Bulletin of the *Transilvania* University of Braşov • Vol 11(60), No. 2 - 2018 Series III: Mathematics, Informatics, Physics, 29-38

EXISTENCE OF SOLUTIONS FOR p(x)-LAPLACIAN DIRICHLET PROBLEM BY TOPOLOGICAL DEGREE

Mustapha AIT HAMMOU^{*1}, Elhoussine AZROUL² and Badr LAHMI³

Abstract

In this paper, we prove the existence of at least one solution for the Dirichlet problem of p(x)-Laplacian

$$-\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u) = f(x, u, \nabla u),$$

by using the topological degree theory for a class of demicontinuous operators of generalized (S_+) type. The right hand side f is a Carathéodory function satisfying some non-standard growth conditions.

2000 Mathematics Subject Classification: 35J40, 35J60, 35J67, 47H11. Key words: operator of (S+) type, topological degree, p(x)-Laplacian.

1 Introduction

The p(x)-Laplacian has been used in the modelling of electrorheological fluids ([10]) and in image processing ([1, 4]). Up to these days, a great deal of results have been obtained for solutions to equations related to this operator.

We consider the following nonlinear degenerated elliptic problem

$$\begin{cases} -div(|\nabla u|^{p(x)-2}\nabla u) = f(x, u, \nabla u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$
(1)

where $\Omega \subset \mathbb{R}^N$ is a bounded domain, $p(\cdot)$ is log-Hölder continuous with values in $(1, \infty)$. By using the degree theory for $p(\cdot) \equiv p$ with values in (2, N), Kim and Hong studied in ([7]) the problem

$$\begin{cases} -\triangle_p u = u + f(x, u, \nabla u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

¹* Corresponding author, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco, e-mail: mus.aithammou@gmail.com

²Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco, e-mail: azroulelhoussine@gmail.com

³Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco, e-mail: lahmi.badr@gmail.com

In [5] Fan and Zhang presents several sufficient conditions for the existence of solutions for the problem (1) with f independent of ∇u .

The aim of this paper is to prove an existence of at least weak solution for (1) extending and refining the results in [5, 7] by using the topological degree theory for a class of demicontinuous operators of generalized (S_{\pm}) type.

This paper is divided into four sections. In the second section, we introduce some classes of operators of generalized (S_+) type and the topological degree. In the third section, we present some basic properties of generalized Lebesgue-Sobolev spaces $W_0^{1,p(x)}$ and several important properties of p(x)-Laplacian operator. Finally, in the fourth section, we give some existence results of weak solutions of problem (1).

2 Some classes of operators and topological degree

Let X and Y be two real Banach spaces and Ω a nonempty subset of X. The symbol $\rightarrow (\rightarrow)$ stands for strong (weak) convergence. We recall that a mapping $F: \Omega \subset X \rightarrow Y$ is

- bounded, if it takes any bounded set into a bounded set;
- demicontinuous, if for any $(u_n) \subset \Omega$, $u_n \to u$ implies $F(u_n) \to F(u)$;
- *compact* if it is continuous and the image of any bounded set is relatively compact.

Let X be a real reflexive Banach space with dual X*. A mapping $F:\Omega\subset X\to X^*$ is said to be

- of class (S_+) , if for any $(u_n) \subset \Omega$ with $u_n \rightharpoonup u$ and $limsup\langle Fu_n, u_n u \rangle \leq 0$, it follows that $u_n \rightarrow u$;
- quasimonotone, if for any $(u_n) \subset \Omega$ with $u_n \rightharpoonup u$, it follows that $limsup\langle Fu_n, u_n u \rangle \ge 0.$

For any operator $F: \Omega \subset X \to X$ and any bounded operator $T: \Omega_1 \subset X \to X^*$ such that $\Omega \subset \Omega_1$, we say that F

- satisfies condition $(S_+)_T$, if for any $(u_n)\Omega$ with $u_n \rightharpoonup u$, $y_n := Tu_n \rightharpoonup y$ and $limsup\langle Fu_n, y_n y \rangle \leq 0$, we have $u_n \rightarrow u$;
- has the property $(QM)_T$, if for any $(u_n) \subset \Omega$ with $u_n \rightharpoonup u$, $y_n := Tu_n \rightharpoonup y$, we have $limsup\langle Fu_n, y y_n \rangle \ge 0$.

