1} \cup X_{2}}$, so h is F-continuous.
Corollary 1. The element of Co-product of $\left(X_{1}, \tau_{1}\right),\left(X_{2}, \tau_{2}\right) \in \underline{C F-T O P}$ is a fuzzy topological space $\left(X_{1}, \tau_{1}\right) \cup\left(X_{2}, \tau_{2}\right)$ (defined above).

Proof. By proposition(2) $\left(X_{1} \cup X_{2}, \tau_{X_{1} \cup X_{2}}\right) \in \underline{\text { CF-TOP. Also by proposition(3) }}$ φ_{1}, φ_{2} are F- continuous.
By theorem (1), if $f:\left(X_{1}, \tau_{1}\right) \longrightarrow\left(C, \tau_{C}\right), g:\left(X_{2}, \tau_{2}\right) \longrightarrow\left(C, \tau_{C}\right)$ are Fcontinuous applications, then there exists an F-continuous application h defined by (1), that verifies $f=h \circ \varphi_{1}, g=h \circ \varphi_{2}$.
Let $h^{\prime}:\left(X_{1} \cup X_{2}, \tau_{X_{1} \cup X_{2}}\right) \longrightarrow\left(C, \tau_{C}\right)$ be another F-continuous application where $f=h^{\prime} \circ \varphi_{1}$ and $g=h^{\prime} \circ \varphi_{2}$. We have:

$$
\left(h^{\prime} \circ \varphi_{1}\right)(x)=h^{\prime}\left(\varphi_{1}(x)\right)=h^{\prime}(x, 1)=f(x) .
$$

and

$$
\left(h^{\prime} \circ \varphi_{2}\right)(x)=h^{\prime}\left(\varphi_{2}(x)\right)=h^{\prime}(x, 2)=g(x)
$$

therefore h is unique.

3.2 Co-equalizer

Definition 8. Let $\left(X, \tau_{X}\right)$ be a fuzzy topological space, μ denotes the membership function of the elements of τ_{X}, \sim is the equivalence relation on X and $P: X \longrightarrow X / \sim$ is the natural projection map, we define $\tau_{X / \sim}$ by:

$$
\tau_{X / \sim}=\{\theta, \theta \text { is a fuzzy set on } X / \sim\}
$$

The membership function of the elements of $\tau_{X / \sim}$ is defined by:

$$
\begin{aligned}
\overline{\mu_{\theta}}: X / & \sim[0,1] \\
\bar{x} & \longmapsto \overline{\mu_{\theta}}(\bar{x})=\mu_{P^{-1}(\theta)}(x)
\end{aligned}
$$

Proposition 4. The space $\left(X / \sim, \tau_{X / \sim}\right)$ is a fuzzy topological space.
Proof. (1) We have:

$$
\begin{aligned}
\overline{\mu_{\varnothing}}(\bar{x}) & =\mu_{P^{-1}(\varnothing)}(x)=\mu_{\varnothing}(x)=0 \\
\overline{\mu_{X / \sim}}(\bar{x}) & =\mu_{P^{-1}(X / \sim)}(x)=\mu_{X}(x)=1
\end{aligned}
$$

So $\varnothing, X / \sim \in \tau_{X / \sim}$.
(2) If $\theta_{1}, \theta_{2} \in \tau_{X / \sim}$, then:

$$
\begin{aligned}
\lambda_{\theta_{1} \cap \theta_{2}}(\bar{x}) & =\min \left\{\lambda_{\theta_{1}}(\bar{x}), \quad \lambda_{\theta_{2}}(\bar{x}\}=\min \left\{\overline{\mu_{\theta_{1}}}(\bar{x}), \overline{\mu_{\theta_{2}}}(\bar{x})\right\}\right. \\
& =\min \left\{\mu_{P^{-1}\left(\theta_{1}\right)}(x), \mu_{P^{-1}\left(\theta_{2}\right)}(x)\right\}=\mu_{P^{-1}\left(\theta_{1}\right) \cap P^{-1}\left(\theta_{2}\right)}(x) \\
& =\mu_{P^{-1}\left(\theta_{1} \cap \theta_{2}\right)}(x) .
\end{aligned}
$$

So $\theta_{1} \cap \theta_{2} \in \tau_{X / \sim}$.
(3) If $\theta_{k} \in \tau_{X / \sim}, \forall k \in \Delta$, then:

$$
\begin{aligned}
\lambda_{\cup_{k \in \Delta} \theta_{k}}(\bar{x}) & =\sup _{k \in \Delta}\left\{\lambda_{\theta_{k}}(\bar{x})\right\}=\sup _{k \in \Delta}\left\{\mu_{P^{-1}\left(\theta_{k}\right)}(x)\right\} \\
& =\mu_{\cup_{k \in \Delta} P^{-1}\left(\theta_{k}\right)}(x)=\mu_{P^{-1}\left(\cup_{k \in \Delta} \theta_{k}\right)}(x) .
\end{aligned}
$$

So $\cup_{k \in \Delta} \theta_{k} \in \tau_{X / \sim}$.

