CLASSES OF HARMONIC FUNCTIONS DEFINED BY SALEGEAN-TYPE q - DIFFERENTIAL OPERATORS

Jay M. JAHANGIRI ${ }^{1}$, Kaliappan UMA*2 ${ }^{* 2}$ and Kaliappan VIJAYA ${ }^{3}$

Abstract

We consider a complex-valued harmonic functions that are univalent can be written in the form $f=h+\bar{g}$, where h and g are analytic, in a simply connected domain \mathbb{U} and sense preserving in \mathbb{U}, is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|$ in \mathbb{U}. Making use of Salegean q - differential operators, we define a new subclasses harmonic starlike functions and obtain sufficient coefficient bounds, distortion theorems and extreme points for f in the new function class. Moreover, we shown that these necessary coefficient bounds are also sufficient for those functions that have negative coefficients.

2000 Mathematics Subject Classification: Primary 30C45; Secondary 30C50.
Key words: harmonic, univalent, Salegean-type q - differential operators.

1 Introduction

A continuous function $f=u+i v$ is a complex- valued harmonic function in a complex domain Ω if both u and v are real and harmonic in Ω. In any simply connected domain $\mathbb{D} \subset \Omega$ we can write $f=h+\bar{g}$ where h and g are analytic in \mathbb{D}. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense preserving in \mathbb{D} is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|$ in $\mathbb{D}($ see $[2])$.

Let \mathcal{H} be the family of functions $f=h+\bar{g}$ which are harmonic univalent and sense preserving in the open unit disc $\mathbb{U}=\{z:|z|<1\}$ so that f is normalized by $f(0)=h(0)=f_{z}(0)-1=0$. Such functions $f=h+\bar{g} \in \mathscr{H}$ may be expressed by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}+\overline{\sum_{n=1}^{\infty} b_{n} z^{n}},\left|b_{1}\right|<1 . \tag{1}
\end{equation*}
$$

[^0]We note that the family \mathcal{H} of orientation preserving, normalized harmonic univalent functions reduces to the well known class \mathcal{S} of normalized univalent functions if the co-analytic part of $f=h+\bar{g}$ is identically zero, that is $g \equiv 0$. We let $\overline{\mathcal{H}}$ be the subclass of \mathcal{H} consisting harmonic functions of the form $f_{m}=h+\overline{g_{m}}$ where

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, g_{m}(z)=(-1)^{m} \overline{\sum_{n=1}^{\infty} b_{n} z^{n}} \tag{2}
\end{equation*}
$$

so that $a_{n} \geq 0$ and $b_{n} \geq 0$.
We recall the notion of q-operators or q-difference operators that play vital roles in the theory of hypergeometric series, quantum physics and operator theory. The application of q-calculus was initiated by Jackson [4] and Kanas and Răducanu [8] who have used the fractional q-calculus operators in investigations of certain classes of functions which are analytic in \mathbb{U}. For more details on q calculus and its applications one can refer to $[1,3,4,8]$ and the references cited therein.

For $0<q<1$ the Jackson's q-derivative of a function $f \in \mathcal{S}$ is given as follows [4]

$$
\begin{gather*}
D_{q} f(z)=\left\{\begin{array}{lll}
\frac{f(z)-f(q z)}{(1-q) z} & \text { for } & z \neq 0, \\
f^{\prime}(0) & \text { for } & z=0,
\end{array}\right. \tag{3}\\
D_{q}^{2} f(z)=D_{q}\left(D_{q} f(z)\right) .
\end{gather*}
$$

From (3), we have $D_{q} f(z)=1+\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n-1}$ where $[n]_{q}=\frac{1-q^{n}}{1-q}$ is sometimes called the basic number n. If $q \rightarrow 1^{-}$then $[n] \rightarrow n$. For $f \in \mathcal{S}$, Govindaraj and Sivasubramanian [3] considered the Salagean q-differential operators

$$
\begin{aligned}
D_{q}^{0} f(z) & =f(z), \\
D_{q}^{1} f(z) & =z D_{q} f(z) \\
D_{q}^{m} f(z) & =z D_{q}^{m}\left(D_{q}^{m-1} f(z)\right), \\
D_{q}^{m} f(z) & =z+\sum_{n=2}^{\infty}[n]^{m} a_{n} z^{n} \quad\left(m \in \mathbb{N}_{0}, z \in \mathbb{U}\right) .
\end{aligned}
$$