For any $\Omega \subset X$, we consider the following classes of operators:

- $\mathcal{F}_1(\Omega) := \{F : \Omega \to X^* \mid F \text{ is bounded, demicontinuous and satisfies condition} \\ (S_+)\},$
- $\mathfrak{F}_{\mathrm{T}}(\Omega) := \{F: \Omega \to X \mid F \text{ is demicontinuous and satisfies condition}(S_{+})_{T}\}.$

For any $\Omega \subset D_F$, where D_F denotes the domain of F, and any $T \in \mathcal{F}_1(\Omega)$. Let \mathcal{O} be the collection of all bounded open set in X. Define

$$\mathfrak{F}(\mathbf{X}) := \{ \mathbf{F} \in \mathfrak{F}_{\mathbf{T}}(\mathbf{G}) \mid \mathbf{G} \in \mathfrak{O}, \mathbf{T} \in \mathfrak{F}_{\mathbf{1}}(\mathbf{G}) \},\$$

Here, $T \in F_1(\overline{G})$ is called an *essential inner map* to F.

Lemma 1. [7, Lemma 2.3] Suppose that $T \in \mathcal{F}_1(\bar{G})$ is continuous and $S: D_S \subset X^* \to X$ is demicontinuous such that $T(\bar{G}) \subset D_s$, where G is a bounded open set in a real reflexive Banach space X. Then the following statement are true:

- (i) If S is quasimonotone, then $I + SoT \in \mathcal{F}_{T}(\overline{G})$, where I denotes the identity operator.
- (ii) If S is of class (S_+) , then $SoT \in \mathcal{F}_T(\overline{G})$

Definition 1. Let G be a bounded open subset of a real reflexive Banach space $X, T \in \mathcal{F}_1(\bar{G})$ be continuous and let $F, S \in \mathcal{F}_T(\bar{G})$. The affine homotopy $H : [0,1] \times \bar{G} \to X$ defined by

$$H(t,u) := (1-t)Fu + tSu \text{ for } (t,u) \in [0,1] \times \overline{G}$$

is called an admissible affine homotopy with the common continuous essential inner map T.

Remark 1 (Lemma 2.5 [7]). The above affine homotopy satisfies condition $(S_+)_T$.

As in [7], we introduce a suitable topological degree for the class $\mathcal{F}(X)$:

Theorem 1. Let

$$\mathcal{M} = \{(F, G, h) | G \in \mathcal{O}, T \in \mathcal{F}_1(G), F \in \mathcal{F}_T(G), h \notin F(\partial G) \}.$$

There exists a unique degree function $d : \mathfrak{M} \to \mathbb{Z}$ that satisfies the following properties:

- 1. (Existence) if $d(F,G,h) \neq 0$, then the equation Fu = h has a solution in G,
- 2. (Additivity) Let $F \in \mathcal{F}_{T}(\overline{G})$. If G_1 and G_2 are two disjoint open subset of G such that $h \notin F(\overline{G} \setminus (G_1 \cup G_2))$, then we have

$$d(F, G, h) = d(F, G_1, h) + d(F, G_2, h),$$

3. (Homotopy invariance) Suppose that

 $H: [0,1] \times G \to X$ is an admissible affine homotopy with a common continuous essential inner map and $h: [0,1] \to X$ is a continuous path in X such that $h(t) \notin H(t,\partial G)$ for all $t \in [0,1]$, then the value of d(H(t,.),G,h(t)) is constant for all $t \in [0,1]$, 4. (Normalization) For any $h \in G$, we have

$$d(I, G, h) = 1,$$

5. (Boundary dependence) If $F, S \in \mathfrak{F}_{\mathrm{T}}(\bar{\mathrm{G}})$ coincide on ∂G and $h \notin F(\partial G)$, then

$$d(F,G,h) = d(S,G,h).$$

Remark 2. [7, Definition 3.3] The above degree is defined as follows:

$$d(F, G, h) := d_B(F|_{\bar{G}_0}, G_0, h),$$

where d_B is the Berkovits degree [2] and G_0 is any open subset of G with $F^{-1}(h) \subset G_0$ and F is bounded on \overline{G}_0 .

