HYPERSURFACE OF A FINSLER SPACE WITH RANDERS CHANGE OF SPECIAL (α, β)-METRIC

P. N. PANDEY ${ }^{1}$ and Ganga Prasad YADAV*2

Abstract

The aim of the present paper is to discuss different kinds of hypersurfaces of the Finsler space with Randers change of special (α, β)-metric of type $L^{*}=\alpha+A_{1} \beta+A_{2} \frac{\beta^{(n+1)}}{\alpha^{n}}+\beta$ (where A_{1} and A_{2} are constants) which is a generalization of the metric $L^{*}=\alpha+\epsilon \beta+k \frac{\beta^{2}}{\alpha}+\beta$ considered in [12]. We have obtained conditions for the hypersurface to be a hyperplane of first, second or third kinds.

2010 Mathematics Subject Classification: 53B40.
Key words: Finsler space; hypersurface; (α, β)-metric; hyperplane of $1^{\text {st }}$; $2^{\text {nd }}$ and $3^{\text {rd }}$ Kinds.

1 Introduction

M. Matsumoto [6] introduced the concept of (α, β)-metric on a differentiable manifold with local coordinates x^{i}, where $\alpha^{2}=a_{i j}(x) y^{i} y^{j}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a 1-form on M^{n}. M. Hashiguchi and Y. Ichijyo [2] studied some special (α, β)-metrics and obtained interesting results. B. N. Prasad [8] obtained the Cartan connection for the Finsler space whose metric is transformed by an h-vector. M. Matsumoto [7] discussed the properties of special hypersurface of a Randers space with $b_{i}(x)$ as gradient of a scalar function $b(x)$. M. Kitayama [5] obtained certain results related to Finslerian hypersurface given by β-change. M. K. Gupta and P. N. Pandey [1] discussed hypersurface of a Finsler space with a special metric and derived certain properties of a Finslerian hypersurface given by an h-vector. In 2011, H. Wosoughi [14] discussed hypersurface of special Finsler space with an exponential (α, β)-metric and obtained certain results. H. S. Shukla, Manmohan Pandey and B. N. Prasad [10] studied hypersurface of a Finsler space with metric $\sum_{r=0}^{m} \frac{\beta^{r}}{\alpha^{r-1}}$ and obtained several results.

[^0]The hypersurface of a Finsler space with some given special metrics has been studied by authors $[13,15]$. A change of a Finsler metric $L(x, y) \rightarrow L^{*}=L(x, y)+$ $b_{i}(x) y^{i}$ is called Randers change of metric. The notion of a Randers change was introduced by Matsumoto, named by Hashiguchi and Ichijyo [3] and studied in detail by Shibata [11]. A hypersurface M^{n-1} of the (M^{n}, L) may be represented parametrically by the equation $x^{i}=x^{i}\left(u^{\alpha}\right), \alpha=1,2, \ldots, n-1$, where u^{α} are Gaussian coordinate on M^{n-1}. Since the function $L^{*} \equiv L(x(u), y(u, v))$ gives rise to a Finsler metric of M^{n-1}, we get an ($n-1$)-dimensional Finsler space $F^{n-1}=\left(M^{n-1}, L^{*}(u, v)\right)$. The aim of the present paper is to discuss different kinds of hypersurfaces of the Finsler space with Randers change of special (α, β) metric of type $L^{*}=\alpha+A_{1} \beta+A_{2} \frac{\beta^{(n+1)}}{\alpha^{n}}+\beta$ (where A_{1} and A_{2} are constants) which is a generalization of the metric $L^{*}=\alpha+\epsilon \beta+k \frac{\beta^{2}}{\alpha}+\beta$ considered in [12]. We have obtained conditions for the hypersurface to be a hyperplane of first, second or third kinds.

2 Preliminaries

Let M^{n} be a real smooth manifold of dimension n and let $F^{* n}=\left(M^{n}, L^{*}\right)$ be a Finsler space on the differentiable manifold M^{n} endowed with a fundamental function $L^{*}(x, y)$, where

$$
\begin{equation*}
L^{*}=\alpha+A_{1} \beta+A_{2} \frac{\beta^{(n+1)}}{\alpha^{n}}+\beta \tag{1}
\end{equation*}
$$

Differentiating (1) partially with respect to α and β, we get

$$
\left\{\begin{array}{l}
\text { a) } L_{\alpha}^{*}=\frac{\alpha^{n+1}-A_{2} n \beta^{n+1}}{\alpha^{n+1}} \tag{2}\\
\text { b) } L_{\beta}^{*}=\frac{\left(A_{1}+1\right) \alpha^{n}+A_{2}(n+1) \beta^{n}}{\alpha^{n}} \\
\text { c) } L_{\alpha \alpha}^{*}=\frac{A_{2} n(n+1) \beta^{n+1}}{\alpha^{n+2}} \\
\text { d) } L_{\beta \beta}^{*}=\frac{A_{2} n(n+1) \beta^{n-1}}{\alpha^{n}} \\
\text { e) } L_{\alpha \beta}^{*}=-\frac{A_{2} n(n+1) \beta^{n}}{\alpha^{n+1}},
\end{array}\right.
$$

where $L_{\alpha}^{*}=\partial L^{*} / \partial \alpha, L_{\beta}^{*}=\partial L^{*} / \partial \beta, L_{\alpha \alpha}^{*}=\partial L_{\alpha}^{*} / \partial \alpha, L_{\beta \beta}^{*}=\partial L_{\beta}^{*} / \partial \beta$ and $L_{\alpha \beta}^{*}=\partial L_{\alpha}^{*} / \partial \beta$.

