η-RICCI SOLITONS IN 3-DIMENSIONAL NORMAL ALMOST CONTACT METRIC MANIFOLDS

Mohd Danish SIDDIQI ${ }^{1}$

Abstract

The object of the present paper is to study the normal almost contact metric manifolds admitting the η-Ricci Solitons. It is shown that a symmetric second order covariant tensor in a normal almost contact metric manifold is a constant multiple of metric tensor. Also an example of η-Ricci soliton in 3 -dimensional normal almost contact metric manifolds is provided in the region where normal almost contact metric manifolds expanding. Also we obtain the η-Ricci soliton in quasi Sasakian manifolds which satisfies cyclic parallel Ricci tensor, then the manifold is of constant curvature. Finally, we show the existence of such a manifold by an example.

2000 Mathematics Subject Classification: 53C15, 53C20, 53C25.
Key words: η-Ricci solitons, normal almost contact metric manifold, quasi Sasakian manifold, Ricci solitions, Einstein manifold.

1 Introduction

In recent years the pioneering works of R. Hamilton [10] and G. Perelman [16] towards the solution of the Poincare conjecture in dimension 3 have produced a flourishing activity in the research of self similar solutions, or solitons, of the Ricci flow. The study of the geometry of solitons, in particular their classification in dimension 3 , has been essential in providing a positive answer to the conjecture; however in higher dimension and in the complete, possibly noncompact case, the understanding of the geometry and the classification of solitons seems to remain a desired goal for a not too proximate future. In the generic case a soliton structure on the Riemannian manifold (M, g) is the choice of a smooth vector field X on M and a real constant λ satisfying the structural requirement

$$
\begin{equation*}
R i c+\frac{1}{2} \mathcal{L}_{X} g=\lambda g, \tag{1.1}
\end{equation*}
$$

where Ric is the Ricci tensor of the metric g and $\mathcal{L}_{X} g$ is the Lie derivative of this latter in the direction of X. In what follows we shall refer to λ as to the soliton

[^0]constant. The soliton is called expanding, steady or shrinking if, respectively, $\lambda>0, \lambda=0$ or $\lambda>0$. When X is the gradient of a potential $\psi \in C^{\infty}(M)$, the soliton is called a gradient Ricci soliton [20] and the previous equation (1.1) takes the form
\[

$$
\begin{equation*}
\nabla \nabla \psi=S+\lambda g \tag{1.2}
\end{equation*}
$$

\]

Both equations (1.1) and (1.2) can be considered as perturbations of the Einstein equation

$$
\begin{equation*}
R i c=\lambda g . \tag{1.3}
\end{equation*}
$$

and reduce to this latter in case X or $\nabla \psi$ are Killing vector fields. When $X=0$ or ψ is constant we call the underlying Einstein manifold a trivial Ricci soliton.

Definition 1.1. A Ricci soliton (g, V, λ) on a Riemannian manifold is defined by

$$
\begin{equation*}
\mathcal{L}_{V} g+2 S+2 \lambda g=0, \tag{1.4}
\end{equation*}
$$

where S is the Ricci tensor, \mathcal{L}_{V} is the Lie derivative along the vector field V on M and λ is a real scalar. Ricci soliton is said to be shrinking, steady or expanding according as $\lambda<0, \lambda=0$ and $\lambda>0$, respectively.

It is well know fact that, if the potential vector filed is zero or Killing, then the Ricci soliton is an Einstein real hypersurfaces on non-flat complex space forms [6]. Motivated by this in 2009, J. T. Cho and M. Kimura [7] introduced the notion of η-Ricci solitons and gave a classification of real hypersurfaces in non-flat complex space forms admitting η-Ricci solitons.

Definition 1.2. An η-Ricci soliton (g, V, λ, μ) on a Riemannian manifold is defined by

$$
\begin{equation*}
\mathcal{L}_{X} g+2 S+2 \lambda g+2 \mu \eta \otimes \eta=0, \tag{1.5}
\end{equation*}
$$

where S is the Ricci tensor, \mathcal{L}_{X} is the Lie derivative along the vector field X on M and λ, μ are real scalars. In particular $\mu=0$ then the data (g, V, λ) is a Ricci soliton.

In 1925, Levy [12] proved that a second order parallel symmetric non-singular tensor in real space forms is proportional the metric tensor. Later, R. Sharma [18] initiated the study of Ricci solitons in contact Riemannian geometry. After that, Tripathi [20] Nagaraja et al. [14] and others like M. Turan et al. [21] extensively studied Ricci soliton in almost contact metric manifolds. In 2015, [17] S. K. Perktas and S. Keles was studied the Ricci soliton in normal almost paracontact metric manifolds. Recently, A. M. Blaga and various others authors also have been studied η-Ricci solitons in manifolds with different structures (see [4], [5], [15], [19]). In this paper we study the η-Ricci soliton in normal almost contact metric manifolds.
η-Ricci solitons in 3-dimensional normal almost contact...

2 Preliminaries

A differentiable manifold M of dimension $(2 n+1)$ is called almost contact manifold with the almost contact structure (φ, ξ, η) if it admits a tensor field φ of type $(1,1)$, a vector field ξ of type $(1,0)$ and a 1 -form η of type $(0,1)$ satisfying the following conditions [13]

$$
\begin{equation*}
\varphi^{2} X=-X+\eta(X) \xi, \quad \eta(\xi)=1, \quad \varphi \xi=0, \quad \eta \circ \varphi=0 . \tag{2.1}
\end{equation*}
$$

Let \mathbb{R} be the real line and t a coordinate on \mathbb{R}. Define an almost complex structure J on $M \times \mathbb{R}$ by

$$
\begin{equation*}
J\left(X, \frac{\lambda d}{d t}\right)=\left(\varphi X-\lambda \xi, \eta(X) \frac{d}{d t}\right) \tag{2.2}
\end{equation*}
$$

where the pair $\left(X, \frac{\lambda d}{d t}\right)$ denotes a tangent vector to $M \times \mathbb{R}, X$ and $\frac{\lambda d}{d t}$ being tangent to M and \mathbb{R} respectively.
M and (φ, ξ, η) are said to be normal if the structure J in integrable ([1], [2]). The necessary and sufficient condition for (φ, ξ, η) to be normal is

$$
\begin{equation*}
N_{\varphi}[X, Y]+2 d \eta \otimes \xi=0, \tag{2.3}
\end{equation*}
$$

where $N_{\varphi}[X, Y]$ is the Nijenhuis tensor of φ defined by

$$
\begin{equation*}
N_{\varphi}[X, Y]=[\varphi X, \varphi Y]+\varphi^{2}[X, Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y] \tag{2.4}
\end{equation*}
$$

for any $X, Y \in \chi(M) ; \chi(M)$ being the Lie algebra of vector fields on M.
We say that the one form η has rank $r=2 s$ if $(d \eta)^{s} \neq 0$, and $\eta \wedge(d \eta)^{s}=0$, and has rank $r=2 s+1$ if $\eta \wedge(d \eta)^{s} \neq 0$ and $(d \eta)^{s+1}=0$. We also say that r is the rank of structure (φ, ξ, η).

