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EXISTENCE OF SOLUTIONS FOR p(x)-LAPLACIAN
DIRICHLET PROBLEM BY TOPOLOGICAL DEGREE

Mustapha AIT HAMMOU*1,Elhoussine AZROUL2andBadr LAHMI 3

Abstract

In this paper, we prove the existence of at least one solution for the
Dirichlet problem of p(x)-Laplacian

−div(|∇u|p(x)−2∇u) = f(x, u,∇u),

by using the topological degree theory for a class of demicontinuous operators
of generalized (S+) type. The right hand side f is a Carathéodory function
satisfying some non-standard growth conditions.
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1 Introduction

The p(x)-Laplacian has been used in the modelling of electrorheological fluids
([10]) and in image processing ([1, 4]). Up to these days, a great deal of results
have been obtained for solutions to equations related to this operator.

We consider the following nonlinear degenerated elliptic problem{
−div(|∇u|p(x)−2∇u) = f(x, u,∇u) in Ω,
u = 0 on ∂Ω.

(1)

where Ω ⊂ RN is a bounded domain, p(·) is log-Hölder continuous with values in
(1,∞). By using the degree theory for p(·) ≡ p with values in (2, N), Kim and
Hong studied in ([7]) the problem{

−4pu = u+ f(x, u,∇u) in Ω,
u = 0 on ∂Ω.
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In [5] Fan and Zhang presents several sufficient conditions for the existence of
solutions for the problem (1) with f independent of ∇u.

The aim of this paper is to prove an existence of at least weak solution for (1)
extending and refining the results in [5, 7] by using the topological degree theory
for a class of demicontinuous operators of generalized (S+) type.

This paper is divided into four sections. In the second section, we introduce
some classes of operators of generalized (S+) type and the topological degree.
In the third section, we present some basic properties of generalized Lebesgue-

Sobolev spaces W
1,p(x)
0 and several important properties of p(x)-Laplacian opera-

tor. Finaly, in the fourth section, we give some existence results of weak solutions
of problem (1).

2 Some classes of operators and topological degree

Let X and Y be two real Banach spaces and Ω a nonempty subset of X. The
symbol → (⇀) stands for strong (weak) convergence. We recall that a mapping
F : Ω ⊂ X → Y is

- bounded, if it takes any bounded set into a bounded set;

- demicontinuous, if for any (un) ⊂ Ω, un → u implies F (un) ⇀ F (u);

- compact if it is continuous and the image of any bounded set is relatively com-
pact.

Let X be a real reflexive Banach space with dual X∗. A mapping
F : Ω ⊂ X → X∗ is said to be

- of class (S+), if for any (un) ⊂ Ω with un ⇀ u and limsup〈Fun, un− u〉 ≤ 0, it
follows that un → u;

- quasimonotone , if for any (un) ⊂ Ω with un ⇀ u, it follows that
limsup〈Fun, un − u〉 ≥ 0.

For any operator F : Ω ⊂ X → X and any bounded operator
T : Ω1 ⊂ X → X∗ such that Ω ⊂ Ω1, we say that F

- satisfies condition (S+)T , if for any (un)Ω with un ⇀ u, yn := Tun ⇀ y and
limsup〈Fun, yn − y〉 ≤ 0, we have un → u;

- has the property (QM)T , if for any (un) ⊂ Ω with un ⇀ u, yn := Tun ⇀ y, we
have limsup〈Fun, y − yn〉 ≥ 0.

For any Ω ⊂ X, we consider the following classes of operators:

F1(Ω) := {F : Ω→ X∗ | F is bounded, demicontinuous and satifies condition

(S+)},
FT(Ω) := {F : Ω→ X | F is demicontinuous and satifies condition(S+)T }.
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For any Ω ⊂ DF , where DF denotes the domain of F , and any T ∈ F1(Ω).
Let O be the collection of all bounded open set in X. Define

F(X) := {F ∈ FT(Ḡ) | G ∈ O,T ∈ F1(Ḡ)},

Here, T ∈ F1(Ḡ) is called an essential inner map to F .