We note that if $\lim _{q} \rightarrow 1^{-}$then

$$
D^{m} f(z)=z+\sum_{n=2}^{\infty}[n]^{m} a_{n} z^{n} \quad\left(m \in \mathbb{N}_{0}, z \in \mathbb{U}\right)
$$

is the familiar Salagean derivative[9]. Recently Jahangiri [6] considered a generalized Salegean q - differential operator for harmonic function $f=h+\bar{g} \in \mathcal{H}$ defined for $m>-1$ by

$$
\begin{equation*}
D_{q}^{m} f(z)=D_{q}^{m} h(z)+(-1)^{m} \overline{D_{q}^{m} g(z)}=z+\sum_{n=2}^{\infty}[n]_{q}^{m} a_{n} z^{n}+(-1)^{m} \sum_{n=1}^{\infty}[n]_{q}^{m} \overline{b_{n}} \bar{z}^{n} . \tag{4}
\end{equation*}
$$

As a generalization of the functions defined in [6], for $0 \leq \alpha<1$, we let $\mathcal{H} \mathcal{R}_{q}^{m}(\lambda, \alpha)$ be the subclass of \mathcal{H} consisting of functions $f=h+\bar{g}$ of the form (1) so that

$$
\begin{equation*}
\Re\left(\frac{D_{q}^{m+1} f(z)}{(1-\lambda) D_{q}^{m} f(z)+\lambda D_{q}^{m+1} f(z)}\right) \geq \alpha \tag{5}
\end{equation*}
$$

where $0 \leq \lambda<1, D_{q}^{m} f$ is given by (4) and $z \in \mathbb{U}$. We also let $\overline{\mathcal{H}} \mathcal{R}_{q}^{m}(\lambda, \alpha)=$ $\mathcal{H} \mathcal{R}_{q}^{m}(\lambda, \alpha) \cap \overline{\mathcal{H}}$. Obviously, for $\lambda=0$ we have $\overline{\mathcal{H}} \mathcal{R}_{q}^{m}(\lambda, \alpha) \equiv \overline{\mathcal{H}} \mathcal{R}_{q}^{m}(\alpha)$ considered in [6]. It is the aim of this paper to obtain sufficient coefficient bounds, distortion theorems and extreme points for functions in $\mathcal{H}_{q}^{m}(\lambda, \alpha)$. Moreover we show that these necessary coefficient bounds are also sufficient for functions in $\overline{\mathcal{H}} \mathcal{R}_{q}^{m}(\lambda, \alpha)$.

2 Main Results

First we obtain a sufficient coefficient condition for functions in $\mathcal{H} \mathcal{R}_{q}^{m}(\lambda, \alpha)$.
Theorem 1. Let $f=h+\bar{g}$ be given by (1). If
$\sum_{n=1}^{\infty}[n]_{q}^{m}\left\{\left([n]_{q}-\alpha-\alpha \lambda\left([n]_{q}-1\right)\right)\left|a_{n}\right|+\left([n]_{q}+\alpha-\alpha \lambda\left([n]_{q}+1\right)\right)\left|b_{n}\right|\right\} \leq 2(1-\alpha)$
where $a_{1}=1$ and $0 \leq \alpha<1$, then $f \in \mathcal{H R}_{q}^{m}(\lambda, \alpha)$.
Proof. We will show that if (6) holds for the coefficients of $f=h+\bar{g}$ then the required condition (5) is satisfied. We note that (5) can be rewritten as

$$
\begin{aligned}
& \Re\left(\frac{D_{q}^{m+1} h(z)-(-1)^{m} \overline{D_{q}^{m+1} g(z)}}{(1-\lambda)\left(D_{q}^{m} h(z)+(-1)^{m} \overline{D_{q}^{m} g(z)}\right)+\lambda\left(D_{q}^{m+1} h(z)-(-1)^{m} \overline{D_{q}^{m+1} g(z)}\right)}\right) \\
& =\Re \frac{A(z)}{B(z)} \geq \alpha
\end{aligned}
$$

where
$A(z)=D_{q}^{m+1} h(z)-(-1)^{m} \overline{D_{q}^{m+1} g(z)}=z+\sum_{n=2}^{\infty}[n]_{q}^{m+1} a_{n} z^{n}-(-1)^{m} \sum_{n=1}^{\infty}[n]_{q}^{m+1} \overline{b_{n}} \bar{z}^{n}$
and

$$
\begin{aligned}
B(z) & =(1-\lambda)\left(D_{q}^{m} h(z)+(-1)^{m} \overline{D_{q}^{m} g(z)}\right)+\lambda\left(D_{q}^{m+1} h(z)-(-1)^{m} \overline{D_{q}^{m+1} g(z)}\right) \\
& =z+\sum_{n=2}^{\infty}[n]_{q}^{m}\left(1-\lambda+\lambda[n]_{q}\right) a_{n} z^{n}+(-1)^{m} \sum_{n=1}^{\infty}[n]_{q}^{m}\left(1-\lambda-\lambda[n]_{q}\right) \overline{b_{n}} \bar{z}^{n} .
\end{aligned}
$$