A Riemannian metric g on M satisfies the condition

$$
\begin{equation*}
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.5}
\end{equation*}
$$

for any $X, Y \in \chi(M)$, is said to be compatible with structure (φ, ξ, η). If g is such a metric, then the quadruple (φ, ξ, η, g) is called an almost contact metric structure on M and M is an almost contact metric manifold. On such a manifold we also have

$$
g(X, \xi)=\eta(X)
$$

for any $X \in \chi(M)$ and we can always define the 2-form Φ by

$$
\Phi(X, Y)=g(X, \varphi Y)
$$

where $X, Y \in \chi(M)$.
A normal almost contact metric structure (φ, ξ, η, g) satisfying additionally the condition $d \eta=\Phi$ is called Sasakian. Of course, any such structure on M has rank 3. Also a normal almost contact metric structure satisfying the condition $d \Phi=0$
is said to be quasi Sasakian [3].
In [13], Olszak studied the some properties of normal almost contact manifold of dimension three.
For a normal almost contact metric structure (φ, ξ, η, g) on M, we have [13]

$$
\begin{gather*}
\left(\nabla_{X} \varphi\right) Y=g\left(\varphi \nabla_{X} \xi, Y\right) \xi-\eta(Y) \varphi \nabla_{X} \xi \tag{2.6}\\
\nabla_{X} \xi=\alpha[X-\eta(X) \xi]-\beta \phi X \tag{2.7}
\end{gather*}
$$

where $2 \alpha=\operatorname{div} \xi$ and $2 \beta=\operatorname{tr}(\varphi \nabla \xi)$, $\operatorname{div} \xi$ is the divergence of ξ defined by

$$
\operatorname{div} \xi=\operatorname{trace}\left\{X \rightarrow \nabla_{X} \xi\right\}, \quad \operatorname{tr}(\varphi \nabla \xi)=\operatorname{trace}\left\{X \rightarrow \varphi \nabla_{X} \xi\right\}
$$

A 3-dimensional normal almost contact metric manifold is said to be

- Cosympectic [1] if $\alpha=\beta=0$,
- quasi-Sasakian [3] if and only if $\alpha=0$ and $\beta \neq 0$,
- β-Sasakian [3] if and only if $\alpha=0, \beta \neq 0$ and β is constant, in particular Sasakian if $\beta=-1$,
- α-Kenmotsu [11] if $\alpha \neq 0$ and α is constant and $\beta=0$.

3 Basic curvature identities

In this section we discuss some curvature identities of 3-dimensional normal almost contact metric manifolds:

Let M be a 3 -dimensional normal almost contact metric manifold. Then we have the following conditions [13]

$$
\begin{gather*}
R(X, Y) \xi=\left(Y \alpha+\left(\alpha^{2}-\beta^{2}\right)\right) \varphi^{2} X-\left(X \alpha+\left(\alpha^{2}-\beta^{2}\right)\right) \varphi^{2} Y \tag{3.1}\\
+(Y \beta+2 \alpha \beta \eta(Y)) \varphi X-(X \beta+2 \alpha \beta \eta(X)) \varphi Y \\
S(Y, \xi)=-Y \alpha-(\varphi Y) \beta-\left(\xi \alpha+2\left(\alpha^{2}-\beta^{2}\right)\right) \eta(Y) \tag{3.2}\\
\xi \beta+2 \alpha \beta=0 \tag{3.3}
\end{gather*}
$$

for all $X, Y \in T M$, where R denotes the curvature tensor and S is the Ricci tensor. On the other hand, the curvature tensor in 3-dimensional Riemannian manifold always satisfies:

$$
\begin{align*}
\bar{R}(X, Y, Z, W) & =g(X, W) S(Y, Z)-g(X, Z) S(Y, W) \tag{3.4}\\
& +g(Y, Z) S(X, W)-g(Y, W) S(X, Z)
\end{align*}
$$

η-Ricci solitons in 3-dimensional normal almost contact...

$$
-\frac{r}{2}[g(X, W) g(Y, Z)-g(X, Z) g(Y, W)],
$$

where $\bar{R}(X, Y, Z, W)=g(R(X, Y) Z, W)$ and r is the scalar curvature.
From (3.1)

$$
\begin{equation*}
\bar{R}(\xi, Y, Z, \xi)=-\left(\xi \alpha+\left(\alpha^{2}-\beta^{2}\right)\right) g(\varphi Y, \varphi Z)-(\xi \beta+2 \alpha \beta) g(Y, \varphi Z) \tag{3.5}
\end{equation*}
$$

By (3.2), (3.4) and (3.5) we obtain for

$$
\begin{gather*}
\alpha=\text { Constant and } \beta=\text { Constant }, \\
S(X, Y)=\left(\frac{r}{2}+\left(\alpha^{2}-\beta^{2}\right)\right) g(\varphi X, \varphi Y)-2\left(\alpha^{2}-\beta^{2}\right) \eta(X) \eta(Y) \tag{3.6}\\
Q X=\left(\frac{r}{2}+\left(\alpha^{2}-\beta^{2}\right)\right) X-2\left(\alpha^{2}-\beta^{2}\right) \eta(X) \xi, \tag{3.7}
\end{gather*}
$$

$S(X, Y)=g(Q X, Y)$, where S Ricci curvature tensor, Q Ricci operator. Applying (3.5) in (3.4) we get

$$
\begin{align*}
R(X, Y) Z= & \left(\frac{r}{2}+2\left(\alpha^{2}-\beta^{2}\right)\right)[g(Y, Z) X-g(X, Z) Y] \tag{3.8}\\
& +g(X, Z)\left[\left(\frac{r}{2}+3\left(\alpha^{2}-\beta^{2}\right)\right)\right] \eta(Y) \xi \\
& -\left(\frac{r}{2}+3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(Y) \eta(Z) X \\
& -g(Y, Z)\left[\left(\frac{r}{2}+3\left(\alpha^{2}-\beta^{2}\right)\right)\right] \eta(X) \xi \\
& +\left(\frac{r}{2}+3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \eta(Z) Y .
\end{align*}
$$

It is to be noted that the general formulas can be obtained by straightforward calculation

From (3.3), it follows that a 3 -dimensional normal almost contact metric manifold with $\alpha, \beta=$ Constant, then the manifold is either β-Sasakian [3] or α Kenmotsu [11] or Cosymplectic [8].