Lemma 1. [7, Lemma 2.3] Suppose that T ∈ F1(Ḡ) is continuous and
S : DS ⊂ X∗ → X is demicontinuous such that T (Ḡ) ⊂ Ds, where G is a bounded
open set in a real reflexive Banach space X. Then the following statement are
true:

(i) If S is quasimonotone, then I + SoT ∈ FT(Ḡ), where I denotes the identity
operator.

(ii) If S is of class (S+), then SoT ∈ FT(Ḡ)

Definition 1. Let G be a bounded open subset of a real reflexive Banach space
X, T ∈ F1(Ḡ) be continuous and let F, S ∈ FT(Ḡ). The affine homotopy
H : [0, 1]× Ḡ→ X defined by

H(t, u) := (1− t)Fu+ tSu for (t, u) ∈ [0, 1]× Ḡ

is called an admissible affine homotopy with the common continuous essential
inner map T .

Remark 1 (Lemma 2.5 [7]). The above affine homotopy satisfies condition (S+)T .

As in[7], we introduce a suitable topological degree for the class F(X):

Theorem 1. Let

M = {(F,G, h)|G ∈ O,T ∈ F1(Ḡ),F ∈ FT(Ḡ), h /∈ F(∂G)}.

There exists a unique degree function d : M → Z that satisfies the following
properties:

1. (Existence) if d(F,G, h) 6= 0 , then the equation Fu = h has a solution in
G,

2. (Additivity) Let F ∈ FT(Ḡ). If G1 and G2 are two disjoint open subset of
G such that h 6∈ F (Ḡ \ (G1 ∪G2)), then we have

d(F,G, h) = d(F,G1, h) + d(F,G2, h),

3. (Homotopy invariance) Suppose that
H : [0, 1]× Ḡ→ X is an admissible affine homotopy with a common contin-
uous essential inner map and h : [0, 1]→ X is a continuous path in X such
that h(t) /∈ H(t, ∂G) for all t ∈ [0, 1] ,then the value of d(H(t, .), G, h(t)) is
constant for all t ∈ [0, 1],
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4. (Normalization) For any h ∈ G, we have

d(I,G, h) = 1,

5. (Boundary dependence) If F, S ∈ FT(Ḡ) coincide on ∂G and h /∈ F (∂G),
then

d(F,G, h) = d(S,G, h).

Remark 2. [7, Definition 3.3] The above degree is defined as follows:

d(F,G, h) := dB(F |Ḡ0
, G0, h),

where dB is the Berkovits degree [2] and G0 is any open subset of G with
F−1(h) ⊂ G0 and F is bounded on Ḡ0.

3 The spaces W
1,p(x)
0 (Ω) and properties of p(x)−Laplacian

operator

3.1 The spaces W
1,p(x)
0 (Ω)

We introduce the setting of our problem with some auxiliary results of the

variable exponent Lebesgue and Sobolev spaces Lp(x)(Ω) and W
1,p(x)
0 (Ω). For

convenience, we only recall some basic facts with will be used later, we refer to
[6, 9, 13] for more details.
Let Ω be an open bounded subset of RN , N ≥ 2, with a Lipschitz boundary
denoted by ∂Ω. Denote

C+(Ω̄) = {h ∈ C(Ω̄)| inf
x∈Ω̄

h(x) > 1}.

For any h ∈ C+(Ω̄), we define

h+ := max{h(x), x ∈ Ω̄}, h− := min{h(x), x ∈ Ω̄}.

For any p ∈ C+(Ω̄) we define the variable exponent Lebesgue space

Lp(x)(Ω) = {u; u : Ω→ R is measurable and

∫
Ω
|u(x)|p(x) dx < +∞}

endowed with Luxemburg norm

|u|p(x) = inf{λ > 0/ρp(x)(
u

λ
) ≤ 1}.

where

ρp(x)(u) =

∫
Ω
|u(x)|p(x) dx, ∀u ∈ Lp(x)(Ω).