The normalized supporting element, the metric tensor, the angular metric tensor and Cartan tensor are defined by [9]

$$
\begin{cases}\text { a) } & l_{i}=\dot{\partial}_{i} L, \tag{3}\\ \text { b) } & g_{i j}=\frac{1}{2} \dot{\partial}_{\partial} \dot{\partial}_{j} L^{2}, \\ \text { c) } & h_{i j}=L \dot{\partial}_{i} \dot{\partial}_{j} L \\ \text { d) } & C_{i j k}=\frac{1}{2} \dot{\partial}_{k} g_{i j},\end{cases}
$$

respectively, where $\dot{\partial}_{i} \equiv \frac{\partial}{\partial y^{2}}$.

Hypersurface of a Finsler space with Randers change of special (α, β)-metric 197

In the Finsler space $F^{* n}=\left(M^{n}, L^{*}\right)$ the normalized element of support (3a) and the angular metric tensor (3c) are given by [14]

$$
\begin{gather*}
l_{i}^{*}=\alpha^{-1} L_{\alpha}^{*} y_{i}+L_{\beta}^{*} b_{i} \tag{4}\\
h_{i j}^{*}=p a_{i j}+q_{0} b_{i} b_{j}+q_{1}\left(b_{i} Y_{j}+b_{j} Y_{i}\right)+q_{2} Y_{i} Y_{j} \tag{5}
\end{gather*}
$$

where

$$
\begin{gather*}
Y_{i}=a_{i j} y^{j}, \tag{6}\\
p=L^{*} L_{\alpha}^{*} \alpha^{-1} \\
=\frac{1}{\alpha^{2 n+2}}\left[\alpha^{2 n+2}-A_{2}(n-1) \alpha^{n+1} \beta^{n+1}+\left(A_{1}+1\right) \beta \alpha^{2 n+1}\right. \tag{7}\\
\left.-A_{2} n\left(A_{1} \alpha^{n}+A_{2} \beta^{n}+\alpha^{n}\right) \beta^{n+2}\right], \\
q_{0}=L^{*} L_{\beta \beta}^{*} \\
=\frac{A_{2} n(n+1)}{\alpha^{2 n}}\left[\alpha^{n+1} \beta^{n-1}+\left(A_{1}+1\right) \alpha^{n} \beta^{n}+A_{2} \beta^{2 n}\right], \tag{8}\\
q_{1}=L^{*} L_{\alpha \beta}^{*} \alpha^{-1} \\
=-\frac{A_{2} n(n+1) \beta^{n}}{\alpha^{2 n+2}}\left[\alpha^{n+1}+A_{1} \beta \alpha^{n}+A_{2} \beta^{n+1}+\beta \alpha^{n}\right], \tag{9}\\
q_{2}=L^{*} \alpha^{-2}\left(L_{\alpha \alpha}^{*}-L_{\alpha}^{*} \alpha^{-1}\right) \\
=\frac{1}{\alpha^{2 n+4}}\left[A_{2}\left(n^{2}+2 n-1\right) \alpha^{n+1} \beta^{n+1}+A_{2} n(n+2)\left\{\left(A_{1}+1\right) \alpha^{n}\right.\right. \tag{10}\\
\left.\left.\quad+A_{2} \beta^{n}\right\} \beta^{n+2}-\left(A_{1}+1\right) \beta \alpha^{2 n+1}-\alpha^{2 n+2}\right] .
\end{gather*}
$$

In the Finsler space $F^{* n}=\left(M^{n}, L^{*}\right)$ the fundamental metric tensor (3b) is given by [14]

$$
\begin{equation*}
g_{i j}^{*}=p a_{i j}+p_{0} b_{i} b_{j}+p_{1}\left(b_{i} Y_{j}+b_{j} Y_{i}\right)+p_{2} Y_{i} Y_{j}, \tag{11}
\end{equation*}
$$

where

$$
\begin{align*}
& p_{0}= q_{0}+ \\
& L_{\beta}^{* 2} \tag{12}\\
&=\frac{1}{\alpha^{2 n}} {\left[A_{2}\left(A_{1}+1\right)\left(n^{2}+3 n+2\right) \alpha^{n} \beta^{n}+\left(A_{1}+1\right)^{2} \alpha^{2 n}\right.} \\
&\left.+A_{2} n(n+1) \alpha^{n+1} \beta^{n-1}+A_{2}^{2}\left(2 n^{2}+3 n+1\right) \beta^{2 n}\right], \\
& p_{1}= q_{1}+L^{*-1} p L_{\beta}^{*} \tag{13}\\
&=\frac{1}{\alpha^{2 n+2}}[A_{2} \alpha^{n} \beta^{n}\left\{\left(1-n^{2}\right) \alpha-n \beta\left(A_{1}+1\right)(n+2)\right\} \\
&\left.\quad-2 A_{2}^{2} n(n+1) \beta^{2 n+1}+\left(A_{1}+1\right) \alpha^{2 n+1}\right]
\end{align*}
$$

$$
\begin{align*}
p_{2}= & q_{2}+p^{2} L^{*-2} \\
=\frac{1}{\alpha^{2 n+4}} & {\left[A_{2}\left(n^{2}-1\right) \alpha^{n+1} \beta^{n+1}+2 A_{2}^{2} n(n+1) \beta^{2 n+2}\right.} \tag{14}\\
& \left.+\left(A_{1}+1\right)\left\{A_{2} n(n+2) \alpha^{n} \beta^{n+2}-\beta \alpha^{2 n+1}\right\}\right] .
\end{align*}
$$