$4 \quad \eta$-Ricci solitons on normal almost contact metric manifolds

Fix h a symmetric tensor field of (0,2)-type which we suppose to be parallel with respect to the Levi-Civita connection ∇ that is $\nabla h=0$. Applying the Ricci commutation identity [9].

$$
\begin{equation*}
\nabla^{2} h(X, Y ; Z, W)-\nabla^{2} h(X, Y ; W, Z)=0 \tag{4.1}
\end{equation*}
$$

we obtain the relation

$$
\begin{equation*}
h(R(U, V) X, Y)+h(X, R(U, V) Y)=0 \tag{4.2}
\end{equation*}
$$

where U, V, X and Y are arbitrary vectors on M.
As h is symmetric, putting $U=X=Y=\xi$ in (4.2), we obtain

$$
\begin{equation*}
h(\xi, R(\xi, X) \xi)=0 \tag{4.3}
\end{equation*}
$$

Let us assume that M is non-cosympletic.
Now applying (3.1) in (4.3) we have

$$
\begin{equation*}
\left(\alpha^{2}-\beta^{2}\right) h(X, \xi)-\left(\alpha^{2}-\beta^{2}\right) \eta(X) h(\xi, \xi)-2 \alpha \beta h(\varphi X, \xi)=0 \tag{4.4}
\end{equation*}
$$

Putting φX instead of X in (4.4) and Using (2.1) we get

$$
\left(\alpha^{2}-\beta^{2}\right)[h(X, \xi)-\eta(X) h(\xi, \xi)]=0
$$

Since M is non-cosymplectic, we have

$$
\begin{equation*}
h(X, \xi)-\eta(X) h(\xi, \xi)=0 \tag{4.5}
\end{equation*}
$$

Differentiating (4.5) covariantly along Y and applying (4.5) and (3.3) we find

$$
\begin{equation*}
\alpha[h(X, Y)-h(\xi, \xi) g(X, Y)]=\beta[h(X, \varphi Y)-h(\xi, \xi) g(X, \varphi Y)] . \tag{4.6}
\end{equation*}
$$

Putting φY instead of Y in (4.6) and using (2.1) we have

$$
\begin{equation*}
\left(\alpha^{2}-\beta^{2}\right)[h(X, Y)-h(\xi, \xi) g(X, Y)]=0 . \tag{4.7}
\end{equation*}
$$

This implies

$$
\begin{equation*}
h(X, Y)=h(\xi, \xi) g(X, Y), \quad \text { since } \quad \alpha^{2}-\beta^{2} \neq 0 \tag{4.8}
\end{equation*}
$$

Hence, since h and g are parallel tensor field, $\lambda=h(\xi, \xi)$ is constant. By the parallelism of h and g it must be $h=\lambda g$ on M. Thus we have the following:

Theorem 4.1. A parallel symmetric $(0,2)$ tensor field in a 3-dimensional noncosymplectic normal almost contact metric manifold is a constant multiple of the associated metric tensor.
η-Ricci solitons in 3-dimensional normal almost contact...

Definition 4.2. Let (M, ϕ, ξ, η, g) be a normal almost contact metric manifold. Consider the equation

$$
\begin{equation*}
\mathcal{L}_{\xi} g+2 S+2 \lambda g+2 \mu \eta \otimes \eta=0, \tag{4.9}
\end{equation*}
$$

where \mathcal{L}_{ξ} is the Lie derivative operator along the vector field ξ, S is the Ricci curvature tensor field of the metric g and λ and μ are real constants. Writing $L_{\xi} g$ in terms of the Levi-Civita connection ∇, we obtain:

$$
\begin{equation*}
2 S(X, Y)=-g\left(\nabla_{X} \xi, Y\right)-g\left(X, \nabla_{Y} \xi\right)-2 \lambda g(X, Y)-2 \mu \eta(X) \eta(Y) \tag{4.10}
\end{equation*}
$$

for any $X, Y \in \chi(M)$.
The data (g, ξ, λ, μ) which satisfy the equation (4.9) is said to be η - Ricci solitons on $M[11]$; in particular if $\mu=0$ then (g, ξ, λ) is Ricci solitons [11] and its called shrinking, steady or expanding according as $\lambda<0, \lambda=0$ or $\lambda>0$ respectively [11].

Now, from (2.7), the equation (4.10) becomes:

$$
\begin{equation*}
S(X, Y)=-(\lambda+\alpha) g(X, Y)+(\alpha-\mu) \eta(X) \eta(Y) \tag{4.11}
\end{equation*}
$$

The above equations yields

$$
\begin{gather*}
S(X, \xi)=-(\lambda+\mu) \eta(X) \tag{4.12}\\
Q X=-(\lambda+\alpha) X+(\alpha-\mu) \xi \tag{4.13}\\
Q \xi=-(\lambda+\mu) \xi \tag{4.14}\\
r=-\lambda n-(n-1) \alpha-\mu, \tag{4.15}
\end{gather*}
$$

where r is the scalar curvature. Off the two natural situations regarding the vector field $V: V \in \operatorname{Span}\{\xi\}$ and $V \perp \xi$, we investigate only the case $V=\xi$.

Our interest is in the expression of $\mathcal{L} \xi g+2 S+2 \mu \eta \otimes \eta$. A straightforward computations gives

$$
\begin{equation*}
\mathcal{L}_{\xi} g(X, Y)=2 \alpha[g(X, Y)-\eta(X) \eta(Y)] . \tag{4.16}
\end{equation*}
$$

In a 3-dimensional normal almost contact metric manifold, we have

$$
\begin{align*}
R(X, Y) Z=g(Y, Z) Q X & -g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y \tag{4.17}\\
& -\frac{r}{2}[g(Y, Z) X-g(X, Z) Y]
\end{align*}
$$

By using (3.6) and (3.7), we obtain

$$
\begin{equation*}
S(X, Y)=\left[\frac{r}{2}-\left(\alpha^{2}-\beta^{2}\right)\right] g(X, Y)-\left[\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right] \eta(X) \eta(Y) \tag{4.18}
\end{equation*}
$$

$$
\begin{equation*}
Q X=\left[\frac{r}{2}-\left(\alpha^{2}-\beta^{2}\right)\right] X-\left[\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right] \eta(X) \xi \tag{4.19}
\end{equation*}
$$

Next, we consider the equation

$$
\begin{equation*}
h(X, Y)=\mathcal{L}_{\xi} g(X, Y)+2 S(X, Y)+2 \mu \eta(X) \eta(Y) \tag{4.20}
\end{equation*}
$$