(Lp(x)(Ω), | . |p(x)) is a Banach space [9, Theorem 2.5], separable and reflexive

[9, Corollary 2.7]. Its conjugate space is Lp′(x)(Ω) where 1/p(x) + 1/p′(x) = 1 for
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all x ∈ Ω. For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), Hölder inequality holds
[9, Theorem 2.1]∣∣∣∣∫

Ω
uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

p′
−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x). (2)

Notice that if (un) and u ∈ Lp(.)(Ω) then the following relations hold true (see [6])

|u|p(x) < 1(= 1;> 1) ⇔ ρp(x)(u) < 1(= 1;> 1),

|u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x), (3)

|u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x), (4)

lim
n→∞

|un − u|p(x) = 0 ⇔ lim
n→∞

ρp(x)(un − u) = 0. (5)

From (3) and (4), we can deduce the inequalities

|u|p(x) ≤ ρp(x)(u) + 1, (6)

ρp(x)(u) ≤ |u|p
−

p(x) + |u|p
+

p(x). (7)

If p1, p2 ∈ C+(Ω̄), p1(x) ≤ p2(x) for any x ∈ Ω̄, then there exists the continuous
embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω).
Next, we define the variable exponent Sobolev space W 1,p(x)(Ω) as

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω)/|∇u| ∈ Lp(x)(Ω)}.

It is a Banach space under the norm

||u|| = |u|p(x) + |∇u|p(x).

We also define W
1,p(.)
0 (Ω) as the subspace of W 1,p(.)(Ω) which is the closure of

C∞0 (Ω) with respect to the norm || . ||. If the exponent p(.) satisfies the log-
Hölder continuity condition, i.e. there is a constant α > 0 such that for every
x, y ∈ Ω, x 6= y with |x− y| ≤ 1

2 one has

|p(x)− p(y)| ≤ α

− log |x− y|
, (8)

then we have the Poincaré inequality (see [8, 11]), i.e. the exists a constant C > 0
depending only on Ω and the function p such that

|u|p(x) ≤ C|∇u|p(x),∀u ∈W
1,p(.)
0 (Ω). (9)

In particular, the space W
1,p(.)
0 (Ω) has a norm | . | given by

|u|1,p(x) = |∇u|p(.) for all u ∈W 1,p(x)
0 (Ω),
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which is equivalent to || . ||. In addition, we have the compact embedding

W
1,p(.)
0 (Ω) ↪→ Lp(.)(Ω)(see [9]). The space (W

1,p(x)
0 (Ω), | . |1,p(x)) is a Banach

space, separable and reflexive (see [6, 9]). The dual space of W
1,p(x)
0 (Ω), denoted

W−1,p′(x)(Ω), is equipped with the norm

|v|−1,p′(x) = inf{|v0|p′(x) +

N∑
i=1

|vi|p′(x)},

where the infinimum is taken on all possible decompositions v = v0 − divF with
v0 ∈ Lp′(x)(Ω) and F = (v1, ..., vN ) ∈ (Lp′(x)(Ω))N .

3.2 Properties of p(x)−Laplacian operator

We discuss the p(x)−Laplacian operator

−∆p(x)u := −div(|∇u|p(x)−2∇u).

Consider the following functional:

J(u) =

∫
Ω

1

p(x)
|∇u|p(x)dx, u ∈W 1,p(x)

0 (Ω).

We know that (see [3]), J ∈ C1(W
1,p(x)
0 (Ω),R), and the p(x)−Laplacian operator

is the derivative operator of J in the weak sense.

We denote L = J ′ : W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω), then

〈Lu, v〉 =

∫
Ω
|∇u|p(x)−2∇u∇vdx, for all u, v ∈W 1,p(x)

0 (Ω).

Theorem 2. [3, Theorem 3.1]

(i) L : W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω) is a continuous, bounded and strictly monotone

operator;

(ii) L is a mapping of class (S+);

(iii) L is a homeomorphism.