3 The spaces $W_0^{1,p(x)}(\Omega)$ and properties of p(x)-Laplacian operator

3.1 The spaces $W_0^{1,p(x)}(\Omega)$

We introduce the setting of our problem with some auxiliary results of the variable exponent Lebesgue and Sobolev spaces $L^{p(x)}(\Omega)$ and $W_0^{1,p(x)}(\Omega)$. For convenience, we only recall some basic facts with will be used later, we refer to [6, 9, 13] for more details.

Let Ω be an open bounded subset of \mathbb{R}^N , $N \geq 2$, with a Lipschitz boundary denoted by $\partial \Omega$. Denote

$$C_+(\bar{\Omega}) = \{h \in C(\bar{\Omega}) | \inf_{x \in \bar{\Omega}} h(x) > 1\}.$$

For any $h \in C_+(\overline{\Omega})$, we define

$$h^+ := max\{h(x), x \in \overline{\Omega}\}, h^- := min\{h(x), x \in \overline{\Omega}\}.$$

For any $p \in C_+(\bar{\Omega})$ we define the variable exponent Lebesgue space

$$L^{p(x)}(\Omega) = \{u; \ u: \Omega \to \mathbb{R} \text{ is measurable and } \int_{\Omega} |u(x)|^{p(x)} \ dx < +\infty\}$$

endowed with Luxemburg norm

$$|u|_{p(x)} = \inf\{\lambda > 0/\rho_{p(x)}(\frac{u}{\lambda}) \le 1\}.$$

where

$$\rho_{p(x)}(u) = \int_{\Omega} |u(x)|^{p(x)} dx, \quad \forall u \in L^{p(x)}(\Omega).$$

 $(L^{p(x)}(\Omega), |\cdot|_{p(x)})$ is a Banach space [9, Theorem 2.5], separable and reflexive [9, Corollary 2.7]. Its conjugate space is $L^{p'(x)}(\Omega)$ where 1/p(x) + 1/p'(x) = 1 for

all $x \in \Omega$. For any $u \in L^{p(x)}(\Omega)$ and $v \in L^{p'(x)}(\Omega)$, Hölder inequality holds [9, Theorem 2.1]

$$\left| \int_{\Omega} uv \, dx \right| \le \left(\frac{1}{p^{-}} + \frac{1}{p'^{-}} \right) |u|_{p(x)} |v|_{p'(x)} \le 2|u|_{p(x)} |v|_{p'(x)}.$$
(2)

Notice that if (u_n) and $u \in L^{p(.)}(\Omega)$ then the following relations hold true (see [6])

$$|u|_{p(x)} < 1(=1; > 1) \quad \Leftrightarrow \quad \rho_{p(x)}(u) < 1(=1; > 1),$$

$$|u|_{p(x)} > 1 \quad \Rightarrow \quad |u|_{p(x)}^{p^{-}} \le \rho_{p(x)}(u) \le |u|_{p(x)}^{p^{+}},$$
(3)

$$|u|_{p(x)} < 1 \quad \Rightarrow \quad |u|_{p(x)}^{p^+} \le \rho_{p(x)}(u) \le |u|_{p(x)}^{p^-},$$
(4)

$$\lim_{n \to \infty} |u_n - u|_{p(x)} = 0 \quad \Leftrightarrow \quad \lim_{n \to \infty} \rho_{p(x)}(u_n - u) = 0.$$
(5)

From (3) and (4), we can deduce the inequalities

$$|u|_{p(x)} \le \rho_{p(x)}(u) + 1,$$
(6)

$$\rho_{p(x)}(u) \le |u|_{p(x)}^{p^-} + |u|_{p(x)}^{p^+}.$$
(7)

If $p_1, p_2 \in C_+(\bar{\Omega}), p_1(x) \leq p_2(x)$ for any $x \in \bar{\Omega}$, then there exists the continuous embedding $L^{p_2(x)}(\Omega) \hookrightarrow L^{p_1(x)}(\Omega)$.