By using (4.16) and (4.19) in (4.20), we have

$$
\begin{align*}
h(X, Y) & =\left[\frac{r}{2}-\left(\alpha^{2}-\beta^{2}\right)+2 \alpha\right] g(X, Y) \tag{4.21}\\
& -\left[\frac{r}{2}-\left(\alpha^{2}-\beta^{2}\right)+2 \alpha+2 \mu\right] \eta(X) \eta(Y) .
\end{align*}
$$

Putting $X=Y=\xi$ in (4.21), we get

$$
\begin{equation*}
h(\xi, \xi)=2\left[2\left(\alpha^{2}-\beta^{2}\right)-\mu\right] . \tag{4.22}
\end{equation*}
$$

So, (4.8) becomes

$$
\begin{equation*}
h(X, Y)=2\left[2\left(\alpha^{2}-\beta^{2}\right)-\mu\right] g(X, Y) . \tag{4.23}
\end{equation*}
$$

From (4.20) and (4.23), it follows that g is an η-Ricci soliton.
Now, we can state the following theorem:
Theorem 4.3. Let M be a 3-dimensional non-cosymplectic normal almost contact metric manifold. Then (g, ξ, μ) yields an η-Ricci soliton on M.

Let V be pointwise collinear with ξ. i.e., $V=b \xi$, where b is a function on the 3 -dimensional normal almost contact metric manifold. Then

$$
g\left(\nabla_{X} b \xi, Y\right)+g\left(\nabla_{Y} b \xi, X\right)+2 S(X, Y)+2 \lambda g(X, Y)+2 \mu \eta(X) \eta(Y)=0
$$

or

$$
\begin{aligned}
& b g\left(\left(\nabla_{X} \xi, Y\right)+(X b) \eta(Y)+b g\left(\nabla_{Y} \xi, X\right)+(Y b) \eta(X)\right. \\
& \quad+2 S(X, Y)+2 \lambda g(X, Y)+2 \mu \eta(X) \eta(Y)=0
\end{aligned}
$$

Using (2.7), we obtain

$$
\begin{gathered}
b g(\alpha(X-\eta(X) \xi-\beta \varphi X, Y)+(X b) \eta(Y)+b g(\alpha(Y-\eta(Y) \xi-\beta \varphi Y, X) \\
+(Y b) \eta(X)+2 S(X, Y)+2 \lambda g(X, Y)+2 \mu \eta(X) \eta(Y)=0
\end{gathered}
$$

which yields

$$
\begin{gather*}
-2 b \alpha g(X, Y)-2 b \alpha \eta(X) \eta(Y)+(X b) \eta(Y) \tag{4.24}\\
+(Y b) \eta(X)+2 S(X, Y)+2 \lambda g(X, Y)+2 \mu \eta(X) \eta(Y)=0 .
\end{gather*}
$$

η-Ricci solitons in 3-dimensional normal almost contact...

Replacing Y by ξ in (4.24), we obtain

$$
\begin{equation*}
(X b)+(\xi b) \eta(X)+2\left[2\left(\alpha^{2}-\beta^{2}\right)+\lambda+\mu-2 b \alpha\right] \eta(X)=0 . \tag{4.25}
\end{equation*}
$$

Again putting $X=\xi$ in (4.25), we obtain

$$
\xi b=-2\left(\alpha^{2}-\beta^{2}\right)-\lambda-\mu+2 b \alpha
$$

Plugging this in (4.25), we get

$$
(X b)+2\left[2\left(\alpha^{2}-\beta^{2}\right)+\lambda+\mu\right] \eta(X)=0
$$

or

$$
\begin{equation*}
d b=-\left\{\lambda+\mu+2\left(\alpha^{2}-\beta^{2}\right)-2 b \alpha\right\} \eta . \tag{4.26}
\end{equation*}
$$

Applying d on (4.26), we get $\left\{\lambda+\mu+2\left(\alpha^{2}-\beta^{2}\right)\right\} d \eta$. Since $d \eta \neq 0$ we have

$$
\begin{equation*}
\lambda+\mu+2\left(\alpha^{2}-\beta^{2}\right)-2 b \alpha=0 \tag{4.27}
\end{equation*}
$$

Equation(4.27) in (4.26) yields b as a constant. Therefore from (4.25), it follows that

$$
S(X, Y)=-(\lambda+b \alpha) g(X, Y)+(b \alpha-\mu) \eta(X) \eta(Y)
$$

which implies that M is of constant scalar curvature for constant α. This leads to the following:

Theorem 4.4. If in a 3-dimensional non-cosymplectic normal almost contact metric manifold the metric g is an η-Ricci soliton and V is positive collinear with ξ, then V is a constant multiple of ξ and g is of constant scalar curvature provided α, β is a constant.

Let us consider the converse, that is let M be a 3 -dimensional η-Einstein normal almost contact metric manifold with $\alpha, \beta=$ constant and $V=\xi$. Then we can write

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y) \tag{4.28}
\end{equation*}
$$

where a, b are scalars and $X, Y \in T M$. From (2.7) we have

$$
\begin{equation*}
\left(\mathcal{L}_{\xi} g\right)(X, Y)=2 \alpha[g(X, Y)-\eta(X) \eta(Y)], \tag{4.29}
\end{equation*}
$$

which implies that

$$
\begin{align*}
& \left(\mathcal{L}_{\xi} g\right)(X, Y)+2 S(X, Y)+2 \lambda g(X, Y)+2 \mu \eta(X) \eta(Y) \tag{4.30}\\
& \quad=2(\alpha+a+\lambda) g(X, Y)-2(\alpha-b+\mu) \eta(X) \eta(Y)
\end{align*}
$$

From the previous equation it is obvious that M admits η-Ricci soliton (g, ξ, λ, μ) if

$$
\begin{equation*}
\alpha+b+\lambda=0 \tag{4.31}
\end{equation*}
$$

and

$$
\begin{equation*}
b=-(\alpha+\mu)=\text { constant } . \tag{4.32}
\end{equation*}
$$

Equating the right hand side of (2.6) and (4.28) and taking $X=Y=\xi$, we obtain

$$
a+b=-2\left(\alpha^{2}-\beta^{2}\right),
$$

that is,

$$
a=-2\left(\alpha^{2}-\beta^{2}\right)+\alpha+\mu=\text { constant }
$$

Thus, we get
Theorem 4.5. Let M be a 3-dimensional non-cosymplectic normal almost contact metric manifold with $\alpha, \beta=$ constant. If M is an η-Einstein manifold with $S=$ $a g+b \eta \otimes \eta$, then the manifold admits a η-Ricci soliton $(g, \xi,-(a+b), \mu)$.