Using the fact that $\Re\{w\} \geq \alpha$ if and only if $|1-\alpha+w| \geq|1+\alpha-w|$, it suffices to show that

$$
\begin{equation*}
|A(z)+(1-\alpha) B(z)|-|A(z)-(1+\alpha) B(z)| \geq 0 \tag{7}
\end{equation*}
$$

Substituting for $A(z)$ and $B(z)$ in (7), we get

$$
\begin{aligned}
& |A(z)+(1-\alpha) B(z)|-|A(z)-(1+\alpha) B(z)| \\
= & \mid(2-\alpha) z+\sum_{n=2}^{\infty}[n]_{q}^{m}\left\{[n]_{q}+1-\alpha\left(1-\lambda+\lambda[n]_{q}\right)\right\} a_{n} z^{n} \\
& -(-1)^{m} \sum_{n=1}^{\infty}[n]_{q}^{m}\left\{[n]_{q}-(1-\alpha)\left(1-\lambda+\lambda[n]_{q}\right)\right\} \overline{b_{n}} \bar{z}^{n} \mid \\
& -\mid-\alpha z+\sum_{n=2}^{\infty}[n]_{q}^{m}\left\{[n]_{q}-(1+\alpha)\left(1-\lambda+\lambda[n]_{q}\right)\right\} a_{n} z^{n} \\
& -(-1)^{m} \sum_{n=1}^{\infty}[n]_{q}^{m}\left\{[n]_{q}+(1+\alpha)\left(1-\lambda+\lambda[n]_{q}\right)\right\} \overline{b_{n}} \bar{z}^{n} \mid \\
\geq & (2-\alpha)|z|-\sum_{n=2}^{\infty}[n]_{q}^{m}\left\{[n]_{q}+(1-\alpha)\left(1-\lambda+\lambda[n]_{q}\right)\right\}\left|a_{n}\right||z|^{n} \\
& -\sum_{n=1}^{\infty}[n]_{q}^{m}\left\{[n]_{q}-(1-\alpha)\left(1-\lambda-\lambda[n]_{q}\right)\right\}\left|b_{n}\right||z|^{n} \\
& -\alpha|z|-\sum_{n=2}^{\infty}[n]_{q}^{m}\left\{[n]_{q}-(1+\alpha)\left(1-\lambda+\lambda[n]_{q}\right)\right\}\left|a_{n}\right||z|^{n} \\
& -\sum_{n=1}^{\infty}[n]_{q}^{m}\left\{[n]_{q}+(1+\alpha)\left(1-\lambda-\lambda[n]_{q}\right)\right\}\left|b_{n}\right||z|^{n} \\
\geq & 2(1-\alpha)|z|\left(2-\sum_{n=1}^{\infty}[n]_{q}^{m}\left[\frac{[n]_{q}-\alpha-\alpha \lambda\left([n]_{q}-1\right)}{1-\alpha}\left|a_{n}\right|\right.\right. \\
& \left.\left.+\frac{[n]_{q}+\alpha-\alpha \lambda\left([n]_{q}+1\right)}{1-\alpha}\left|b_{n}\right|\right]|z|^{n-1}\right) \\
\geq & 2(1-\alpha)\left(2-\sum_{n=1}^{\infty}[n]_{q}^{m}\left[\frac{[n]_{q}-\alpha-\alpha \lambda\left([n]_{q}-1\right)}{1-\alpha}\left|a_{n}\right|\right.\right. \\
& \left.\left.+\frac{[n]_{q}+\alpha-\alpha \lambda\left([n]_{q}+1\right)}{1-\alpha}\left|b_{n}\right|\right]\right) .
\end{aligned}
$$

The above expression is non negative by (6) and so $f(z) \in \mathcal{H R}_{q}^{m}(\lambda, \alpha)$.
For $\lambda=0$ we obtain the following corollary which is also given by Jahangiri [6].