Next, we define the variable exponent Sobolev space $W^{1,p(x)}(\Omega)$ as

$$W^{1,p(x)}(\Omega) = \{ u \in L^{p(x)}(\Omega) / |\nabla u| \in L^{p(x)}(\Omega) \}.$$

It is a Banach space under the norm

$$||u|| = |u|_{p(x)} + |\nabla u|_{p(x)}.$$

We also define $W_0^{1,p(.)}(\Omega)$ as the subspace of $W^{1,p(.)}(\Omega)$ which is the closure of $C_0^{\infty}(\Omega)$ with respect to the norm $|| \cdot ||$. If the exponent p(.) satisfies the log-Hölder continuity condition, i.e. there is a constant $\alpha > 0$ such that for every $x, y \in \Omega, x \neq y$ with $|x - y| \leq \frac{1}{2}$ one has

$$|p(x) - p(y)| \le \frac{\alpha}{-\log|x - y|} \quad , \tag{8}$$

then we have the Poincaré inequality (see [8, 11]), i.e. the exists a constant C > 0depending only on Ω and the function p such that

$$|u|_{p(x)} \le C |\nabla u|_{p(x)}, \forall u \in W_0^{1,p(.)}(\Omega).$$
 (9)

In particular, the space $W_0^{1,p(.)}(\Omega)$ has a norm |.| given by

$$|u|_{1,p(x)} = |\nabla u|_{p(.)}$$
 for all $u \in W_0^{1,p(x)}(\Omega)$,

which is equivalent to $|| \cdot ||$. In addition, we have the compact embedding $W_0^{1,p(\cdot)}(\Omega) \hookrightarrow L^{p(\cdot)}(\Omega)$ (see [9]). The space $(W_0^{1,p(x)}(\Omega), |\cdot|_{1,p(x)})$ is a Banach space, separable and reflexive (see [6, 9]). The dual space of $W_0^{1,p(x)}(\Omega)$, denoted $W^{-1,p'(x)}(\Omega)$, is equipped with the norm

$$|v|_{-1,p'(x)} = \inf\{|v_0|_{p'(x)} + \sum_{i=1}^N |v_i|_{p'(x)}\},\$$

where the infinimum is taken on all possible decompositions $v = v_0 - divF$ with $v_0 \in L^{p'(x)}(\Omega)$ and $F = (v_1, ..., v_N) \in (L^{p'(x)}(\Omega))^N$.

3.2 Properties of p(x)-Laplacian operator

We discuss the p(x)-Laplacian operator

$$-\Delta_{p(x)}u := -div(|\nabla u|^{p(x)-2}\nabla u)$$

Consider the following functional:

$$J(u) = \int_{\Omega} \frac{1}{p(x)} |\nabla u|^{p(x)} dx, \quad u \in W_0^{1,p(x)}(\Omega).$$

We know that (see [3]), $J \in C^1(W_0^{1,p(x)}(\Omega), \mathbb{R})$, and the p(x)-Laplacian operator is the derivative operator of J in the weak sense. We denote $L = J' : W_0^{1,p(x)}(\Omega) \to W^{-1,p'(x)}(\Omega)$, then

$$\langle Lu, v \rangle = \int_{\Omega} |\nabla u|^{p(x)-2} \nabla u \nabla v dx$$
, for all $u, v \in W_0^{1,p(x)}(\Omega)$.

Theorem 2. [3, Theorem 3.1]

- (i) $L: W_0^{1,p(x)}(\Omega) \to W^{-1,p'(x)}(\Omega)$ is a continuous, bounded and strictly monotone operator;
- (ii) L is a mapping of class (S_+) ;
- (iii) L is a homeomorphism.

4 Existence of solutions

In this section, we study the Dirichlet boundary value problem (1) based on the degree theory in Section 2, where $\Omega \subset \mathbb{R}^N$, $N \geq 2$, is a bounded domain with a Lipschitz boundary $\partial\Omega$, $p \in C_+(\bar{\Omega})$ satisfy the log-Hölder continuity condition (8), $1 < p^- \leq p(x) \leq p^+ < \infty$ and $f : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ is a real-valued function such that:

(f₁) f satisfies the Carathéodory condition, that is, $f(., \eta, \zeta)$ is measurable on Ω for all $(\eta, \zeta) \in \mathbb{R} \times \mathbb{R}^N$ and f(x, ., .) is continuous on $\mathbb{R} \times \mathbb{R}^N$ for a.e. $x \in \Omega$.