Now taking $V=\xi$, the equation (4.9) becomes

$$
\begin{equation*}
\left(\mathcal{L}_{\xi} g\right)(X, Y)+2 S(X, Y)+2 \lambda g(X, Y)+2 \mu \eta(X) \eta(Y)=0 \tag{4.33}
\end{equation*}
$$

for all $X, Y \in T M$. By using (2.7), we get

$$
\begin{equation*}
\left(\mathcal{L}_{\xi} g\right)(X, Y)=2 \alpha[g(X, Y)-\eta(X) \eta(Y)] . \tag{4.34}
\end{equation*}
$$

Using (4.34) and (2.6) we have

$$
\begin{align*}
\left(\mathcal{L}_{\xi} g\right)(X, Y)+2 S(X, Y)= & -\left\{r+2\left(\alpha^{2}-\beta^{2}\right)\right\} g(X, Y) \tag{4.35}\\
& +\left\{r-2\left(\alpha^{2}-\beta^{2}\right)-\alpha\right\} \eta(X) \eta(Y)
\end{align*}
$$

Replacing the last equation in (4.33) and taking $X=Y=\xi$, we obtain

$$
\begin{equation*}
\lambda=-2\left(\alpha^{2}-\beta^{2}\right)+\mu \tag{4.36}
\end{equation*}
$$

From (4.15) and (4.36), we obtain

$$
\begin{equation*}
r=6\left(\alpha^{2}-\beta^{2}\right)-2 \alpha+2 \mu \tag{4.37}
\end{equation*}
$$

Since λ is constant, it follows from (4.36) that $-\left(\alpha^{2}-\beta^{2}\right)$ is a constant.

Theorem 4.6. $\operatorname{Let}(g, \xi, \mu)$ be an η-Ricci soliton in 3-dimensional non-cosymplectic normal almost contact metric manifold M. Then the scalar λ and the scalar curvature r satisfies the relations: $\lambda+\mu=-2\left(\alpha^{2}-\beta^{2}\right), r=6\left(\alpha^{2}-\beta^{2}\right)+2 \alpha+2 \mu$.

Remark 4.7. For $\mu=0$, equation (4.36) reduces to $\lambda=-2\left(\alpha^{2}-\beta^{2}\right)$, so we can state the following theorem:

Theorem 4.8. If a 3-dimensional non-cosymplectic normal almost contact metric manifold with $\alpha, \beta=$ constant admits an η-Ricci soliton (g, ξ, λ, μ) then the Ricci soliton is shrinking.

Example of η-Ricci soliton in a 3-dimensional normal almost contact metric manifold.

Example 4.9. Let $M=\left\{(x, y, z) \in \mathbb{R}^{3}: z \neq 0\right\}$ where (x, y, z) are the standard coordinates of \mathbb{R}^{3}.

The vector fields are

$$
e_{1}=z \frac{\partial}{\partial x}, \quad e_{2}=z \frac{\partial}{\partial y} \quad e_{3}=z \frac{\partial}{\partial z}
$$

Let g be the Riemannian metric defined by

$$
g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1, \quad g\left(e_{1}, e_{3}\right)=g\left(e_{2}, e_{3}\right)=g\left(e_{1}, e_{2}\right)=0
$$

that is, the form of the metric becomes

$$
g=\frac{d x^{2}+d y^{2}+d z^{2}}{z^{2}} .
$$

Let η be the 1 -form defiend by $\eta(Z)=g\left(Z, e_{3}\right)$ for any $Z \in \chi(M)$.
Also, let φ be the $(1,1)$ tensor field defined by

$$
\varphi\left(e_{1}\right)=-e_{2}, \quad \varphi\left(e_{2}\right)=e_{1}, \quad \varphi\left(e_{3}\right)=0 .
$$

Thus using the linearity of φ and g, we have

$$
\begin{gathered}
\eta\left(e_{3}\right)=0, \quad, \eta\left(e_{1}\right)=0, \quad \eta\left(e_{2}\right)=0, \\
{\left[e_{1}, e_{2}\right]=0, \quad\left[e_{2}, e_{3}\right]=-e_{2}, \quad\left[e_{1}, e_{3}\right]=-e_{1},} \\
\varphi^{2} Z=-Z+\eta(Z) e_{3} \\
g(\varphi Z, \varphi W)=g(Z, W)-\eta(Z) \eta(W)
\end{gathered}
$$

for any $Z, W \in \chi(M)$.
Then for $e_{3}=\xi$, the structure (φ, ξ, η, g) defines an almost contact metric structure on M.
Let ∇ be the Levi-Civita connection with respect to the metric g, then we have

$$
\begin{gathered}
2 g\left(\nabla_{X} Y, Z\right)=X g(Y, Z)+Y g(Z, X)-Z g(X, Y)-g(X,[Y, Z]) \\
-g(Y,[X, Z])+g(Z,[X, Y])
\end{gathered}
$$

which is know as Koszul's formula.
Using Koszul's formula we have

$$
\begin{array}{lll}
\nabla_{e_{1}} e_{1}=e_{3}, & \nabla_{e_{1}} e_{2}=0, & \nabla_{e_{1}} e_{3}=-e_{1}, \\
\nabla_{e_{2}} e_{1}=0, & \nabla_{e_{2}} e_{2}=e_{3}, & \nabla_{e_{2}} e_{3}=-e_{2}, \\
\nabla_{e_{3}} e_{1}=0, & \nabla_{e_{3}} e_{2}=0, & \nabla_{e_{3}} e_{3}=0 . \tag{4.38}
\end{array}
$$

From (4.38) we find that the manifold satisfies (2.7) for $\alpha=-1$ and $\beta=0$ and $\xi=e_{3}$. hence the manifold is a normal almost conatct metric manifold with $\alpha, \beta=$ constant .

Then the Riemannian and Ricci curvature tensor fields are given by:

$$
\begin{gathered}
R\left(e_{1}, e_{2}\right) e_{3}=0, \quad R\left(e_{2}, e_{3}\right) e_{3}=-e_{3}, \quad R\left(e_{1}, e_{3}\right) e_{3}=-e_{1}, \\
R\left(e_{1}, e_{2}\right) e_{2}=-e_{1}, \quad R\left(e_{2}, e_{3}\right) e_{2}=e_{3}, \quad R\left(e_{1}, e_{3}\right) e_{2}=0 \\
R\left(e_{1}, e_{2}\right) e_{1}=e_{2}, \quad R\left(e_{2}, e_{3}\right) e_{1}=0, \quad R\left(e_{1}, e_{3}\right) e=e_{3} .
\end{gathered}
$$