4 Existence of solutions

In this section, we study the Dirichlet boundary value problem (1) based on
the degree theory in Section 2, where Ω ⊂ RN , N ≥ 2, is a bounded domain with
a Lipschitz boundary ∂Ω, p ∈ C+(Ω̄) satisfy the log-Hölder continuity condition
(8), 1 < p− ≤ p(x) ≤ p+ <∞ and f : Ω× R× RN → R is a real-valued function
such that:

(f1) f satisfies the Carathéodory condition, that is, f(., η, ζ) is measurable on Ω
for all (η, ζ) ∈ R×RN and f(x, ., .) is continuous on R×RN for a.e. x ∈ Ω.
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(f2) f has the growth condition

|f(x, η, ζ)| ≤ c(k(x) + |η|q(x)−1 + |ζ|q(x)−1)

for a.e. x ∈ Ω and all (η, ζ) ∈ R × RN , where c is a positive constant,
k ∈ Lp′(x)(Ω) and 1 < q− ≤ q(x) ≤ q+ < p−.

Definition 2. We call that u ∈W 1,p(x)
0 (Ω) is a weak solution of (1) if∫

Ω
|∇u|p(x)−2∇u∇vdx =

∫
Ω
f(x, u,∇u)vdx, ∀v ∈W 1,p(x)

0 (Ω).

Lemma 2. Under assumptions (f1) and (f2), the operator

S : W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω) setting by

〈Su, v〉 = −
∫

Ω
f(x, u,∇u)vdx, ∀u, v ∈W 1,p(x)

0 (Ω)

is compact.

Proof. Let φ : W
1,p(x)
0 (Ω)→ Lp′(x)(Ω) be an operator defined by

φu(x) := −f(x, u,∇u) for u ∈W 1,p(x)
0 (Ω) and x ∈ Ω.

We first show that φ is bounded and continuous.

For each u ∈ W 1,p(x)
0 (Ω), we have the growth condition (f2), the inequalities (6)

and (7) that

|φu|p′(x) ≤ ρp′(x)(φu) + 1

=

∫
Ω
|f(x, u(x),∇u(x)|p′(x) + 1

≤ const(ρp′(x)(k) + ρr(x)(u) + ρr(x)(∇u)) + 1

≤ const(|k|p
′+

p′(x) + |u|r+r(x) + |u|r−r(x) + |∇u|r+r(x) + |∇u|r−r(x)) + 1,

where r(x) = (q(x)−1)p′(x) < p(x). By the continuous embedding Lp(x) ↪→ Lr(x)

and the Poincaré inequality (9), we have

|φu|p′(x) ≤ const(|k|
p′+

p′(x) + |u|r+1,p(x) + |u|r−1,p(x)) + 1

This implies that φ is bounded on W
1,p(x)
0 (Ω).

To show that φ is continuous, let un → u in W
1,p(x)
0 (Ω). Then un → u in Lp(x)(Ω)

and ∇un → ∇u in (Lp(x)(Ω))N . Hence there exist a subsequence (uk) of (un) and
measurable functions h in Lp(x)(Ω) and g in (Lp(x)(Ω))N such that

uk(x)→ u(x) and ∇uk(x)→ ∇u(x),

|uk(x)| ≤ h(x) and |∇uk(x)| ≤ |g(x)|
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for a.e. x ∈ Ω and all k ∈ N. Since f satisfies the Carathodory condition, we
obtain that

f(x, uk(x),∇uk(x))→ f(x, u(x),∇u(x)) a.e. x ∈ Ω.

it follows from (f2) that

|f(x, uk(x),∇uk(x))| ≤ c(k(x) + |h(x)|q(x)−1 + |g(x)|q(x)−1)

for a.e. x ∈ Ω and for all k ∈ N.
Since

k + |h|q(x)−1 + |g(x)|q(x)−1 ∈ Lp′(x)(Ω),

and taking into account the equality

ρp′(x)(φuk − φu) =

∫
Ω
|f(x, uk(x),∇uk(x))− f(x, u(x),∇u(x))|p′(x)dx,

the dominated convergence theorem and the equivalence (5) implies that

φuk → φu in Lp′(x)(Ω).