The reciprocal tensor $g^{* i j}$ of $g_{i j}^{*}$ is given by

$$
\begin{align*}
& g^{* i j}=p^{-1} a^{i j}-S_{0} b^{i} b^{j}-S_{1}\left(b^{i} y^{j}+b^{j} y^{i}\right)-S_{2} y^{i} y^{j}, \tag{15}\\
& \left(\begin{array}{l}
\text { a) } b^{i} \\
=a^{i j} b_{j}, b^{2}=a_{i j} b^{i} b^{j} \\
\text { b) } S_{0}
\end{array}=\frac{\left\{p p_{0}+\left(p_{0} p_{2}-p_{1}^{2}\right) \alpha^{2}\right\}}{\tau p},\right. \\
& \text { c) } S_{1}=\frac{\left\{p p_{1}-\left(p_{0} p_{2}-p_{1}^{2}\right) \beta\right.}{\tau p}, \\
& \text { d) } S_{2}=\frac{\left\{p p_{2}+\left(p_{0} p_{2}-p_{1}^{2}\right) b^{2}\right.}{\tau p}, \tag{16}\\
& \text { e) } \tau=p\left(p+p_{0} b^{2}+p_{1} \beta\right)+\left(p_{0} p_{2}-p_{1}^{2}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right) .
\end{align*}
$$

For the Finsler space $F^{* n}$ the $h v$-torsion tensor is given by

$$
\begin{equation*}
C_{i j k}^{*}=p_{1}\left(h_{i j}^{*} m_{k}+h_{j k}^{*} m_{i}+h_{k i}^{*} m_{j}\right)+\gamma_{1} m_{i} m_{j} m_{k} \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
\text { (a) } \gamma_{1}=p \frac{\partial p_{0}}{\partial \beta}-3 p_{1} q_{0}, \quad \text { (b) } m_{i}=b_{i}-\alpha^{-2} \beta Y_{i} \text {. } \tag{18}
\end{equation*}
$$

Here m_{i} is a non-vanishing covariant vector orthogonal to the element of support y^{i}.

Let $\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ be the components of Christoffel symbols of the associated Riemannian space R^{n} and ∇_{k} denote the covariant differential operator with respect to x^{k} relative to the Chriestoffel symbols. We will use the following tensors:

$$
\begin{equation*}
\text { (a) } 2 E_{i j}^{*}=b_{i j}+b_{j i}, \text { (b) } 2 F_{i j}^{*}=b_{i j}-b_{j i}, \tag{19}
\end{equation*}
$$

where $b_{i j}=\nabla_{j} b_{i}$.
Let $C \Gamma^{*}=\left(F_{j k}^{* i}, G_{j}^{* i}, C_{j k}^{* i}\right)$ be the Cartan connection of $F^{* n}$. The difference tensor $D_{j k}^{* i}=F_{j k}^{* i}-\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ of the Finsler space $F^{* n}$ is given by

$$
\begin{align*}
D_{j k}^{* i} & =B^{* i} E_{j k}^{*}+F_{k}^{* i} B_{j}^{*}+F_{j}^{* i} B_{k}^{*}+B_{j}^{* i} b_{0 k}+B_{k}^{* i} b_{0 j} \\
& -b_{0 m} g^{* i m} B_{j k}^{*}-C_{j m}^{* i} A_{k}^{* m}-C_{k m}^{* i} A_{j}^{* m}+C_{j k m}^{*} A_{s}^{* m} g^{* i s} \tag{20}\\
& +\lambda^{* s}\left(C_{j m}^{* i} C_{s k}^{* m}+C_{k m}^{* i} C_{s j}^{* m}-C_{j k}^{* m} C_{m s}^{* i}\right),
\end{align*}
$$

where

$$
\left\{\begin{array}{l}
\text { a) } B_{k}^{*}=p_{0} b_{k}+p_{1} Y_{k}, B^{* i}=g^{* i j} B_{j}^{*}, \\
\text { b) } B_{i j}^{*}=\frac{p_{1}\left(a_{i j}-\alpha^{-2} Y_{i} Y_{j}\right)+\left(\partial p_{0} / \partial \beta\right) m_{i} m_{j}}{2}, \\
\text { c) } A_{k}^{* m}=B_{k}^{* m} E_{00}^{*}+B^{* m} E_{k 0}^{*}+B_{k}^{*} F_{0}^{* m}+B_{0}^{*} F_{k}^{* m}, \tag{21}\\
\text { d) } \lambda^{* m}=B^{*} E_{00}^{*}+2 B_{0}^{*} F_{0}^{* m}, F^{* k}=g^{* k j} F_{j i}^{*} \\
\text { e) } B_{i}^{* k}=g^{* k j} B_{j i}^{*}, B_{0}^{*}=B_{i}^{*} y^{i},
\end{array}\right.
$$

where 0 denote the contraction with y^{i} except for the quantities p_{0}, q_{0} and S_{0}.