 (f_2) f has the growth condition

$$|f(x,\eta,\zeta)| \le c(k(x) + |\eta|^{q(x)-1} + |\zeta|^{q(x)-1})$$

for a.e. $x \in \Omega$ and all $(\eta, \zeta) \in \mathbb{R} \times \mathbb{R}^N$, where c is a positive constant, $k \in L^{p'(x)}(\Omega)$ and $1 < q^- \le q(x) \le q^+ < p^-$.

Definition 2. We call that $u \in W_0^{1,p(x)}(\Omega)$ is a weak solution of (1) if

$$\int_{\Omega} |\nabla u|^{p(x)-2} \nabla u \nabla v dx = \int_{\Omega} f(x, u, \nabla u) v dx, \quad \forall v \in W_0^{1, p(x)}(\Omega).$$

Lemma 2. Under assumptions (f_1) and (f_2) , the operator $S: W_0^{1,p(x)}(\Omega) \to W^{-1,p'(x)}(\Omega)$ setting by

$$\langle Su, v \rangle = -\int_{\Omega} f(x, u, \nabla u) v dx, \quad \forall u, v \in W_0^{1, p(x)}(\Omega)$$

is compact.

Proof. Let $\phi: W_0^{1,p(x)}(\Omega) \to L^{p'(x)}(\Omega)$ be an operator defined by

$$\phi u(x) := -f(x, u, \nabla u)$$
 for $u \in W_0^{1, p(x)}(\Omega)$ and $x \in \Omega$.

We first show that ϕ is bounded and continuous.

For each $u \in W_0^{1,p(x)}(\Omega)$, we have the growth condition (f_2) , the inequalities (6) and (7) that

$$\begin{aligned} |\phi u|_{p'(x)} &\leq \rho_{p'(x)}(\phi u) + 1 \\ &= \int_{\Omega} |f(x, u(x), \nabla u(x)|^{p'(x)} + 1 \\ &\leq const(\rho_{p'(x)}(k) + \rho_{r(x)}(u) + \rho_{r(x)}(\nabla u)) + 1 \\ &\leq const(|k|_{p'(x)}^{p'+} + |u|_{r(x)}^{r^+} + |u|_{r(x)}^{r^-} + |\nabla u|_{r(x)}^{r^+} + |\nabla u|_{r(x)}^{r^-}) + 1, \end{aligned}$$

where r(x) = (q(x) - 1)p'(x) < p(x). By the continuous embedding $L^{p(x)} \hookrightarrow L^{r(x)}$ and the Poincaré inequality (9), we have

$$|\phi u|_{p'(x)} \le const(|k|_{p'(x)}^{p'^+} + |u|_{1,p(x)}^{r^+} + |u|_{1,p(x)}^{r^-}) + 1$$

This implies that ϕ is bounded on $W_0^{1,p(x)}(\Omega)$.

To show that ϕ is continuous, let $u_n \to u$ in $W_0^{1,p(x)}(\Omega)$. Then $u_n \to u$ in $L^{p(x)}(\Omega)$ and $\nabla u_n \to \nabla u$ in $(L^{p(x)}(\Omega))^N$. Hence there exist a subsequence (u_k) of (u_n) and measurable functions h in $L^{p(x)}(\Omega)$ and g in $(L^{p(x)}(\Omega))^N$ such that

$$u_k(x) \to u(x) \text{ and } \nabla u_k(x) \to \nabla u(x),$$

 $|u_k(x)| \le h(x) \text{ and } |\nabla u_k(x)| \le |g(x)|$

for a.e. $x \in \Omega$ and all $k \in \mathbb{N}$. Since f satisfies the Carathodory condition, we obtain that

$$f(x, u_k(x), \nabla u_k(x)) \to f(x, u(x), \nabla u(x))$$
 a.e. $x \in \Omega$.