From the above expressions of the curvature tensor we obtain

$$
S\left(e_{1}, e_{1}\right)=g\left(R\left(e_{1}, e_{2}\right) e_{2}, e_{1}\right)+g\left(R\left(e_{1}, e_{3}\right) e_{3}, e_{1}\right)=-2
$$

similarly we have

$$
S\left(e_{1}, e_{1}\right)=S\left(e_{2}, e_{2}\right)=S\left(e_{3}, e_{3}\right)=-2
$$

In case of η-Ricci soliton, from the relation (4.10) it is sufficient to verify that

$$
\begin{equation*}
S\left(e_{i}, e_{i}\right)=-(\lambda+\alpha) g\left(e_{i}, e_{i}\right)+(\alpha-\mu) \eta\left(e_{i}\right) \eta\left(e_{i}\right) \tag{4.39}
\end{equation*}
$$

for all $i=1,2,3$ and $\alpha=-1, \beta=0$, we get

$$
S\left(e_{1}, e_{1}\right)=-(\lambda+\alpha) g\left(e_{1}, e_{1}\right)
$$

which implies

$$
-2=-(\lambda-1) \Rightarrow \quad \lambda=3 .
$$

Also,

$$
\begin{equation*}
S\left(e_{3}, e_{3}\right)=-(\lambda+\alpha) g\left(e_{3}, e_{3}\right)+(\alpha-\mu) \eta\left(e_{3}\right) \eta\left(e_{3}\right) \tag{4.40}
\end{equation*}
$$

By using $\lambda=3$ and $\alpha=-1$ in (4.40) we obtain $\mu=5$.
Therefore, the data (g, ξ, λ, μ) is an η-Ricci soliton in 3-dimensional normal almost contact metric manifold.

For this example we have $\lambda=3$, i.e. $\lambda>0$ so that the η-Ricci soliton is expanding.

$5 \quad \eta$-Ricci soliton in Quasi-Sasakian manifolds

An almost contact metric manifold $M^{(2 n+1)}$ with an almost contact structure (φ, ξ, η) is said to be quasi-Sasakian manifold if it is normal and the fundamental 2 -form Φ is closed i.e.,

$$
d \Phi=0, \quad \Phi(X, Y)=g(X, \varphi Y)
$$

For a particular choice of $\alpha=0, \beta \neq 0$ in equations (2.7), (3.6) and (3.7), we have quasi-Sasakian manifold. We may refer to [3] for more information about the quasi-Sasakian manifold. We also recall that quasi-Sasakian manifold satisfies the following conditions [13]:

$$
\begin{gather*}
\nabla_{X} \xi=-\beta \varphi X, \tag{5.1}\\
\left(\nabla_{X} \eta\right) Y=g\left(\nabla_{X}, \xi, Y\right)=-\beta g(\varphi X, Y), \tag{5.2}\\
R(X, Y) \xi=\beta^{2}[\eta(Y) X-\eta(X) Y] \tag{5.3}\\
S(X, \xi)=2 \beta^{2} \eta(X) \tag{5.4}\\
S(X, Y)=\left(\frac{r}{2}-\beta^{2}\right) g(X, Y)+\left(3 \beta^{2}-\frac{r}{2}\right) \eta(X) \eta(Y) \tag{5.5}\\
Q X=\left(\frac{r}{2}-\beta^{2}\right) X+\left(3 \beta^{2}-\frac{r}{2}\right) \eta(X) \xi \tag{5.6}
\end{gather*}
$$

Remark 5.1. β-Sasakian manifold are quasi-Sasakian manifold. For particular value $\beta=-1$ we obtain the conditions for Sasakian manifold.

Now, we have to show that a 3 -dimensional quasi-Sasakian manifold admits the η-Ricci soliton.

Let $(M, \varphi, \xi, \eta, g)$ be a quasi-Sasakian manifold. Again, consider the equation (4.9)

$$
\begin{equation*}
\mathcal{L}_{\xi} g+2 S+2 \lambda g+2 \mu \eta \otimes \eta=0, \tag{5.7}
\end{equation*}
$$

It is know that [3] in a quasi-Sasakian maifold ξ is Killing therefor $\mathcal{L}_{\xi} g=0$. Also using equation (2.7) in (5.7), the definition of η-Ricci-Soliton for 3 -dimensional quasi-Sasakian manifold reduces in the following form

$$
\begin{equation*}
2 S+2 \lambda g+2 \mu \eta \otimes \eta=0 \tag{5.8}
\end{equation*}
$$

or

$$
\begin{equation*}
S(X, Y)=-\lambda g(X, Y)-\mu \eta(X) \eta(Y) . \tag{5.9}
\end{equation*}
$$

The above equations yields

$$
\begin{gather*}
Q X=-\lambda X-\mu \eta(X) \xi, \tag{5.10}\\
S(X, \xi)=-(\lambda+\mu) \eta(X), \tag{5.11}\\
Q \xi=-(\lambda+\mu) \xi, \tag{5.12}\\
r=-3 \lambda-\mu, \tag{5.13}
\end{gather*}
$$

Thus, we can state the following:
Theorem 5.2. The 3-dimensional quasi-Sasakian manifold with scalar curvature, i.e., $r=-(3 \lambda+\mu)$ admits the η-Ricci- solitons.

For $\mu=0$, immediately we have a corollary
Corollary 5.3. The 3-dimensional quasi-Sasakian manifold with scalar curvature, i.e., $r=-3 \lambda$ admits Ricci- solitons.

Example of η-Ricci soliton in a 3 -dimensional Quasi-Sasakian manifold.

Example 5.4. Let $M=\left\{(x, y, z) \in \mathbb{R}^{3}: z \neq 0\right\}$ where (x, y, z) are the standard coordinates of \mathbb{R}^{3}.

The vector fields are

$$
e_{1}=\frac{\partial}{\partial z}-y \frac{\partial}{\partial x}, \quad e_{2}=\frac{\partial}{\partial y}, \quad e_{3}=2 \frac{\partial}{\partial x}
$$

Let g be the Riemannian metric defined by

$$
g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1, \quad g\left(e_{1}, e_{3}\right)=g\left(e_{2}, e_{3}\right)=g\left(e_{1}, e_{2}\right)=0
$$

that is, the form of the metric becomes Let η be the 1 -form defiend by $\eta(Z)=$ $g\left(Z, e_{3}\right)$ for any $Z \in \chi(M)$.