3 Induced Cartan connection

Let $F^{* n-1}$ be a hypersurface of $F^{* n}$ given by the equation $x^{i}=x^{i}(u)$. The element of support y^{i} of $F^{* n}$ is to be taken tangential to $F^{* n-1}$, i.e.

$$
\begin{equation*}
y^{i}=B_{\alpha}^{* i}(u) v^{\alpha} . \tag{22}
\end{equation*}
$$

The metric tensor $g_{\alpha \beta}^{*}$ and v-torsion tensor $C_{\alpha \beta \gamma}^{*}$ are given by

$$
\begin{equation*}
\text { (a) } g_{\alpha \beta}^{*}=g_{i j}^{*} B_{\alpha}^{* i} B_{\beta}^{* j} \text {, (b) } C_{\alpha \beta \gamma}^{*}=C_{i j k}^{*} B_{\alpha}^{* i} B_{\beta}^{* j} B_{\gamma}^{* k} \text {. } \tag{23}
\end{equation*}
$$

At each point u^{α} of $F^{* n-1}$, a unit normal vector $N^{* i}(u, v)$ is defined by

$$
\begin{equation*}
\text { (a) } g_{i j}^{*} B_{\alpha}^{* i} N^{* j}=0, \text { (b) } g_{i j}^{*} N^{* i} N^{* j}=1 \text {. } \tag{24}
\end{equation*}
$$

The angular metric tensor $h_{i j}^{*}$ of $F^{* n}$, satisfies the following relations

$$
\begin{equation*}
\text { (a) } h_{\alpha \beta}^{*}=h_{i j}^{*} B_{\alpha}^{* i} B_{\beta}^{* j} \text {, (b) } h_{i j}^{*} B_{\alpha}^{* i} N^{* j}=0, \text { (c) } h_{i j}^{*} N^{* i} N^{* j}=1 \tag{25}
\end{equation*}
$$

The inverse projection factor $B_{i}^{* \alpha}(u, v)$ of $B_{\alpha}^{* i}$ is given by

$$
\begin{equation*}
B_{i}^{* \alpha}=g^{* \alpha \beta} g_{i j}^{*} B_{\beta}^{* j}, \tag{26}
\end{equation*}
$$

where $g^{* \alpha \beta}$ is the inverse of the metric tensor $g_{\alpha \beta}^{*}$ of $F^{* n-1}$.
From (24) and (26), we get

$$
\begin{equation*}
B_{\alpha}^{* i} B_{i}^{* \beta}=\delta_{\alpha}^{\beta}, B_{\alpha}^{* i} N_{i}^{*}=0, N^{* i} B_{i}^{* \alpha}=0, N^{* i} N_{i}^{*}=1, \tag{27}
\end{equation*}
$$

and further

$$
\begin{equation*}
B_{\alpha}^{* i} B_{j}^{* \alpha}+N^{* i} N_{j}^{*}=\delta_{j}^{i} \tag{28}
\end{equation*}
$$

For induced cartan connection $I C \Gamma=\left(F_{\beta \gamma}^{* \alpha}, G_{\beta}^{* \alpha}, C_{\beta \gamma}^{* \alpha}\right)$ on $F^{* n-1}$, the second fundamental h-tensor $H_{\alpha \beta}^{*}$ and the normal curvature vector H_{α}^{*} are given by

$$
\begin{equation*}
H_{\alpha \beta}^{*}=N_{i}^{*}\left(B_{\alpha \beta}^{*}+F_{j k}^{* i} B_{\alpha}^{* j} B_{\beta}^{* k}\right)+M_{\alpha}^{*} H_{\beta}^{*}, H_{\alpha}^{*}=N_{i}^{*}\left(B_{0 \alpha}^{* i}+G_{j}^{* i} B_{\alpha}^{* j}\right), \tag{29}
\end{equation*}
$$

where $M_{\alpha}^{*}=C_{i j k}^{*} B_{\alpha}^{* i} N^{* j} N^{* k}, B_{\alpha \beta}^{* i}=\partial^{2} x^{i} / \partial u^{\alpha} \partial U^{\beta}$ and $B_{0 \alpha}^{* i}=B_{\beta \alpha}^{* i} v^{\beta}$.
It is clear that $H_{\alpha \beta}^{*}$ is not symmetric and

$$
\begin{equation*}
H_{\alpha \beta}^{*}-H_{\beta \alpha}^{*}=M_{\alpha}^{*} H_{\beta}^{*}-M_{\beta}^{*} H_{\alpha}^{*} . \tag{30}
\end{equation*}
$$

Equation (29) yields

$$
\begin{equation*}
H_{\alpha 0}^{*}=H_{\alpha \beta}^{*} v^{\beta}=H_{\alpha}^{*}+M_{\alpha}^{*}+M_{\alpha}^{*} H_{0}^{*} . \tag{31}
\end{equation*}
$$

The second fundamental v-tensor $M_{\alpha \beta}^{*}$ is given by

$$
\begin{equation*}
M_{\alpha \beta}^{*}=C_{i j k}^{*} B_{\alpha}^{* i} B_{\beta}^{* j} N^{* k} \tag{32}
\end{equation*}
$$