it follows from (f_2) that

$$|f(x, u_k(x), \nabla u_k(x))| \le c(k(x) + |h(x)|^{q(x)-1} + |g(x)|^{q(x)-1})$$

for a.e. $x \in \Omega$ and for all $k \in \mathbb{N}$. Since

$$k + |h|^{q(x)-1} + |g(x)|^{q(x)-1} \in L^{p'(x)}(\Omega),$$

and taking into account the equality

$$\rho_{p'(x)}(\phi u_k - \phi u) = \int_{\Omega} |f(x, u_k(x), \nabla u_k(x)) - f(x, u(x), \nabla u(x))|^{p'(x)} dx,$$

the dominated convergence theorem and the equivalence (5) implies that

$$\phi u_k \to \phi u$$
 in $L^{p'(x)}(\Omega)$.

Thus the entire sequence (ϕu_n) converges to ϕu in $L^{p'(x)}(\Omega)$. Since the embedding $I: W_0^{1,p(x)}(\Omega) \to L^{p(x)}(\Omega)$ is compact, it is known that the adjoint operator $I^*: L^{p'(x)}(\Omega) \to W^{-1,p'(x)}(\Omega)$ is also compact. Therefore, the composition $I^* o\phi : W_0^{1,p(x)}(\Omega) \to W^{-1,p'(x)}(\Omega)$ is compact. This completes the proof.

Theorem 3. Under assumptions (f_1) and (f_2) , problem (1) has a weak solution u in $W_0^{1,p(x)}(\Omega)$.

Proof. Let $S: W_0^{1,p(x)}(\Omega) \to W^{-1,p'(x)}(\Omega)$ be as in Lemma 2 and $L: W_0^{1,p(x)}(\Omega) \to W^{-1,p'(x)}(\Omega)$, as in subsection 3.2, setting by

$$\langle Lu, v \rangle = \int_{\Omega} |\nabla u|^{p(x)-2} \nabla u \nabla v dx$$
, for all $u, v \in W_0^{1,p(x)}(\Omega)$.

Then $u \in W_0^{1,p(x)}(\Omega)$ is a weak solution of (1) if and only if

$$Lu = -Su \tag{10}$$

Thanks to the properties of the operator L seen in Theorem 2 and in view of Minty-Browder Theorem (see [14], Theorem 26A), the inverse operator

 $T := L^{-1} : W^{-1,p'(x)}(\Omega) \to W_0^{1,p(x)}(\Omega)$ is bounded, continuous and satisfies condition (S_+) . Moreover, note by Lemma 2 that the operator S is bounded, continuous and quasimonotone.

Consequently, equation (10) is equivalent to

$$u = Tv \text{ and } v + SoTv = 0. \tag{11}$$

To solve equation (11), we will apply the degree theory introducing in section 2. To do this, we first claim that the set

$$B := \{ v \in W^{-1, p'(x)}(\Omega) | v + tSoTv = 0 \text{ for some } t \in [0, 1] \}$$

is bounded. Indeed, let $v \in B$. Set u := Tv, then $|Tv|_{1,p(x)} = |\nabla u|_{p(x)}$. If $|\nabla u|_{p(x)} \leq 1$, then $|Tv|_{1,p(x)}$ is bounded.

If $|\nabla u|_{p(x)} > 1$, then we get by the implication (3), the growth condition (f_2) , the Hölder inequality (2), the inequality (7) and the Young inequality the estimate

$$\begin{split} |Tv|_{1,p(x)}^{p} &= |\nabla u|_{p(x)}^{p^{-}} \leq \rho_{p(x)}(\nabla u) \\ &= \langle Lu, u \rangle = \langle v, Tv \rangle \\ &= -t \langle SoTv, Tv \rangle \\ &= t \int_{\Omega} f(x, u, \nabla u) u dx \\ &\leq const(\int_{\Omega} |k(x)u(x)| dx + \rho_{q(x)}(u) + \int_{\Omega} |\nabla u|^{q(x)-1} |u| dx) \\ &\leq const(2|k|_{p'(x)}|u|_{p(x)} + |u|_{q(x)}^{q^{+}} + |u|_{q(x)}^{q^{-}} + \frac{1}{q'^{-}}\rho_{q(x)}(\nabla u) + \frac{1}{q^{-}}\rho_{q(x)}(u)) \\ &\leq const(|u|_{p(x)} + |u|_{q(x)}^{q^{+}} + |u|_{q(x)}^{q^{-}} + |\nabla u|_{q(x)}^{q^{+}}). \end{split}$$

From the Poincaré inequality (9) and the continuous embedding $L^{p(x)} \hookrightarrow L^{q(x)}$, we can deduct the estimate

$$|Tv|_{1,p(x)}^{p^{-}} \le const(|Tv|_{1,p(x)} + |Tv|_{1,p(x)}^{q^{+}}).$$

It follows that $\{Tv | v \in B\}$ is bounded.