Corollary 1. Let $f=h+\bar{g}$ be given by (1). If

$$
\sum_{n=1}^{\infty}[n]_{q}^{m}\left\{\left([n]_{q}-\alpha\right)\left|a_{n}\right|+\left([n]_{q}+\alpha\right)\left|b_{n}\right|\right\} \leq 2(1-\alpha)
$$

where $a_{1}=1$ and $0 \leq \alpha<1$, then $f \in \mathcal{H R}_{q}^{m}(\alpha)$.

The starlikeness of the functions given in Theorem 1 follows from Theorem 1 given in [5] and noticing that

$$
[n]_{q}-\alpha-\alpha \lambda\left([n]_{q}-1\right) \leq[n]_{q}-\alpha \leq n-\alpha
$$

and

$$
[n]_{q}+\alpha-\alpha \lambda\left([n]_{q}+1\right) \leq[n]_{q}+\alpha \leq n+\alpha
$$

Next we show that the coefficient bounds (6) are also sufficient for functions in $\overline{\mathcal{H}} \mathcal{R}_{q}^{m}(\lambda, \alpha)$.

Theorem 2. Let $f_{m}=h+\overline{g_{m}}$ given by (2)is $\in \overline{\mathcal{H}} \mathcal{R}_{q}^{m}(\lambda, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty}[n]_{q}^{m}\left\{\left([n]_{q}-\alpha-\alpha \lambda\left([n]_{q}-1\right)\right) a_{n}+\left([n]_{q}+\alpha-\alpha \lambda\left([n]_{q}+1\right)\right) b_{n}\right\} \leq 2(1-\alpha) \tag{8}
\end{equation*}
$$

where $a_{1}=1$ and $0 \leq \alpha<1$.
Proof. Since $\overline{\mathcal{H}} \mathcal{R}_{q}^{m}(\lambda, \alpha) \subset \mathcal{H} \mathcal{R}_{q}^{m}(\lambda, \alpha)$, we only need to prove the "only if" part of the theorem. To this end, for functions $f_{m}=h+\overline{g_{m}}$ in $\overline{\mathcal{H}} \mathcal{R}_{q}^{m}(\lambda, \alpha)$ we must have

$$
\Re\left(\frac{D_{q}^{m+1} f_{m}(z)}{(1-\lambda) D_{q}^{m} f_{m}(z)+\lambda D_{q}^{m+1} f_{m}(z)}\right) \geq \alpha
$$

or equivalently,

$$
\begin{gathered}
\Re\left(\frac{(1-\alpha) z-\sum_{n=2}^{\infty}[n]_{q}^{m}\left\{[n]_{q}-\alpha-\alpha \lambda\left([n]_{q}-1\right)\right\} a_{n} z^{n}}{z-\sum_{n=2}^{\infty}[n]_{q}^{m}\left(1-\lambda+\lambda[n]_{q}\right) a_{n} z^{n}+(-1)^{2 m} \sum_{n=1}^{\infty}[n]_{q}^{m}\left(1-\lambda-\lambda[n]_{q}\right) b_{n} \bar{z}^{n}}\right) \\
-\Re\left(\frac{(-1)^{2 m} \sum_{n=1}^{\infty}[n]_{q}^{m}\left\{[n]_{q}+\alpha-\alpha \lambda\left([n]_{q}+1\right)\right\} b_{n} \bar{z}^{n}}{z-\sum_{n=2}^{\infty}[n]_{q}^{m}\left(1-\lambda+\lambda[n]_{q}\right) a_{n} z^{n}+(-1)^{2 m} \sum_{n=1}^{\infty}[n]_{q}^{m}\left(1-\lambda-\lambda[n]_{q}\right) b_{n} \bar{z}^{n}}\right) \geq 0
\end{gathered}
$$

The above condition must hold for all values of z in \mathbb{U}. Upon choosing the values of z on the positive real axis where $0 \leq z=r<1$, we must have

$$
\begin{aligned}
& \left((1-\alpha)-\sum_{n=2}^{\infty}[n]_{q}^{m}\left\{[n]_{q}-\alpha-\alpha \lambda\left([n]_{q}-1\right)\right\} a_{n} r^{n-1}\right. \\
& \left.\quad-\sum_{n=1}^{\infty}[n]_{q}^{m}\left\{[n]_{q}+\alpha-\alpha \lambda\left([n]_{q}+1\right)\right\} b_{n} r^{n-1}\right) \times \\
& \times\left(1-\sum_{n=2}^{\infty}[n]_{q}^{m}\left(1-\lambda+[n]_{q} \lambda\right) a_{n} r^{n-1}+\sum_{n=1}^{\infty}[n]_{q}^{m}\left(1-\lambda-[n]_{q} \lambda\right) b_{n} r^{n-1}\right)^{-1} \\
& \geq 0
\end{aligned}
$$

If the condition (8) does not hold, then the numerator in the above inequality is negative for r sufficiently close to 1 . Hence, there exists $z_{0}=r_{0}$ in $(0,1)$ for which the left hand side of the above inequality is negative. This contradicts the required condition for $f(z) \in \overline{\mathcal{H}} \mathcal{R}_{q}^{m}(\lambda, \alpha)$ and so the proof is complete.