The relative h and v-covariant derivatives of $B_{\alpha}^{* i}$ and $N^{* i}$ are given by

$$
\begin{gather*}
\left\{\begin{array}{l}
\text { a) } B_{\alpha \mid \beta}^{* i}=H_{\alpha \beta}^{*} N^{* i} \\
\text { b) } B_{\alpha}^{* i} \mid \beta=M_{\alpha \beta}^{*} N^{* i} \\
\text { c) } N_{\mid \beta}^{* i}=-H_{\alpha \beta}^{*} B_{j}^{* \alpha} g^{* i j} \\
\text { d) } N^{* i} \mid \beta=-M_{\alpha \beta}^{*} B_{j}^{* \alpha} g^{* i j} \\
\quad M_{\beta}^{*}=N_{i}^{*} C_{j k}^{* i} B_{\beta}^{* j} N^{* k}
\end{array} .\right. \tag{33}
\end{gather*}
$$

Let $X_{i}(x, y)$ be a vector field of $F^{* n}$, the relative h and v-covariant derivatives of X_{i} are given by

$$
\begin{equation*}
X_{i \mid \beta}=X_{i \mid j} B_{\beta}^{* j}+\left.X_{i}\right|_{j} N^{* j} H_{\beta}^{*}, \quad X_{i \mid \beta}=\left.X_{i}\right|_{j} B_{\beta}^{* j} \tag{35}
\end{equation*}
$$

M. Matsumoto [4] defined different kinds of hypersurfaces and obtained their characteristic conditions, which are given in the following lemmas.
Lemma 1. A Finslerian hypersurface F^{n-1} is a hyperplane of the first kind if and only if $H_{\alpha}=0$.
Lemma 2. A Finslerian hypersurface F^{n-1} is a hyperplane of the second kind if and only if $H_{\alpha}=0$ and $H_{\alpha \beta}=0$.
Lemma 3. A Finslerian hypersurface F^{n-1} is a hyperplane of the third kind if and only if $H_{\alpha \beta}=0=M_{\alpha \beta}$ and $H_{\alpha}=0$.

4 Hypersurface $F^{* n-1}(c)$ of the Finsler space $F^{* n}$

Let us consider a special Finsler metric $L^{*}=\alpha+A_{1} \beta+A_{2} \frac{\beta^{(n+1)}}{\alpha^{n}}+\beta$ with gradient $b_{i}(x)=\partial_{i} b$. From parametric equation $x^{i}=x^{i}\left(u^{\alpha}\right)$ of $F^{* n-1}(c)$, we get $\partial_{\alpha} b(x(u))=0=b_{i} B_{\alpha}^{* i}$ so that $b_{i}(x)$ are regarded as covariant components of a normal vector field of $F^{* n-1}(c)$. Therefore along the $F^{* n-1}(c)$, we have

$$
\begin{equation*}
\text { (a) } b_{i} B_{\alpha}^{* i}=0, \quad \text { (b) } b_{i} y^{i}=0 \tag{36}
\end{equation*}
$$

Hence the induced metric $\underline{L}^{*}(u, v)$ of $F^{* n-1}(c)$ is given by

$$
\begin{equation*}
\underline{L}^{*}(u, v)=\sqrt{a_{\alpha \beta} v^{\alpha} v^{\beta}}, \quad a_{\alpha \beta}=a_{i j} B_{\alpha}^{* i} B_{\beta}^{* j} \tag{37}
\end{equation*}
$$

which is a Riemannian metric.
At a point of $F^{* n-1}(c)$, from $(7),(8),(9),(10),(12),(13),(14)$ and (16), we get

$$
\begin{align*}
& p=1, \quad q_{0}=0, \quad q_{1}=0, \quad q_{2}=-\frac{1}{\alpha^{2}}, \tau=1 \\
& p_{0}=\left(A_{1}+1\right)^{2}, \quad p_{1}=\frac{A_{1}+1}{\alpha}, \quad p_{2}=0 \tag{38}\\
& S_{0}=0, \quad S_{1}=\frac{A_{1}+1}{\alpha}, \quad S_{2}=-\frac{\left(A_{1}+1\right)^{2}}{\alpha^{2}} b^{2}
\end{align*}
$$

Hypersurface of a Finsler space with Randers change of special (α, β)-metric 201

Using (38) in (15), we find

$$
\begin{equation*}
g^{* i j}=a^{i j}-\frac{A_{1}+1}{\alpha}\left(b^{i} y^{j}+b^{j} y^{i}\right)+\frac{\left(A_{1}+1\right)^{2}}{\alpha^{2}} b^{2} y^{i} y^{j} . \tag{39}
\end{equation*}
$$

Transvecting (39) with $b_{i} b_{j}$ and using (36b), we have

$$
\begin{equation*}
g^{* i j} b_{i} b_{j}=b^{2}, \tag{40}
\end{equation*}
$$

which gives

$$
\begin{equation*}
b_{i}(x)=b N_{i}^{*}, \tag{41}
\end{equation*}
$$

where b is the length of vector b^{i}.
Transvecting (39) with b_{j} and using (36b) and (41), we get

$$
\begin{equation*}
b^{i}=a^{i j} b_{j}=b N^{* i}+\left(A_{1}+1\right) b^{2} \alpha^{-1} y^{i} . \tag{42}
\end{equation*}
$$

This leads to
Theorem 1. In the Finslerian hypersurface $F^{* n-1}(c)$ of a Finsler space with Randers change of special (α, β)-metric, the induced metric is a Riemannian metric given by (37) and the scalar function $b(x)$ is given by (40) and (41).