Also, let φ be the $(1,1)$ tensor field defined by

$$
\varphi\left(e_{1}\right)=-e_{2}, \quad \varphi\left(e_{2}\right)=e_{1}, \quad \varphi\left(e_{3}\right)=0 .
$$

Thus using the linearity of φ and g, we have

$$
\begin{gathered}
\eta\left(e_{3}\right)=0, \quad, \eta\left(e_{1}\right)=0, \quad \eta\left(e_{2}\right)=0, \\
{\left[e_{1}, e_{2}\right]=\frac{1}{2} e_{3}, \quad\left[e_{2}, e_{3}\right]=0, \quad\left[e_{1}, e_{3}\right]=0,} \\
\varphi^{2} Z=-Z+\eta(Z) e_{3}
\end{gathered}
$$

η-Ricci solitons in 3-dimensional normal almost contact...

$$
g(\varphi Z, \varphi W)=g(Z, W)-\eta(Z) \eta(W)
$$

for any $Z, W \in \chi(M)$.
Then for $e_{3}=\xi$, the structure (φ, ξ, η, g) defines an almost contact metric structure on M.
Let ∇ be the Levi-Civita connection with respect to the metric g, then we have

$$
\begin{aligned}
2 g\left(\nabla_{X} Y, Z\right)=X g(Y, Z) & +Y g(Z, X)-Z g(X, Y)-g(X,[Y, Z]) \\
& -g(Y,[X, Z])+g(Z,[X, Y])
\end{aligned}
$$

which is know as Koszul's formula.
Using Koszul's formula we have

$$
\begin{gather*}
\nabla_{e_{1}} e_{1}=0, \quad \nabla_{e_{1}} e_{2}=-\frac{1}{4} e_{3}, \quad \nabla_{e_{1}} e_{3}=\frac{1}{4} e_{3}, \\
\nabla_{e_{2}} e_{1}=\frac{1}{4} e_{3}, \quad \nabla_{e_{2}} e_{2}=0, \quad \nabla_{e_{2}} e_{3}=-\frac{1}{4} e_{1}, \\
\nabla_{e_{3}} e_{1}=\frac{1}{4} e_{2}, \quad \nabla_{e_{3}} e_{2}=-\frac{1}{4} e_{1}, \quad \nabla_{e_{3}} e_{0}=0 . \tag{5.14}
\end{gather*}
$$

From (5.14) we find that the structure (φ, ξ, η, g) satisfies the formula (5.3) for $\beta=\frac{1}{4}$ and $\xi=e_{3}$. Hence the manifold is a 3 -dimensional quasi-Sasakian manifold with the constant structure function $\beta=\frac{1}{4}$.

Then the Riemannian and Ricci curvature tensor fields are given by:

$$
\begin{aligned}
R\left(e_{1}, e_{2}\right) e_{3} & =0, \quad R\left(e_{2}, e_{3}\right) e_{3}=\frac{1}{16} e_{2}, \quad R\left(e_{1}, e_{3}\right) e_{3}=\frac{1}{16} e_{1}, \\
R\left(e_{1}, e_{2}\right) e_{2} & =-\frac{3}{16} e_{1}, \quad R\left(e_{2}, e_{3}\right) e_{2}=-\frac{1}{16} e_{3}, \quad R\left(e_{1}, e_{3}\right) e_{2}=0, \\
R\left(e_{1}, e_{2}\right) e_{1} & =\frac{3}{16} e_{2}, \quad R\left(e_{2}, e_{3}\right) e_{1}=0, \quad R\left(e_{1}, e_{3}\right) e=-\frac{1}{16} e_{3} .
\end{aligned}
$$

From the above expressions of the curvature tensor we obtain

$$
S\left(e_{1}, e_{1}\right)=g\left(R\left(e_{1}, e_{2}\right) e_{2}, e_{1}\right)+g\left(R\left(e_{1}, e_{3}\right) e_{3}, e_{1}\right)=-\frac{1}{8}
$$

similarly we have

$$
S\left(e_{1}, e_{1}\right)=S\left(e_{2}, e_{2}\right)=-\frac{1}{8}, \quad \text { and } S\left(e_{3}, e_{3}\right)=\frac{1}{8}
$$

. In case of η-Ricci soliton, from the relation (5.9) it is sufficient to verify that

$$
\begin{equation*}
S\left(e_{i}, e_{i}\right)=-\lambda g\left(e_{i}, e_{i}\right)-\mu \eta\left(e_{i}\right) \eta\left(e_{i}\right) \tag{5.15}
\end{equation*}
$$

for all $i=1,2,3$ and $\beta=\frac{1}{4}$, we get

$$
S\left(e_{1}, e_{1}\right)=-\lambda g\left(e_{1}, e_{1}\right)
$$

which implies

$$
-\frac{1}{8}=-\lambda \Rightarrow \quad \lambda=\frac{1}{8} .
$$

Also,

$$
\begin{equation*}
S\left(e_{3}, e_{3}\right)=-\lambda g\left(e_{3}, e_{3}\right)-\mu \eta\left(e_{3}\right) \eta\left(e_{3}\right) \tag{5.16}
\end{equation*}
$$

By using $\lambda=\frac{1}{8}$ in (5.17) we obtain $\mu=-\frac{1}{4}$.
Therefore, the data (g, ξ, λ, μ) is an η-Ricci soliton in 3 -dimensional quasi-Sasakian manifold.

For this example we have $\lambda=\frac{1}{8}$, i.e. $\lambda>0$ so that the η-Ricci soliton in 3 -dimensional quasi-Sasakian manifold is expanding.

In [20] and [13] the authors proved that the Ricci tensor fields satisfies

$$
\begin{gather*}
S(X, \xi)=(\operatorname{dim}(M)-1) \eta(X), \tag{5.17}\\
S(\varphi X, \varphi Y)=S(X, Y)+(\operatorname{dim}(M)-1) \eta(X) \eta(Y) \tag{5.18}
\end{gather*}
$$

for any $X, Y \in \chi(M)$. From (5.9) and (5.17) we obtain

$$
\begin{equation*}
-\mu-\lambda=(n-1) \beta^{2}, \tag{5.19}
\end{equation*}
$$

The next theorems formulate results in the case when the quasi-Sasakian manifold of the constant curvature, has cyclic tensor or cyclic η-recurrent Ricci tensor.

Remark that if the manifold M is of constant curvature, then M is elliptic manifold. Indeed, suppose that

$$
R(X, Y) Z=k[g(Y, Z) X-g(X, Z) Y]
$$

for $X, Y, Z \in \chi(M)$. Applying η to above equation and (5.3)- (5.4) we obtain $k=\beta^{2}$.

Example 5.5. On the quasi-Sasakian manifold $(M, \varphi, \xi, \eta, g)$ considered in Example (5.14), the data (g, ξ, λ,) for $\lambda=\frac{1}{8}$ and $\mu=-\frac{1}{4}$ defines an η-Ricci soliton. Indeed, scalar curvature r is given by

$$
r=S\left(e_{1}, e_{1}\right)+S\left(e_{2}, e_{2}\right)+S\left(e_{3}, e_{3}\right)=-\frac{1}{8}
$$

Therefore the scalar curvature r is constant.
To verify the relation (5.4) it is sufficient to check

$$
S\left(e_{i}, e_{i}\right)=2 \beta^{2} g\left(e_{i}, e_{i}\right)
$$

for all $i=1,2,3$ and $\beta=\frac{1}{4}$. Hence the Ricci tensor of M is η-parallel, cyclic parallel and Einstein manifold.
η-Ricci solitons in 3-dimensional normal almost contact...