Next we determine the extreme points of closed convex hulls of $\overline{\mathcal{H}} \mathcal{R}_{q}^{m}(\lambda, \alpha)$ denoted by $\operatorname{clco} \overline{\mathcal{H}} \mathcal{R}_{q}^{m}(\lambda, \alpha)$.

Theorem 3. A function $f_{m}(z) \in \overline{\mathcal{H}} \mathcal{R}_{q}^{m}(\lambda, \alpha)$ if and only if

$$
f_{m}(z)=\sum_{n=1}^{\infty}\left(X_{n} h_{n}(z)+Y_{n} g_{n_{m}}(z)\right)
$$

where $h_{1}(z)=z, h_{n}(z)=z-\frac{1-\alpha}{[n]_{q}^{m}\left\{[n]_{q}-\alpha-\alpha \lambda\left([n]_{q}-1\right)\right\}} z^{n} ;(n \geq 2)$, and $g_{n_{m}}(z)=$ $z+\frac{(-1)^{m}(1-\alpha)}{[n]_{q}^{m}\left\{[n]_{q}+\alpha-\alpha \lambda\left([n]_{q}+1\right)\right\}} \bar{z}^{n} ;(n \geq 2), \sum_{n=1}^{\infty}\left(X_{n}+Y_{n}\right)=1, \quad X_{n} \geq 0$ and $\quad Y_{n} \geq 0$. In particular, the extreme points of $\overline{\mathcal{H}} \mathcal{R}_{q}^{m}(\lambda, \alpha)$ are $\left\{h_{n}\right\}$ and $\left\{g_{n_{m}}\right\}$.

Proof. First, we note that for f_{m} as given in the theorem, we may write

$$
\begin{aligned}
f_{m}(z)= & \sum_{n=1}^{\infty}\left(X_{n} h_{n}(z)+Y_{n} g_{n_{m}}(z)\right) \\
= & \sum_{n=1}^{\infty}\left(X_{n}+Y_{n}\right) z-\sum_{n=2}^{\infty} \frac{1-\alpha}{[n]_{q}^{m}\left\{[n]_{q}-\alpha-\alpha \lambda\left([n]_{q}-1\right)\right\}} X_{n} z^{n} \\
& +(-1)^{m} \sum_{n=1}^{\infty} \frac{1-\alpha}{[n]_{q}^{m}\left\{[n]_{q}+\alpha-\alpha \lambda\left([n]_{q}+1\right)\right\}} Y_{n} \bar{z}^{n} \\
= & z-\sum_{n=2}^{\infty} A_{n} z^{n}+(-1)^{m} \sum_{n=1}^{\infty} B_{n} \bar{z}^{n},
\end{aligned}
$$

where

$$
\begin{aligned}
A_{n} & =\frac{1-\alpha}{[n]_{q}^{m}\left\{[n]_{q}-\alpha-\alpha \lambda\left([n]_{q}-1\right)\right\}} X_{n}, \\
B_{n} & =\frac{1-\alpha}{[n]_{q}^{m}\left\{[n]_{q}+\alpha-\alpha \lambda\left([n]_{q}+1\right)\right\}} Y_{n} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \frac{[n]_{q}^{m}\left\{[n]_{q}-\alpha-\alpha \lambda\left([n]_{q}-1\right)\right\}}{1-\alpha} A_{n}+\sum_{n=1}^{\infty} \frac{[n]_{q}^{m}\left\{[n]_{q}+\alpha-\alpha \lambda\left([n]_{q}+1\right)\right\}}{1-\alpha} B_{n} \\
& =\sum_{n=2}^{\infty} X_{n}+\sum_{n=1}^{\infty} Y_{n}=1-X_{1} \leq 1
\end{aligned}
$$