Proposition 5. The application P is F-continuous.
Proof. evident (by definition of $\tau_{X / \sim}$).
Theorem 2. Let $\left(A, \tau_{A}\right),\left(B, \tau_{B}\right) \in F-T O P, \mu$ and μ^{\prime} denote the membership functions of the elements of τ_{A} and τ_{B} respectively, \sim is the equivalence relation of A and $P: A \longrightarrow A / \sim$ is the associated projection. If $h:\left(A, \tau_{A}\right) \longrightarrow\left(B, \tau_{B}\right)$ is the F-continuous application compatible with \sim, then there exists a unique F continuous application h^{\prime}, where $h=h^{\prime} \circ P$. In addition:
h is F-continuous $\Longrightarrow h^{\prime}$ is F-continuous.

Proof. Let's define h^{\prime} by :

$$
\begin{aligned}
h^{\prime}:\left(A / \sim, \tau_{A / \sim}\right) & \longrightarrow\left(B, \tau_{B}\right) \\
\bar{x} & \longmapsto h^{\prime}(\bar{x})=h(x)
\end{aligned}
$$

It is clear that h^{\prime} is unique and $h=h^{\prime} \circ P$.
Let $B_{i} \in \tau_{B}$ then:
$\lambda_{h^{\prime-1}\left(B_{i}\right)}(\bar{x})=\lambda_{B_{i}} h^{\prime}(\bar{x})=\mu_{B_{i}}^{\prime} h(x)=\mu_{h^{-1}\left(B_{i}\right)}(x)=\mu_{\left(h^{\prime} \circ P\right)^{-1}\left(B_{i}\right)}(x)=\mu_{P^{-1}\left(h^{\prime-1}\left(B_{i}\right)\right)}(x)$.
So h^{\prime} is F -continuous.
Corollary 2. The element of Co-equalizer of $f, g:(X, \tau) \longrightarrow\left(X^{\prime}, \tau^{\prime}\right)$ in $\underline{C F-T O P}$ is the fuzzy topological space $\left(X^{\prime} / \sim, \tau_{X^{\prime} / \sim}\right)$, where \sim is the least equivalence relation which contains all pairs $<f(x), g(x)>$, such that $x \in X$.

Proof. Let $h:\left(X^{\prime}, \tau^{\prime}\right) \longrightarrow\left(C, \tau_{C}\right)$ be an F -continuous application where $h \circ f=h \circ g$. For the existence of a unique h^{\prime}, by theorem (2) it is sufficient to prove that h is compatible with \sim :
Let $x_{1}, x_{2} \in X^{\prime}, x_{1} \sim x_{2} \Longleftrightarrow \exists a \in X, x_{1}=f(a) \wedge x_{2}=g(a)$.
and $h\left(x_{1}\right)=h(f(a))=(h \circ f)(a)=(h \circ g)(a)=h(g(a))=h\left(x_{2}\right)$, so h is compatible with ~.
Finally, h is unique by theorem (2).

3.3 Push-out

Definition 9. Let $\left(A, \tau_{A}\right),\left(B, \tau_{B}\right) \in F-T O P, \mu$ and μ^{\prime} denote the membership functions of the elements of τ_{A} and τ_{B} respectively, \sim equivalence relation on $A \cup B\left(\right.$ note $\left.X_{0}=(A \cup B) / \sim\right)$, we define $\tau_{X_{0}}$ by:

$$
\tau_{X_{0}}=\left\{\theta, \theta \text { is a fuzzy set on } X_{0}\right\} .
$$