The angular metric tensor and metric tensor of $F^{* n}$ are given by

$$
\begin{equation*}
h_{i j}^{*}=a_{i j}-\frac{Y_{i} Y_{j}}{\alpha^{2}} \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{i j}^{*}=a_{i j}+\left(A_{1}+1\right)^{2} b_{i} b_{j}+\frac{A_{1}+1}{\alpha}\left(b_{i} Y_{j}+b_{j} Y_{i}\right), \tag{44}
\end{equation*}
$$

respectively.
Transvecting (43) with $B_{\alpha}^{* i} B_{\beta}^{* j}$ and using (25), we get

$$
\begin{equation*}
h_{\alpha \beta}^{*}=h_{\alpha \beta}^{*(\alpha)}, \tag{45}
\end{equation*}
$$

where $h_{\alpha \beta}^{*(\alpha)}$ denote the angular metric tensor of induced Riemannian metric. Differentiating (12) with respect to β, we get

$$
\begin{align*}
\frac{\partial p_{0}}{\partial \beta}=\frac{n(n+1) A_{2}}{\alpha^{2 n}} & {\left[(n+2)\left(A_{1}+1\right) \alpha^{n} \beta^{n-1}+(n-1) \alpha^{n+1} \beta^{n-2}\right.} \tag{46}\\
& \left.+2(2 n+1) A_{2} \beta^{2 n-1}\right] .
\end{align*}
$$

Thus along $F^{* n-1}(c), \frac{\partial p_{0}}{\partial \beta}=0$. Therefore (18) gives $\gamma_{1}=0, m_{i}=b_{i}$.
Then from (17), we get

$$
\begin{equation*}
C_{i j k}^{*}=\frac{\left(A_{1}+1\right)}{\alpha}\left(h_{i j}^{*} b_{k}+h_{j k}^{*} b_{i}+h_{k i}^{*} b_{j}\right) . \tag{47}
\end{equation*}
$$

Transvecting (47) with $B_{\alpha}^{* i} B_{\beta}^{* j} N^{* k}$ and using (25), (32) and (41), we have

$$
\begin{equation*}
M_{\alpha \beta}^{*}=\left(\frac{A_{1}+1}{\alpha}\right) b h_{\alpha \beta}^{*} . \tag{48}
\end{equation*}
$$

From (25), (34), (36b) and (47), we have

$$
\begin{equation*}
M_{\alpha}^{*}=0 \tag{49}
\end{equation*}
$$

Using (49) in (30), we have

$$
\begin{equation*}
H_{\alpha \beta}^{*}=H_{\beta \alpha}^{*} \tag{50}
\end{equation*}
$$

Thus, we have the following:
Theorem 2. The second fundamental v-tensor $M_{\alpha \beta}^{*}$ of $F^{* n-1}$ is given by (48) and the second fundamental h-tensor $H_{\alpha \beta}^{*}$ is symmetric.

Taking h-covariant derivative of (36) with respect to the induced connection, we find

$$
\begin{equation*}
b_{i \mid \beta} B_{\alpha}^{* i}+b_{i} B_{\alpha \mid \beta}^{* i}=0 \tag{51}
\end{equation*}
$$

Applying (35) for the vector b_{i}, we get

$$
\begin{equation*}
b_{i \mid \beta}=b_{i \mid j} B_{\beta}^{* j}+\left.b_{i}\right|_{j} N^{* j} H_{\beta}^{*} . \tag{52}
\end{equation*}
$$

In view of (33) and (52), (51) implies

$$
\begin{equation*}
b_{i \mid j} B_{\alpha}^{* i} B_{\beta}^{* j}+\left.b_{i}\right|_{j} B_{\alpha}^{* i} N^{* j} H_{\beta}^{*}+b_{i} H_{\alpha \beta}^{*} N^{* i}=0 \tag{53}
\end{equation*}
$$

From $\left.b_{i}\right|_{j}=-b_{h} C_{i j}^{* h},(34),(41)$ and (49) together imply

$$
\begin{equation*}
\left.b_{i}\right|_{j} B_{\alpha}^{* i} N^{* j}=-b M_{\alpha}^{*}=0 \tag{54}
\end{equation*}
$$

Using (41) and (54) in (53), we find

$$
\begin{equation*}
b H_{\alpha \beta}^{*}+b_{i \mid j} B_{\alpha}^{* i} B_{\beta}^{* j}=0 \tag{55}
\end{equation*}
$$

Since $H_{\alpha \beta}^{*}$ is symmetric, $b_{i \mid j}$ is symmetric. Transvecting (55) with v^{β}, we get

$$
\begin{equation*}
b H_{\alpha}^{*}+b_{i \mid j} B_{\alpha}^{* i} y^{i}=0 \tag{56}
\end{equation*}
$$

Again transvecting with v^{α}, we get

$$
\begin{equation*}
b H_{0}^{*}+b_{i \mid j} y^{i} y^{j}=0 \tag{57}
\end{equation*}
$$