and hence $f_{m}(z) \in \operatorname{clco} \overline{\mathcal{H}} \mathcal{R}_{q}^{m}(\lambda, \alpha)$. Conversely, suppose $f_{m}(z) \in \operatorname{clco} \overline{\mathcal{H}} \mathcal{R}_{q}^{m}(\lambda, \alpha)$. Set $X_{n}=\frac{[n]_{q}^{m}\left\{[n]_{q}-\alpha-\alpha \lambda\left([n]_{q}-1\right)\right\}}{1-\alpha} A_{n}$ and $Y_{n}=\frac{[n]_{q}^{m}\left\{[n]_{q}+\alpha-\alpha \lambda\left([n]_{q}-1\right)\right\}}{1-\alpha} B_{n}$, where $\sum_{n=1}^{\infty}\left(X_{n}+Y_{n}\right)=1$. Then

$$
\begin{aligned}
f_{m}(z)= & z-\sum_{n=2}^{\infty} a_{n} z^{n}+(-1)^{m} \sum_{n=1}^{\infty} b_{n} \bar{z}^{n} \\
= & z-\sum_{n=2}^{\infty} \frac{1-\alpha}{[n]_{q}^{m}\left\{[n]_{q}-\alpha-\alpha \lambda\left([n]_{q}-1\right)\right\}} X_{n} z^{n} \\
& +(-1)^{m} \sum_{n=1}^{\infty} \frac{1-\alpha}{[n]_{q}^{m}\left\{[n]_{q}+\alpha-\alpha \lambda\left([n]_{q}-1\right)\right\}} Y_{n} \bar{z}^{n} \\
= & z-\sum_{n=2}^{\infty}\left(h_{n}(z)-z\right) X_{n}+\sum_{n=1}^{\infty}\left(g_{n_{m}}(z)-z\right) Y_{n} \\
= & \sum_{n=1}^{\infty}\left(X_{n} h_{n}(z)+Y_{n} g_{n_{m}}(z)\right)
\end{aligned}
$$

as required.

Next we give distortion bounds and a covering result for the class $\overline{\mathcal{H}} \mathcal{R}_{q}^{m}(\lambda, \alpha)$.
Theorem 4. Let $f_{m} \in \overline{\mathcal{H}} \mathcal{R}_{q}^{m}(\lambda, \alpha)$. Then for $|z|=r<1$, we have

$$
\begin{aligned}
& \left(1-b_{1}\right) r-\frac{1}{[2]_{q}^{m}}\left(\frac{1-\alpha}{[2]_{q}-\alpha-\alpha \lambda}-\frac{1+\alpha}{[2]_{q}-\alpha-\alpha \lambda} b_{1}\right) r^{2} \leq\left|f_{m}(z)\right| \\
& \leq\left(1+b_{1}\right) r+\frac{1}{[2]_{q}^{m}}\left(\frac{1-\alpha}{[2]_{q}-\alpha-\alpha \lambda}-\frac{1+\alpha}{[2]_{q}-\alpha-\alpha \lambda} b_{1}\right) r^{2} .
\end{aligned}
$$

Proof. We only prove the right hand inequality. Taking the absolute value of $f_{m}(z)$, we obtain

$$
\begin{aligned}
\left|f_{m}(z)\right| & =\left|z+\sum_{n=2}^{\infty} a_{n} z^{n}+(-1)^{m} \sum_{n=1}^{\infty} b_{n} \bar{z}^{n}\right| \\
& \leq\left(1+b_{1}\right)|z|+\sum_{n=2}^{\infty}\left(a_{n}+b_{n}\right)|z|^{n} \\
& \leq\left(1+b_{1}\right) r+\sum_{n=2}^{\infty}\left(a_{n}+b_{n}\right) r^{2}
\end{aligned}
$$

$$
\begin{aligned}
\leq & \left(1+b_{1}\right) r+\frac{1-\alpha}{[2]_{q}^{m}\left([2]_{q}-\alpha-\alpha \lambda\right)} \\
& \sum_{n=2}^{\infty}\left(\frac{[2]_{q}^{m}\left([2]_{q}-\alpha-\alpha \lambda\right)}{1-\alpha} a_{n}+\frac{[2]_{q}^{m}\left([2]_{q}-\alpha-\alpha \lambda\right)}{1-\alpha} b_{n}\right) r^{2} \\
\leq & \left(1+b_{1}\right) r+\frac{1-\alpha}{[2]_{q}^{m}\left([2]_{q}-\alpha-\alpha \lambda\right)}\left(1-\frac{1+\alpha}{1-\alpha} b_{1}\right) r^{2} \\
\leq & \left(1+b_{1}\right) r+\frac{1}{[2]_{q}^{m}}\left(\frac{1-\alpha}{[2]_{q}-\alpha-\alpha \lambda}-\frac{1+\alpha}{[2]_{q}-\alpha-\alpha \lambda} b_{1}\right) r^{2} .
\end{aligned}
$$