The membership function of the elements of $\tau_{X_{0}}$ is defined by:

$$
\begin{aligned}
\overline{\left(\mu \cup \mu^{\prime}\right)_{\theta}}: X_{0} & \longrightarrow[0,1] \\
\overline{(x, k)} & \longmapsto \overline{\left(\mu \cup \mu^{\prime}\right)_{\theta}}(\overline{x, k})= \begin{cases}\mu_{\varphi_{1}^{-1}\left(P^{-1}(\theta)\right)}(x) & \text { if } k=1 \\
\mu_{\varphi_{2}^{-1}\left(P^{-1}(\theta)\right)}^{\prime}(x) & \text { if } k=2\end{cases}
\end{aligned}
$$

where

$$
\begin{aligned}
P: A \cup B & \longrightarrow X_{0} \\
(x, k) & \longmapsto P(x, k)=\overline{(x, k)} \\
\varphi_{1}:\left(A, \tau_{A}\right) & \longrightarrow\left(A \cup B, \tau_{A \cup B}\right) \\
x & \longmapsto \varphi_{1}(x)=(x, 1)
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi_{2}:\left(B, \tau_{B}\right) & \longrightarrow\left(A \cup B, \tau_{A \cup B}\right) \\
x & \longmapsto \varphi_{2}(x)=(x, 2)
\end{aligned}
$$

Proposition 6. The space $\left(X_{0}, \tau_{X_{0}}\right)$ is a fuzzy topological space.

Proof. The proof is based on the proofs of proposition (2) and proposition (4).
Proposition 7. The following applications:

$$
\begin{aligned}
\alpha:\left(A, \tau_{A}\right) & \longrightarrow\left(X_{0}, \tau_{X_{0}}\right) \\
x & \longmapsto \alpha(x)=\overline{(x, 1)} \\
\beta:\left(B, \tau_{B}\right) & \longrightarrow\left(X_{0}, \tau_{X_{0}}\right) \\
x & \longmapsto \beta(x)=\overline{(x, 2)}
\end{aligned}
$$

are F-continuous.
Proof. First, let's prove that α is F-continuous.
For $\theta \in \tau_{X_{0}}$, we have:

$$
\lambda_{\alpha^{-1}(\theta)}(x)=\lambda_{\theta} \alpha(x)=\lambda_{\theta} \overline{(x, 1)}=\overline{\left(\mu \cup \mu^{\prime}\right)_{\theta}} \overline{(x, 1)}=\mu_{\varphi_{1}^{-1}\left(P^{-1}(\theta)\right)}(x)
$$

It is clear that $\alpha=P \circ \varphi_{1}$, then:

$$
\lambda_{\alpha^{-1}(\theta)}(x)=\mu_{\left(P \circ \varphi_{1}\right)^{-1}(\theta)}(x)=\mu_{\alpha^{-1}(\theta)}(x)
$$

So α is F -continuous.
Using the same method we prove that β is F -continuous.

Theorem 3. Let $f:\left(A, \tau_{A}\right) \longrightarrow\left(C, \tau_{C}\right), g:\left(A, \tau_{A}\right) \longrightarrow\left(B, \tau_{B}\right)$ be two F continuous applications. The element of Push-out of $<f, g>$ is $\left(X_{0}, \tau_{X_{0}}\right)$, where $X_{0}=(B \cup C) / \sim$ and \sim is the least equivalence relation which contains all pairs $<\left(\varphi_{1} \circ f\right)(c),\left(\varphi_{2} \circ g\right)(c)>$, such that $c \in A$.

Proof. By proposition (6) $\left(X_{0}, \tau_{X_{0}}\right) \in$ F-TOP. Also, by proposition (7) α, β are F-continuous.
Let $\left(Y, \tau_{Y}\right) \in \mathrm{F}-\mathrm{TOP}$, and $U:\left(B, \tau_{B}\right) \longrightarrow\left(Y, \tau_{Y}\right), V:\left(C, \tau_{C}\right) \longrightarrow\left(Y, \tau_{Y}\right)$ are two F-continuous applications, where $V \circ f=U \circ g$.
The proof of the existence of a unique F -continuous application
$h:\left(X_{0}, \tau_{X_{0}}\right) \longrightarrow\left(Y, \tau_{Y}\right)$ where $U=h \circ \alpha, V=h \circ \beta$ requires the following steps:
Step1: The Co-product of $\left(B, \tau_{B}\right),\left(C, \tau_{C}\right)$ is a disjoint union $\left(B \cup C, \tau_{B \cup C}\right)$, then for $\{\alpha, \beta\}$ there exists an F -continuous application $\pi:\left(B \cup C, \tau_{B \cup C}\right) \longrightarrow\left(X_{0}, \tau_{X_{0}}\right)$ where $\alpha=\pi \circ \varphi_{1}, \beta=\pi \circ \varphi_{2}$.