In view of Lemma 1, the hypersurface $F^{* n-1}(c)$ is a hyperplane of first kind if and only if $b_{i \mid j} y^{i} y^{j}=0$. Here $b_{i \mid j}$ being the covariant derivative with respect to the Cartan connection of $F^{* n}$ may depend on y^{i}. Since b_{i} is gradient vector, from (19) for induced metric L^{*}, we have $E_{i j}^{*}=b_{i j}, F_{i j}^{*}=0$. Thus, (20) reduces to

$$
\begin{align*}
D_{j k}^{* i} & =B^{* i} b_{j k}+B_{j}^{* i} b_{0 k}+B_{k}^{* i} b_{0 j}-b_{0 m} g^{* i m} B_{j k}^{*}-C_{j m}^{* i} A_{k}^{* m}-C_{k m}^{* i} A_{j}^{* m} \tag{58}\\
& +C_{j k m}^{*} A_{s}^{* m} g^{* i s}+\lambda^{* s}\left(C_{j m}^{* i} C_{s k}^{* m}+C_{k m}^{* i} C_{s j}^{* m}-C_{j k}^{* m} C_{m s}^{* i}\right)
\end{align*}
$$

Hypersurface of a Finsler space with Randers change of special (α, β)-metric 203

Using (38) and (39) in (21), we get

$$
\begin{align*}
B_{j}^{*} & =\left(A_{1}+1\right)^{2} b_{j}+\frac{A_{1}+1}{\alpha} Y_{j}, B^{* i}=\frac{A_{1}+1}{\alpha} y^{i} \\
B_{i j}^{*} & =\frac{A_{1}+1}{2 \alpha}\left(a_{i j}-\alpha^{-2} Y_{i} Y_{j}\right), \lambda^{* m}=B^{* m} b_{00} \tag{59}\\
B_{j}^{* i} & =\frac{A_{1}+1}{2 \alpha}\left(\delta_{j}^{i}-\alpha^{-2} y^{i} Y_{j}\right)-\frac{\left(A_{1}+1\right)^{2}}{2 \alpha^{2}} b_{j} y^{i} \\
A_{k}^{* m} & =B_{k}^{* m} b_{00}+B^{* m} b_{k 0}
\end{align*}
$$

In view of (36), we have $B_{0}^{* i}=0$ and $B_{i 0}^{*}=0$, which together with (4.24) gives $A_{0}^{* m}=B^{* m} b_{00}$.
Transvecting (58) with y^{k}, we get

$$
\begin{equation*}
D_{j 0}^{* i}=B^{* i} b_{j 0}+B_{j}^{* i} b_{00}-B^{* m} C_{j m}^{* i} b_{00} \tag{60}
\end{equation*}
$$

Again transvecting (60) with y^{j}, we find

$$
\begin{equation*}
D_{00}^{* i}=B^{* i} b_{00}=\frac{A_{1}+1}{\alpha} y^{i} b_{00} . \tag{61}
\end{equation*}
$$

Transvecting (61) with b_{i} and using (36), we have

$$
\begin{equation*}
b_{i} D_{00}^{* i}=0 . \tag{62}
\end{equation*}
$$

Thus, the relation $b_{i \mid j}=b_{i j}-b_{r} D_{i j}^{* r}$ and (62) gives

$$
\begin{equation*}
b_{i \mid j} y^{i} y^{j}=b_{00} \tag{63}
\end{equation*}
$$

Using (63) in (57), we get

$$
\begin{equation*}
b H_{0}^{*}+b_{00}=0 . \tag{64}
\end{equation*}
$$

From equation (64) and Lemmas 1 and 2 , it is clear that the necessary and sufficient condition for $F^{* n-1}(c)$ to be a hyperplane of first kind is that $b_{00}=0$. Since $b_{i j}=\nabla_{j} b_{i}$ does not depend on y^{i} and satisfy (36b), this condition may be written as $b_{i j} y^{i} y^{j}=\left(b_{i} y^{i}\right)\left(c_{j} y^{j}\right)=0$ for some $c_{j}(x)$. Therefore

$$
\begin{equation*}
2 b_{i j}=b_{i} c_{j}+b_{j} c_{i} \tag{65}
\end{equation*}
$$

From (36) and (65) it follows that

$$
\begin{equation*}
b_{00}=0, \quad b_{i j} B_{\alpha}^{* i} B_{\beta}^{* j}=0, \quad b_{i j} B_{\alpha}^{* i} y^{j}=0 \tag{66}
\end{equation*}
$$

Hence (64) gives $H_{0}^{*}=0$. Again from (58), (59) and (65), we have

$$
\begin{equation*}
b_{i 0} b^{i}=\frac{1}{2} c_{0} b^{2}, \lambda^{* m}=0, \quad A_{j}^{* i} B_{\beta}^{* j}=0, \quad B_{i j}^{*} B_{\alpha}^{* i} B_{\beta}^{* j}=\frac{A_{1}+1}{2 \alpha} h_{\alpha \beta}^{*} . \tag{67}
\end{equation*}
$$

Using (32), (39), (42), (48) and (67) in (58), we get

$$
\begin{equation*}
b_{r} D_{i j}^{* r} B_{\alpha}^{* i} B_{\beta}^{* j}=-\frac{\left(A_{1}+1\right) c_{0} b^{2}}{2 \alpha} h_{\alpha \beta}^{*} . \tag{68}
\end{equation*}
$$