The proof of the left hand inequality is similar and is omitted.
As a consequence of Theorem 4 we obtain the following corollary.
Corollary 2. Let $f_{m}(z) \in \overline{\mathcal{H}} \mathcal{R}_{q}^{m}(\lambda, \alpha)$. Then

$$
\left\{w:|w|<\frac{[2]_{q}^{m}\left([2]_{q}-\alpha-\alpha \lambda\right)-1+\alpha}{[2]_{q}^{m}\left([2]_{q}-\alpha-\alpha \lambda\right)}-\frac{[2]_{q}^{m}\left([2]_{q}-\alpha-\alpha \lambda\right)-(1+\alpha)}{[2]_{q}^{m}\left([2]_{q}-\alpha-\alpha \lambda\right)} b_{1}\right\} \subset f_{m}(\mathbb{U}) .
$$

Proof. For completeness, we provide a brief justification. Using the left hand inequality of Theorem 4 and letting $r \rightarrow 1$, it follows that

$$
\begin{aligned}
& \left(1-b_{1}\right)-\frac{1}{[2]_{q}^{m}}\left(\frac{1-\alpha}{[2]_{q}-\alpha-\alpha \lambda}-\frac{1+\alpha}{[2]_{q}-\alpha-\alpha \lambda} b_{1}\right) \\
& =\left(1-b_{1}\right)-\frac{1}{[2]_{q}^{m}\left([2]_{q}-\alpha-\alpha \lambda\right)}\left[1-\alpha-(1+\alpha) b_{1}\right] \\
& =\frac{\left(1-b_{1}\right)[2]_{q}^{m}\left([2]_{q}-\alpha-\alpha \lambda\right)-(1-\alpha)+(1+\alpha) b_{1}}{[2]_{q}^{m}\left([2]_{q}-\alpha-\alpha \lambda\right)} \\
& =\frac{[2]_{q}^{m}\left([2]_{q}-\alpha-\alpha \lambda\right)-[2]_{q}^{m}\left([2]_{q}-\alpha-\alpha \lambda\right) b_{1}-(1-\alpha)+(1+\alpha) b_{1}}{[2]_{q}^{m}\left([2]_{q}-\alpha-\alpha \lambda\right)} \\
& =\frac{[2]_{q}^{m}\left([2]_{q}-\alpha-\alpha \lambda\right)-1+\alpha-\left[[2]_{q}^{m}\left([2]_{q}-\alpha-\alpha \lambda\right)-(1+\alpha)\right] b_{1}}{[2]_{q}^{m}\left([2]_{q}-\alpha-\alpha \lambda\right)} \\
& =\frac{[2]_{q}^{m}\left([2]_{q}-\alpha-\alpha \lambda\right)-1+\alpha}{[2]_{q}^{m}\left([2]_{q}-\alpha-\alpha \lambda\right)}-\frac{[2]_{q}^{m}\left([2]_{q}-\alpha-\alpha \lambda\right)-(1+\alpha)}{[2]_{q}^{m}\left([2]_{q}-\alpha-\alpha \lambda\right)} b_{1} \subset f_{m}(\mathbb{U}) .
\end{aligned}
$$

Finally we show that class $\overline{\mathcal{H}} \mathcal{R}_{q}^{m}(\lambda, \alpha)$ is closed under convex combinations.
Theorem 5. The family $\overline{\mathcal{H}} \mathcal{R}_{q}^{m}(\lambda, \alpha)$ is closed under convex combinations.
Proof. For $i=1,2, \ldots$, suppose that $f_{m_{i}} \in \overline{\mathcal{H}} \mathcal{R}_{q}^{m}(\lambda, \alpha)$ where

$$
f_{m_{i}}(z)=z-\sum_{n=2}^{\infty} a_{i, n} z^{n}+(-1)^{m} \sum_{n=2}^{\infty} \bar{b}_{i, n} \bar{z}^{n} .
$$