Step2: Let's define the new application $U \cup V$ by:

$$
\begin{aligned}
U \cup V:\left(B \cup C, \tau_{B \cup C}\right) & \longrightarrow\left(Y, \tau_{Y}\right) \\
(x, k) & \longrightarrow(U \cup V)(x, k)= \begin{cases}U(x) & \text { if } k=1 . \\
V(x) & \text { if } k=2 .\end{cases}
\end{aligned}
$$

If $U \cup V$ is compatible with \sim then there exists a unique F -continuous application $h:\left(X_{0}, \tau_{X_{0}}\right) \longrightarrow\left(Y, \tau_{Y}\right)$ where: $U \cup V=h \circ \pi$ (theorem (2)).

Let $(x, k),\left(x^{\prime}, k^{\prime}\right) \in B \cup C$ that:
$(x, k) \sim\left(x^{\prime}, k^{\prime}\right) \Longrightarrow \exists a \in A,(x, k)=\left(\varphi_{1} \circ g\right)(a)$ and $\left(x^{\prime}, k^{\prime}\right)=\left(\varphi_{2} \circ f\right)(a)$.
$(U \cup V)(x, k)=(U \cup V)\left(\varphi_{1} \circ g\right)(a)=(U \cup V)(g(a), 1)=U(g(a))=(U \circ g)(a)$.
$(U \uplus V)\left(x^{\prime}, k^{\prime}\right)=(U \uplus V)\left(\varphi_{2} \circ f\right)(a)=(U \cup V)(f(a), 2)=V(f(a))=(V \circ f)(a)$.
But $V \circ f=U \circ g$, then $U \cup V$ is compatible with ~.
Step3: Prove that $U=h \circ \alpha, V=h \circ \beta$.

$$
\begin{aligned}
& (h \circ \alpha)(x)=\left(h \circ\left(\pi \circ \varphi_{1}\right)\right)(x)=(h \circ \pi)(x, 1)=(U \cup V)(x, 1)=U(x), \forall x \in B . \\
& (h \circ \beta)(x)=\left(h \circ\left(\pi \circ \varphi_{2}\right)\right)(x)=(h \circ \pi)(x, 2)=(U \cup V)(x, 2)=V(x), \quad \forall x \in C .
\end{aligned}
$$

3.4 Product

Definition 10. Let $\left(X_{1}, \delta_{1}\right),\left(X_{2}, \delta_{2}\right)$ be two F-TOP, μ and μ^{\prime} denote the membership functions of the elements of δ_{1} and δ_{2} respectively. We define $\tau_{X_{1} \times X_{2}}$ by:
$\tau_{X_{1} \times X_{2}}=\left\{\theta, \theta=\cup_{i \in I}\left(\theta_{1}\right)_{i} \times\left(\theta_{2}\right)_{i}\right.$ is a fuzzy set on $\left.X_{1} \times X_{2},\left(\theta_{1}\right)_{i} \in \delta_{1},\left(\theta_{2}\right)_{i} \in \delta_{2}, \forall i \in I\right\}$.
The membership function of the elements of $\tau_{X_{1} \times X_{2}}$ is defined by:

$$
\left(\mu \times \mu^{\prime}\right)_{\theta}(x, y)=\sup _{i \in I}\left\{\min \left\{\mu_{\left(\theta_{1}\right)_{i}}(x), \mu_{\left(\theta_{2}\right)_{i}}^{\prime}(y)\right\}\right\}, \text { for all }(x, y) \in X_{1} \times X_{2} .
$$

Proposition 8. [9] The space $\left(X_{1} \times X_{2}, \tau_{X_{1} \times X_{2}}\right)$ is a fuzzy topological space.
Proposition 9. [9] The projections P_{1}, P_{2} are F-continuous, where :

$$
\begin{aligned}
P_{1}:\left(X_{1} \times X_{2}, \tau_{X_{1} \times X_{2}}\right) & \longrightarrow\left(X_{1}, \delta_{1}\right) \\
(x, y) & \longmapsto P_{1}(x, y)=x \\
P_{2}:\left(X_{1} \times X_{2}, \tau_{X_{1} \times X_{2}}\right) & \longrightarrow\left(X_{2}, \delta_{2}\right) \\
(x, y) & \longmapsto P_{2}(x, y)=y
\end{aligned}
$$

Theorem 4. [9] Let $\left(Y, \tau_{Y}\right)$ be an $F-T O P$ and let f be a function from Y to $X_{1} \times X_{2}$. Then f is F-continuous iff $P_{1} \circ f, P_{2} \circ f$ are F-continuous.