Proposition 5.6. Let $(M, \varphi, \xi, \eta, g)$ be a quasi-Sasakian manifold and let (g, ξ, λ, μ) be η-Ricci soliton on M. If the manifold M has cyclic Ricci tensor

$$
\left(\nabla_{X} S\right)(Y, Z)+\left(\nabla_{Y} S\right)(Z, X)+\left(\nabla_{Z} S\right)(X, Y)=0
$$

for any $X, Y, Z \in \chi(M)$, then $\mu=0$ and $\lambda=-(n-1) \beta^{2}$.
Proof. We have

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=X(S(Y, Z))-S\left(\nabla_{X} Y, Z\right)-S\left(Y, \nabla_{X} Z\right) \tag{5.20}
\end{equation*}
$$

Replacing the expression of S from (5.9) in (5.20) we obtain

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=-\mu\left[\eta(Y)\left(\nabla_{X} \eta\right) Z+\eta(Z)\left(\nabla_{X} \eta\right) Y\right] \tag{5.21}
\end{equation*}
$$

By using (5.2) in (5.21) we get

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=\beta \mu[\eta(Y) g(\varphi X, Z)+\eta(Z)(\varphi X, Y)] . \tag{5.22}
\end{equation*}
$$

Then

$$
\left(\nabla_{X} S\right)(Y, Z)+\left(\nabla_{Y} S\right)(Z, X)+\left(\nabla_{Z} S\right)(X, Y)=\beta \mu g(\varphi X, Y)=0,
$$

for any $X, Y, Z \in \chi(M)$ and for $Y=\varphi Y$ we get

$$
\beta \mu g(\varphi X, \varphi Y)=0,
$$

for any $X, Y, \in \chi(M)$. Adding the previous two relations we have

$$
\beta \mu[g(\varphi X, Y)+g(\varphi X, \varphi Y)]=0,
$$

for any $X, Y \in \chi(M)$. Since $\beta \neq 0$ therefore $\mu=0$. From (5.19) we get $\lambda=$ $-(n-1) \beta^{2}$.

Proposition 5.7. Let $(M, \varphi, \xi, \eta, g)$ be a quasi-Sasakian manifold and let (g, ξ, λ, μ) be η-Ricci soliton on M. If the manifold M Ricci symmetric $\nabla S=0$, then $\mu=0$ and $\lambda=-(n-1) \beta^{2}$.

Proof. If $\nabla S=0$, taking $Z=\xi$ in the expression of ∇S from (5.19) we get

$$
\beta \mu g(\varphi X, Y)+g(\varphi X, \varphi Y)=0,
$$

for any $X, Y \in \chi(M)$ and the as in in the proof of Proposition (5.6) we get $\mu=0$ and $\lambda=-(n-1) \beta^{2}$.

References

[1] Blair, D. E., Contact manifolds in Riemannian geometry, Lecture Note in Mathematics, Vol. 509, Springer-Verlag, Berlin-New York, 1976.
[2] Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, Vol. 203, Birkhauser Boston , Inc., Boston, 2002.
[3] Blair, D. E., The theory of quasi Sasakian structures, J. Differ. Geometry 1 (1976), 331-345.
[4] Blaga, A. M., η-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat 30 (2016), no. 2, 489-496.
[5] Blaga, A. M., η-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl. 20 (2015), 1-13.
[6] Calin, C. and Crasmareanu, M., η-Ricci solitons on Hopf Hypersurfaces in complex space forms, Rev. Roumaine Math. Pures Appl. 57 (2012), no. 1, 55-63.
[7] Cho, J. T. and Kimura, M., Ricci solitons and real hypersurfaces in a complex space form, Tohoku math.J., 61 (2009), 205-212.
[8] Cantrijnt. F, De Leon. M. and Lacomha, E. A., Gradient vector fields in cosympletic manifolds, J. Phys. A. Math. Gen. 25 (1992), 409-416.
[9] Eisenhart, L. P., Symmetric tensors of the second order whose first covariant derivatives are zero, Trans. Amer. Math. Soc., 25 (1923), no. 2, 297-306.
[10] Hamilton, R. S., The Ricci flow on surfaces, Mathematics and general relativity, (Santa Cruz. CA, 1986), Contemp. Math. 71, Amer. Math. Soc., (1988), 237-262.
[11] Janssen D. and Vanhecke L., Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), 127.
[12] Levy, H. Symmetric tensors of the second order whose covariant derivatives vanish, Ann. Math. 27 (1925), no. 2, 91-98.
[13] Olszak, Z., Normal almost contact manifolds of dimension three, Annales Pol. Math. XLVII (1986), 4150.
[14] Nagaraja, H.G. and C.R. Premalatha, C. R., Ricci solitons in Kenmotsu manifolds, J. Math. Anal. 3 (2012), no. 2, 18-24.
[15] Prakasha, D. G. and B. S. Hadimani, η-Ricci solitons on para-Sasakian manifolds, J. Geom., 108, (2017), no. 2, 383-392.
[16] Perelman. G., Ricci flow with surgery on three manifolds, arXiv:math/0303109v1 [math.DG], 2003.
η-Ricci solitons in 3-dimensional normal almost contact...
[17] Perktas. S. Y., Keles. S., Ricci soliton in 3-dimeniosnal normal almost paraconatct metric manifolds, Int. electronic J. of Geometry, 8 (2015), no. 2, 34-45.
[18] Sharma, R., Certain results on K-contact and (k, μ)-contact manifolds, J. Geom., 89 (2008), no. 1-2, 138-147.
[19] Siddiqi, M. D., Conformal η-Ricci solitons in δ-Lorentzian Trans-Sasakian manifolds, Int. Journal of Maps in Mathematics -IJMM., 1 (2018), 15-34.
[20] Tripathi, M. M., Ricci solitons in contact metric manifolds, arXiv:0801.4222 [math.DG].
[21] Turan, M., De, U. C. and Yildiz, A., Ricci solitons and gradient Ricci solitons on 3-dimensional trans-Sasakian manifolds, Filomat, 26 (2012), no. 2, 363370.

[^0]: ${ }^{1}$ Department of Mathematics, Faculty of science, Jazan University, Jazan, Kingdom of Saudi Arabia, e-mail: anallintegral@gmail.com, msiddiqi@jazanu.edu.sa