Then, by Theorem 2
$\sum_{n=2}^{\infty} \frac{[n]_{q}^{m}\left\{[n]_{q}-\alpha-\alpha \lambda\left([n]_{q}-1\right)\right\}}{1-\alpha} a_{i, n}+\sum_{n=1}^{\infty} \frac{[n]_{q}^{m}\left\{[n]_{q}+\alpha-\alpha \lambda\left([n]_{q}+1\right)\right\}}{1-\alpha} b_{i, n} \leq 1$.
For $\sum_{i=1}^{\infty} t_{i}, 0 \leq t_{i} \leq 1$, the convex combination of f_{i} may be written as

$$
\sum_{i=1}^{\infty} t_{i} f_{m_{i}}(z)=z-\sum_{n=2}^{\infty}\left(\sum_{i=1}^{\infty} t_{i} a_{i, n}\right) z^{n}+(-1)^{m} \sum_{n=1}^{\infty}\left(\sum_{i=1}^{\infty} t_{i} b_{i, n}\right) \bar{z}^{n}
$$

Using the inequality (8), we obtain

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \frac{[n]_{q}^{m}\left\{[n]_{q}-\alpha-\alpha \lambda\left([n]_{q}-1\right)\right\}}{1-\alpha}\left(\sum_{i=1}^{\infty} t_{i} a_{i, n}\right) \\
& \quad+\sum_{n=1}^{\infty} \frac{[n]_{q}^{m}\left\{[n]_{q}+\alpha-\alpha \lambda\left([n]_{q}+1\right)\right\}}{1-\alpha}\left(\sum_{i=1}^{\infty} t_{i} b_{i, n}\right) \\
& =\sum_{i=1}^{\infty} t_{i}\left(\sum_{n=2}^{\infty} \frac{[n]_{q}^{m}\left\{[n]_{q}-\alpha-\alpha \lambda\left([n]_{q}-1\right)\right\}}{1-\alpha} a_{i, n}\right. \\
& \left.\quad+\sum_{n=1}^{\infty} \frac{[n]_{q}^{m}\left\{[n]_{q}+\alpha-\alpha \lambda\left([n]_{q}+1\right)\right\}}{1-\alpha} b_{i, n}\right) \\
& \leq \sum_{i=1}^{\infty} t_{i}=1
\end{aligned}
$$

and therefore $\sum_{i=1}^{\infty} t_{i} f_{m_{i}} \in \overline{\mathcal{H}} \mathcal{R}_{q}^{m}(\lambda, \alpha)$.
Concluding Remarks: The results of this paper for the special case $\lambda=0$ yield analogous results obtained in [6]. Furthermore, by letting $\lim _{q \rightarrow 1^{-}}$and taking $\lambda=0$ and $m=0$ we obtain the analogous results for the classes studied in [7] and [5], respectively. Moreover, if we let $\alpha=0$ we obtain the results given in [10].

Acknowledgement: We thank the referees for their valuable suggestions.

References

[1] Aral, A., Gupta, V. and Agarwal, R. P., Applications of q-calculus in operator theory, Springer, New York, 2013.
[2] Clunie, J. and Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Aci. Fenn. Ser. A. I. Math. 9 (1984), 3-25.
[3] Govindaraj, M. and Sivasubramanian, S., On a class of analytic functions related to conic domains involving q-calculus, Anal. Math. 43 (3)(5) (2017), 475-487.
[4] Jackson,F. H., On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh 46 (1908), 253-281.
[5] Jahangiri, J. M., Harmonic functions starlike in the unit disc, J. Math. Anal. Appl. 235 (1999), 470-477.
[6] Jahangiri, J. M., Harmonic univalent functions defined by q- calculus operators, Inter. J. Math. Anal. Appl. 5 (2) (2018), $39-43$; arXiv:1806.08407v1.
[7] Jahangiri, J. M., Murugusundaramoorthy, G. and Vijaya, K., Salagean-Type harmonic univalent functions, Southwest J. Pure Appl. Math. 2 (2002), 77-82.
[8] Kanas, S. and Răducanu, D., Some subclass of analytic functions related to conic domains, Math. Slovaca 64 (5) (2014), 1183-1196.
[9] Salagean, G., Subclasses of univalent functions, Springers-Verlog 1013, (1983), 362-372.
[10] Silverman, H., Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl. 220 (1) (1998), 283-289.

[^0]: ${ }^{1}$ Mathematical Sciences, Kent State University, Kent, Ohio, U.S.A. e-mail: jjahangi@kent.edu
 ${ }^{2 *}$ Corresponding author, Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore - 632014, India. e-mail: kuma@vit.ac.in
 ${ }^{3}$ Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore - 632014, India. e-mail: kvijaya@vit.ac.in.