Corollary 3. Let $\left(X_{1}, \delta_{1}\right),\left(X_{2}, \delta_{2}\right) \in \underline{C F-T O P}$. The element of product of $\left(X_{1}, \delta_{1}\right)$, $\left(X_{2}, \delta_{2}\right)$ are the fuzzy topological space $\left(X_{1} \times X_{2}, \tau_{X_{1} \times X_{2}}\right)$ (defined above).

Proof. If $f:\left(C, \delta_{3}\right) \longrightarrow\left(X_{1}, \delta_{1}\right), g:\left(C, \delta_{3}\right) \longrightarrow\left(X_{2}, \delta_{2}\right)$ be two F-continuous applications, then there exists a unique F-continuous application defined by:

$$
\begin{aligned}
h:\left(C, \delta_{3}\right) & \longrightarrow\left(X_{1} \times X_{2}, \tau_{X_{1} \times X_{2}}\right) \\
x & \longmapsto h(x)=(f(x), g(x))
\end{aligned}
$$

where $f=P_{1} \circ h$ and $g=P_{2} \circ h$.

It is clear that: $f=P_{1} \circ h$ and $g=P_{2} \circ h$.
By theorem (4), h is F-continuous.
Proof of the uniqueness of h :
Let h^{\prime} be another F-continuous application where: $h^{\prime}:(C, \delta) \longrightarrow\left(X_{1} \times X_{2}, \tau_{X_{1} \times X_{2}}\right)$ and $f=P_{1} \circ h^{\prime}, g=P_{2} \circ h^{\prime}$.
We suppose that: $h^{\prime}(x)=(a, b)$.
$a=P_{1}(a, b)=\left(P_{1} \circ h^{\prime}\right)(x)=f(x), b=P_{2}(a, b)=\left(P_{2} \circ h^{\prime}\right)(x)=g(x)$.
Then $h^{\prime}(x)=(f(x), g(x))=h(x)$, so h is unique.

3.5 Equalizer

Definition 11. Let $\left(A, \tau_{A}\right),\left(B, \tau_{B}\right) \in F-T O P, \mu^{\prime}$ denotes the membership functions of the elements of τ_{B}, and let $f, g:\left(B, \tau_{B}\right) \longrightarrow\left(A, \tau_{A}\right)$ be two F-continuous applications. D is a subset of B defined by: $D=\{x \in B, f(x)=g(x)\}$. We define τ_{D} by:
$\tau_{D}=\left\{\theta, \theta=F(D) \cap B_{i}\right.$ is a fuzzy set on $D, B_{i} \in \tau_{B}$ and $F(D)$ is a fuzzy set on B where $\left.\mu_{F(D)}^{\prime}(x)=\chi_{D}(x)\right\}$.
The membership function of the elements of τ_{D} is defined by:

$$
\begin{aligned}
\mu_{\theta}^{\prime \prime}: D & \longrightarrow[0,1] \\
x & \longmapsto \mu_{\theta}^{\prime \prime}(x)=\min \left\{\mu_{F(D)}^{\prime}(x), \mu_{B_{i}}^{\prime}(x)\right\}
\end{aligned}
$$

Proposition 10. The space $\left(D, \tau_{D}\right)$ is a fuzzy topological space.
Proof. (1) We have:
We take : $(\varnothing=F(D) \cap \varnothing)$ and $(D=F(D) \cap B)$, then:
$\left.\mu_{\varnothing}^{\prime \prime}(x)=\min \left\{\mu_{F(D)}^{\prime}(x), \mu_{\varnothing}^{\prime}(x)\right\}\right)=\min \{1,0\}=0$.
$\mu_{D}^{\prime \prime}(x)=\min \left\{\mu_{F(D)}^{\prime}(x), \mu_{B}^{\prime}(x)\right\}=\min \{1,1\}=1$.
So $\varnothing, D \in \tau_{D}$.
(2) If $\theta_{1}, \theta_{2} \in \tau_{D}$ where $\theta_{1}=F(D) \cap B_{1}, B_{1} \in \tau_{B}$ and $\theta_{2}=F(D) \cap B_{2}, \quad B_{2} \in \tau_{B}$:

$$
\begin{aligned}
\lambda_{\theta_{1} \cap \theta_{2}}(x) & =\lambda_{F(D) \cap B_{1} \cap F(D) \cap B_{2}}(x)=\lambda_{F(D) \cap\left(B_{1} \cap B_{2}\right)}(x) \\
& =\min \left\{\mu_{F(D)}^{\prime}(x), \mu_{\left(B_{1} \cap B_{2}\right)}^{\prime}(x)\right\} .
\end{aligned}
$$