Also from the relation $b_{i \mid j}=b_{i j}-b_{r} D_{i j}^{* r}$ and (4.31), we get

$$
\begin{equation*}
b_{i \mid j} B_{\alpha}^{* i} B_{\beta}^{* j}=-b_{r} D_{i j}^{* r} B_{\alpha}^{* i} B_{\beta}^{* j}=\frac{\left(A_{1}+1\right) c_{0} b^{2}}{2 \alpha} h_{\alpha \beta}^{*} . \tag{69}
\end{equation*}
$$

Therefore equation (55) reduces to

$$
\begin{equation*}
b H_{\alpha \beta}^{*}+\frac{\left(A_{1}+1\right) c_{0} b^{2}}{2 \alpha} h_{\alpha \beta}^{*}=0 . \tag{70}
\end{equation*}
$$

Hence the hypersurface $F^{* n-1}(c)$ is umbilical. Thus, we have
Theorem 3. The necessary and sufficient condition for a Finslerian hypersurface $F^{* n-1}(c)$ of a Finsler space with Randers change of special (α, β)-metric to be a hyperplane of the first kind is that (70) holds and $F^{* n-1}(c)$ is umbilical.

From lemma 3, the hypersurface $F^{* n-1}(c)$ is a hyperplane of second kind if and only if $H_{\alpha}^{*}=0$ and $H_{\alpha \beta}^{*}=0$. Thus (70) gives $c_{0}=c_{i}(x) y^{i}=0$. Therefore there exists a function $\phi(x)$ such that

$$
\begin{equation*}
c_{i}(x)=\phi(x) b_{i}(x) . \tag{71}
\end{equation*}
$$

Hence (65) reduces to $b_{i j}=\phi b_{i} b_{j}$.
Theorem 4. The necessary and sufficient condition for a Finslerian hypersurface $F^{* n-1}(c)$ of a Finsler space with Randers change of special (α, β)-metric to be a hyperplane of second kind is $b_{i j}=\phi b_{i} b_{j}$.

In view of (48) and (49), Lemma 3 shows that $F^{* n-1}(c)$ does not become a hyperplane of the third kind. Thus, we have

Theorem 5. The Finslerian hypersurface $F^{* n-1}(c)$ of a Finsler space with Randers change of special (α, β)-metric is not a hyperplane of the third kind.

References

[1] Gupta M. K., and Pandey, P. N., On hypersurface of a Finsler space with a special metric, Acta Math. Hungar. 120 (2008), no. 1-2, 165-177.
[2] Hashiguchi M. and Ichijyo Y., On some special (α, β)-metrics, Rep. Fac. Sci. Kagoshima Univ. 8 (1975), 39-46.
[3] Hashiguchi M. and Ichijiyo Y., Randers spaces with rectilinear geodesics, Rep. Fac. Sci. Kagasima Univ. 13 (1980), no. 13, 33-40.
[4] Hashiguchi M., Hojo S. and Matsumoto M., On Landsberg spaces of two dimensions with (α, β)-metric, J. Korean Math. Soc. 10, (1973), no. 1, 1726.

Hypersurface of a Finsler space with Randers change of special (α, β)-metric 205
[5] Kitayama M., On Finslerian hypersurface given by β-changes, Balkan J. Geom. Appl., 7 (2002), no. 2, 49-55.
[6] Matsumoto M., Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 31 (1992), no. 1, 43-83.
[7] Matsumoto M., The induced and intrinsic Finsler connections of a hypersurface and Finslerian projective geometry, J. Math. Kyoto Univ. 25 (1985), 107-144.
[8] Prasad B.N., On the torsion tensors $R_{h j k}$ and $P_{h j k}$ of Finsler spaces with a metric $d s=\left(g_{i j}(d x) d x^{i} d x^{j}\right)^{1 / 2}+b_{i}(x, y) d x^{i}$, Indian J. Pure Appl. Math. 21 (1990), 27-39.
[9] Rund H., The Differential Geometry of Finsler Spaces, Springer-Verlag, Berlin, 1959.
[10] Shukla H. S., Pandey Manmohan, and Prasad B. N., Hypersurface of a Finsler space with metric $\sum_{r=0}^{m} \frac{\beta^{r}}{\alpha^{r-1}}$, J. Int. Acad. of Phy. Sci. 20 (2016), 57-71.
[11] Shibata C., On invariant tensor of β-change of Finsler metric, J. Math. Kyoto Univ. 24 (1984), 163-188.
[12] Shankar Gauree and Singh Vijeta, On the hypersurface of a Finsler space with randers change of generalized (α, β)-metric, Int. J. Pure Appl. Math. 105 (2015), 223-234.
[13] Singh U. P. and Kumari Bindu, On a hypersurface of a Matsumoto space, Indian J. Pure Appl. Math. 32 (2001), 521-531.
[14] Wosoughi H., On a hypersurface of special Finsler space with an exponential (α, β)-metric, Int. J. Contemp. Math. Sci. 6 (2011), 1969-1980.
[15] Yong Lee I. L., Park Ha-Yong and Lee Yong-Duk, On a hypersurface of a special Finsler space with a metric $\alpha+\beta^{2} / \alpha$, J. Korean Math. Soc. 8 (2001), 93-101.

[^0]: ${ }^{1}$ Vice- Chancellor, Nehru Gram Bharti (Deemed To Be University), Allahabad, e-mail: pnpiaps@gmail.com
 ${ }^{2 *}$ Crresponding author, Department of Mathematics, University of Allahabad, Allahabad, e-mail: aumathganga@gmail.com