Since the operator S is bounded, it is obvious from (11) that the set B is bounded in $W^{-1,p'(x)}(\Omega)$. Consequently, there exists R > 0 such that

$$|v|_{-1,p'(x)} < R$$
 for all $v \in B$.

This says that

$$v + tSoTv \neq 0$$
 for all $v \in \partial B_R(0)$ and all $t \in [0, 1]$.

From Lemma (1) it follows that

$$I + SoT \in \mathcal{F}_{\mathrm{T}}(\overline{\mathrm{B}_{\mathrm{R}}(0)})$$
 and $\mathrm{I} = \mathrm{LoT} \in \mathcal{F}_{\mathrm{T}}(\overline{\mathrm{B}_{\mathrm{R}}(0)}).$

Consider a homotopy $H: [0,1] \times \overline{B_R(0)} \to W^{-1,p'(x)}(\Omega)$ given by

$$H(t,v) := v + tSoTv$$
 for $(t,v) \in [0,1] \times B_R(0)$

Applying the homotopy invariance and normalization property of the degree d stated in Theorem(1), we get

$$d(I + SoT, B_R(0), 0) = d(I, B_R(0), 0) = 1,$$

and hence there exists a point $v \in B_R(0)$ such that

$$v + SoTv = 0.$$

We conclude that u = Tv is a weak solution of (1). This completes the proof. \Box

References

- Aboulaich, R., Meskine, D. and Souissi, A., New diffusion models in image processing, Comput. Math. Appl. 56 (2008), 874-882.
- [2] Berkovits, J., Extension of the Leray-Schauder degree for abstract Hammerstein type mappings, J. Differ. Equ. 234 (2007), 289-310.
- [3] Chang, K. C., Critical point theory and applications, Shanghai Scientific and Technology Press, Shanghai, 1986.
- [4] Chen, Y.. Levine, S. and Rao, M., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), 1383-1406.
- [5] Fan, X. L., Zhang, Q.H., Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003) 1843-1852.
- [6] Fan, X. L. and Zhao, D., On the Spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., **263** (2001), 424-446.
- [7] Kim, I. S. and Hong, S. J., A topological degree for operators of generalized (S_+) type, Fixed Point Theory and Appl. (2015) 2015:194.
- [8] Harjulehto P., Hästö, P, Koskenoja, M, and Varonen, S., The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values, Potential Anal 25 (2006), 205-222.
- [9] Kováčik, O. and Rákosník, J., On spaces $L^{p(x)}$ and $W^{1,p(x)}$, Czechoslovak Math. J. **41** (1991), 592-618.
- [10] Růžička, M., Electrorheological fuids: modeling and mathematical theory, Lecture Notes in Mathematics, 1748, Springer-Verlag, Berlin, 2000.
- [11] Samko, S. G., Density of $C_0^{\infty}(\mathbb{R}^N)$ in the generalized Sobolev spaces $W^{m,p(x)}(\mathbb{R}^N)$, Dokl Akad Nauk, **369** (1999), no. 4, 451-454.
- [12] Wolanski, N., Local bounds, Harnack's inequality and Hölder continuity for divergence type elliptic equations with non-standard growth, Revista de la Unión Mathemática Argentina, 56 (2015), no. 1, 73-105.
- [13] Zhao, D., Qiang, W. J. and Fan, X. L., On generalizerd Orlicz spaces $L^{p(x)}(\Omega)$, J. Gansu Sci. 9 (1996), no. 2, 1-7.
- [14] Zeidler, E., Nonlinear functional analysis and its applications, II/B: Nonlinear monotone operators, Springer, New York, 1990.