Then $\theta_{1} \cap \theta_{2} \in \tau_{D}\left(\right.$ as $\left.B_{1} \cap B_{2} \in \tau_{B}\right)$.
(3) If $\theta_{i} \in \tau_{D}, \forall i \in I$, where: $\theta_{i}=F(D) \cap B_{i}, B_{i} \in \tau_{D}$, then:

$$
\lambda_{\mathrm{U}_{i \epsilon I}\left(F(D) \cap B_{i}\right)}(x)=\lambda_{F(D) \cap\left(\cup_{i \epsilon I} B_{i}\right)}(x)=\min \left\{\mu_{D}^{\prime}(x), \mu_{\left(\cup_{i \in I} B_{i}\right)}^{\prime}(x)\right\} .
$$

Then $\cup_{i \in I} \theta_{i} \in \tau_{D}\left(\right.$ as $\left.\cup_{i \in I} B_{i} \in \tau_{B}\right)$.

Proposition 11. e is F-continuous, where:

$$
\begin{aligned}
e:\left(D, \tau_{D}\right) & \longrightarrow\left(B, \tau_{B}\right) \\
x & \longmapsto e(x)=x
\end{aligned}
$$

Proof. Clear.
Corollary 4. The element of Equalizer of $f, g:\left(B, \tau_{B}\right) \longrightarrow\left(A, \tau_{A}\right)$ in CF-TOP is the fuzzy topological space $\left(D, \tau_{D}\right)$ (defined above).

Proof. Let $\left(C, \tau_{C}\right) \in \mathrm{F}-\mathrm{TOP}$, for $h:\left(C, \tau_{C}\right) \longrightarrow\left(B, \tau_{B}\right)$ the F-continuous application where: $f \circ h=g \circ h$, then there exists a unique F-continuous application h^{\prime} defined by:

$$
\begin{aligned}
h^{\prime}:\left(C, \tau_{C}\right) & \longrightarrow\left(D, \tau_{D}\right) \\
x & \longmapsto h^{\prime}(x)=h(x)
\end{aligned}
$$

h^{\prime} is F-continuous since h is F-continuous.
Let $x \in C:\left(e \circ h^{\prime}\right)(x)=e\left(h^{\prime}(x)\right)=e(h(x))=h(x)$ then $e \circ h^{\prime}=h$.
Proof of the uniqueness of h^{\prime} :
Let $h^{\prime \prime}:\left(C, \tau_{C}\right) \longrightarrow\left(D, \tau_{D}\right)$ be another F-continuous application where $e \circ h^{\prime \prime}=h$ $\left(e \circ h^{\prime \prime}\right)(x)=\left(e \circ h^{\prime}\right)(x) \Longrightarrow e\left(h^{\prime \prime}(x)\right)=e\left(h^{\prime}(x)\right) \Longrightarrow h^{\prime \prime}(x)=h^{\prime}(x), \forall x \in C$.

3.6 Pull-back

Definition 12. Let $\left(A, \tau_{A}\right),\left(B, \tau_{B}\right),\left(D, \tau_{D}\right) \in F-T O P, \mu$ and μ^{\prime} denote the membership functions of the elements of τ_{A} and τ_{B} respectively, and $f:\left(B, \tau_{B}\right) \longrightarrow\left(A, \tau_{A}\right), g:\left(D, \tau_{D}\right) \longrightarrow\left(A, \tau_{A}\right)$ in CF-TOP. C is a subset of $B \times D$ defined by: $C=\{(x, y) \in B \times D, f(x)=g(y)\} \subseteq B \times D$. We define τ_{C} by: $\tau_{C}=\left\{\theta, \theta=F(C) \cap \theta^{\prime}\right.$ is a fuzzy set on $C, \theta^{\prime} \in \tau_{B \times D}$ and $F(C)$ is a the fuzzy set on $B \times D$, where: $\left.\left(\mu \times \mu^{\prime}\right)_{F(C)}(x, y)=\chi_{C}(x, y)\right\}$.
The membership function of the elements of τ_{C} is defined by:

$$
\begin{aligned}
& \Gamma_{\theta}(x, y)=\min \left\{\left(\mu \times \mu^{\prime}\right)_{F(C)}(x, y), \sup _{i \in I}\left\{\min \left\{\mu_{B_{i}}(x), \mu_{D_{i}}^{\prime}(y)\right\}\right\}\right. \\
& \theta^{\prime}=\cup_{i \in I}\left(B_{i} \times D_{i}\right), \forall(x, y) \in C .
\end{aligned}
$$

Proposition 12. The space $\left(C, \tau_{C}\right)$ is a fuzzy topological space.
Proof. The proof is based on the proofs of proposition (8) and proposition (10).

Proposition 13. The projections p, q are F-continuous, where:

$$
\begin{aligned}
p:\left(C, \tau_{C}\right) & \longrightarrow\left(B, \tau_{B}\right) \\
(x, y) & \longmapsto p(x, y)=x \\
q:\left(C, \tau_{C}\right) & \longrightarrow\left(D, \tau_{D}\right) \\
(x, y) & \longmapsto q(x, y)=y
\end{aligned}
$$

Proof. First, let's prove that p is F-continuous.
Let $B_{i} \in \tau_{B}: \lambda_{p^{-1}\left(B_{i}\right)}(x, y)=\mu_{B_{i}}^{\prime} p(x, y)=\mu_{B_{i}}^{\prime}(x)=\min \left\{\left(\mu \times \mu^{\prime}\right)_{F(C)}(x, y)\right.$, $\left.\min \left\{\mu_{B_{i}}^{\prime}(x), \mu_{D}^{\prime}(y)\right\}\right\}$.
Then $p^{-1}\left(B_{i}\right) \in \tau_{C}$, so p is F-continuous.
Using the same method we prove q is F-continuous.

Theorem 5. Let $f:\left(B, \tau_{B}\right) \longrightarrow\left(A, \tau_{A}\right), g:\left(D, \tau_{D}\right) \longrightarrow\left(A, \tau_{A}\right)$ be two F continuous applications and $\left(E, \tau_{E}\right) \in F-T O P, \mu^{\prime \prime}$ denotes the membership function of the elements of τ_{E}, and $h:\left(E, \tau_{E}\right) \longrightarrow\left(B, \tau_{B}\right), k:\left(E, \tau_{E}\right) \longrightarrow\left(D, \tau_{D}\right)$ are two F-continuous applications where $f \circ h=g \circ k, r$ an application defined by:

$$
\begin{align*}
r:\left(E, \tau_{E}\right) & \longrightarrow\left(C, \tau_{C}\right) \tag{2}\\
x & \longmapsto r(x)=(h(x), k(x)) .
\end{align*}
$$

then: h, k are F-continuous $\Longrightarrow r$ is F-continuous.
Proof. Let $\theta \in \tau_{C}$ then $\theta=F(C) \cap \theta^{\prime}$ and $\theta^{\prime}=\cup_{i \in I}\left(B_{i} \times D_{i}\right) \in \tau_{B \times D}$, we have:
$\lambda_{r^{-1}\left(F(C) \cap\left(\cup_{i \epsilon I}\left(B_{i} \times D_{i}\right)\right)\right.}(x)=\Gamma_{F(C) \cap\left(\cup_{i \epsilon I}\left(B_{i} \times D_{i}\right)\right)}(h(x), k(x))$
$=\min \left\{\left(\mu \times \mu^{\prime}\right)_{F(C)}(h(x), k(x))\right.$,
$\left.\sup _{i \in I}\left\{\min \left\{\mu_{B_{i}} h(x), \mu_{D_{i}}^{\prime} k(x)\right\}\right\}\right\}$
As $\left(\mu \times \mu^{\prime}\right)_{F(C)}(h(x), k(x))=1$, then:

$$
\begin{aligned}
\lambda_{r^{-1}\left(F(C) \cap\left(\cup_{i \in I}\left(B_{i} \times D_{i}\right)\right)\right.}(x) & =\Gamma_{F(C) \cap\left(\cup_{i \in I}\left(B_{i} \times D_{i}\right)\right)}(h(x), k(x)) \\
& =\sup _{i \in I}\left\{\min \left\{\mu_{B_{i}} h(x), \mu_{D_{i}}^{\prime} k(x)\right\}\right\} \\
& =\sup _{i \in I}\left\{\min \left\{\mu_{h^{-1}\left(B_{i}\right)}^{\prime \prime}(x), \mu_{k^{-1}\left(D_{i}\right)}^{\prime \prime}(x)\right\}\right\} \\
& =\mu_{\cup_{i \in I}^{\prime}\left\{k^{\prime-1}\left(D_{i}\right) \cap h^{-1}\left(B_{i}\right)\right\}}^{\prime \prime}(x) .
\end{aligned}
$$

Then r is F-continuous.
Corollary 5. Let $f:\left(B, \tau_{B}\right) \longrightarrow\left(A, \tau_{A}\right), g:\left(D, \tau_{D}\right) \longrightarrow\left(A, \tau_{A}\right)$ in $\underline{C F-T O P}$.
The element of Pull-back of $\langle f, g\rangle$ is a fuzzy topological space $\left(C, \tau_{C}\right)$ (defined above).

Proof. For the projections p, q it is clear that $f \circ p=g \circ q$.
By theorem (5), if $h:\left(E, \tau_{E}\right) \longrightarrow\left(B, \tau_{B}\right), k:\left(E, \tau_{E}\right) \longrightarrow\left(D, \tau_{D}\right)$ two Fcontinuous applications where $f \circ h=g \circ k$, then there exists a unique F -continuous application r defined by (2).
It is clear that $k=q \circ r$ and $h=p \circ r$.
Proof of the uniqueness of r :
If r^{\prime} is another F-continuous application, where $r^{\prime}:\left(E, \tau_{E}\right) \longrightarrow\left(C, \tau_{C}\right)$ and $k=q \circ r^{\prime}, h=p \circ r^{\prime}$.
Suppose that $r^{\prime}(x)=(a, b)$ therefore $a=p(a, b)=\left(p \circ r^{\prime}\right)(x)=h(x)$ and $b=q(a, b)=\left(q \circ r^{\prime}\right)(x)=k(x)$. So $r=r^{\prime}$.

4 Interrelation between the category TOP and CF-TOP

Many TOP and CF-TOP functors are built [1]-[2]-[4]-[5] and we choose those that suit better our work.
The natural inclusion functor [8]:

Identifying, as usual, subsets of a given set with the corresponding characteristic functions, we can treat a topological space (X, T) as an object of CF-TOP. In this way an inclusion functor $e: \underline{T O P} \longrightarrow \underline{\text { CF-TOP arises. }}$
This functor is not isomorphic since it is not surjective. Indeed:
Suppose that e is surjective, let $(X, \tau) \in \underline{\text { CF-TOP }}$, where $X=\{a, b\}$ and $\tau=\{X, \varnothing, \theta\}$ where:
$\left\{\begin{array}{l}\mu_{X}(a)=1 . \\ \mu_{X}(b)=1 .\end{array},\left\{\begin{array}{l}\mu_{\varnothing}(a)=0 . \\ \mu_{\varnothing}(b)=0 .\end{array},\left\{\begin{array}{l}\mu_{\theta}(a)=0.8 . \\ \mu_{\theta}(b)=0.7 .\end{array}\right.\right.\right.$
Posed $T=\{X, \varnothing, B\} \in \underline{T O P}$, where $e(X, T)=(X, F(T))$, but $F(T) \neq \tau$ (as $\left.\mu_{F(B)}=\chi_{B} \neq \mu_{\theta}\right)$.

References

[1] Azad, K.K., Fuzzy Hausdorff spaces and fuzzy perfect mappings, J. Math. 82 (1981), 297-305.
[2] Bourbaki, N., Topologie gènèrale. Ch. I. Structures topologiques, Hermann, Paris, 1961.
[3] Chang, C.L., Fuzzy topological spaces, J. Math. 24 (1968), 182-190.
[4] Lowen, R., Fuzzy topological spaces and fuzzy compactness, J. Math. 56 (1976), 182-190.
[5] Rodabaugh, S.E., The Hausdorff separation axiom for fuzzy topological spaces, J. Math. 11 (1980), 319-334.
[6] Saunders, M.L., Category for the Working Mathematician, University of Chicago, USA, 1991.
[7] Saunder, M.L., Samuel, E., General Theory of Natural Equivalences, J. Math. 58 (1945), 231-294.
[8] Shostak, A.P., Two decades of fuzzy topology: basic ideas, notions, and results, Russian Math. Surveys, 1989, Uspekhi Mat. Nauk, 1989.
[9] Wong, C.K., Fuzzy Topology: Product and Quotient Theorems, J. Math. 45 (1974), 512-521.
[10] Zadeh, L.A., Fuzzy sets, J. Math. 8 (1965), 338-353.

[^0]: ${ }^{1}$ Department of Mechatronics, Sakarya University, Sakarya, Turkey, e-mail: farhanismail@sakarya.edu.tr
 ${ }^{2}$ Corresponding author, Department of Mathematics, 20 Aout 1955 University, Skikda, Algeria, e-mail: a.latreche@univ-skikda.dz