Thus the entire sequence (φun) converges to φu in Lp′(x)(Ω).

Since the embedding I : W
1,p(x)
0 (Ω) → Lp(x)(Ω) is compact, it is known that the

adjoint operator I∗ : Lp′(x)(Ω) → W−1,p′(x)(Ω) is also compact. Therefore, the

composition I∗oφ : W
1,p(x)
0 (Ω) → W−1,p′(x)(Ω) is compact. This completes the

proof.

Theorem 3. Under assumptions (f1) and (f2), problem (1) has a weak solution

u in W
1,p(x)
0 (Ω).

Proof. Let S : W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω) be as in Lemma 2 and

L : W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω), as in subsection 3.2, setting by

〈Lu, v〉 =

∫
Ω
|∇u|p(x)−2∇u∇vdx, for all u, v ∈W 1,p(x)

0 (Ω).

Then u ∈W 1,p(x)
0 (Ω) is a weak solution of (1) if and only if

Lu = −Su (10)

Thanks to the properties of the operator L seen in Theorem 2 and in view of
Minty-Browder Theorem (see [14], Theorem 26A), the inverse operator

T := L−1 : W−1,p′(x)(Ω)→W
1,p(x)
0 (Ω) is bounded, continuous and satisfies condi-

tion (S+). Moreover, note by Lemma 2 that the operator S is bounded, continuous
and quasimonotone.
Consequently, equation (10) is equivalent to

u = Tv and v + SoTv = 0. (11)
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To solve equation (11), we will apply the degree theory introducing in section 2.
To do this, we first claim that the set

B := {v ∈W−1,p′(x)(Ω)|v + tSoTv = 0 for some t ∈ [0, 1]}

is bounded. Indeed, let v ∈ B. Set u := Tv, then |Tv|1,p(x) = |∇u|p(x).
If |∇u|p(x) ≤ 1, then |Tv|1,p(x) is bounded.
If |∇u|p(x) > 1, then we get by the implication (3), the growth condition (f2), the
Hölder inequality (2), the inequality (7)and the Young inequality the estimate

|Tv|p
−

1,p(x) = |∇u|p−p(x) ≤ ρp(x)(∇u)

= 〈Lu, u〉 = 〈v, Tv〉
= −t〈SoTv, Tv〉

= t

∫
Ω
f(x, u,∇u)udx

≤ const(

∫
Ω
|k(x)u(x)|dx+ ρq(x)(u) +

∫
Ω
|∇u|q(x)−1|u|dx)

≤ const(2|k|p′(x)|u|p(x) + |u|q
+

q(x) + |u|q
−

q(x) +
1

q′−
ρq(x)(∇u) +

1

q−
ρq(x)(u))

≤ const(|u|p(x) + |u|q
+

q(x) + |u|q
−

q(x) + |∇u|q
+

q(x)).

From the Poincaré inequality (9) and the continuous embedding Lp(x) ↪→ Lq(x),
we can deduct the estimate

|Tv|p
−

1,p(x) ≤ const(|Tv|1,p(x) + |Tv|q
+

1,p(x)).

It follows that {Tv|v ∈ B} is bounded.
Since the operator S is bounded, it is obvious from (11) that the set B is bounded
in W−1,p′(x)(Ω). Consequently, there exists R > 0 such that

|v|−1,p′(x) < R for all v ∈ B.

This says that

v + tSoTv 6= 0 for all v ∈ ∂BR(0) and all t ∈ [0, 1].

From Lemma (1) it follows that

I + SoT ∈ FT(BR(0)) and I = LoT ∈ FT(BR(0)).

Consider a homotopy H : [0, 1]×BR(0)→W−1,p′(x)(Ω) given by

H(t, v) := v + tSoTv for (t, v) ∈ [0, 1]×BR(0).

Applying the homotopy invariance and normalization property of the degree d
stated in Theorem(1), we get

d(I + SoT,BR(0), 0) = d(I,BR(0), 0) = 1,

and hence there exists a point v ∈ BR(0) such that

v + SoTv = 0.

We conclude that u = Tv is a weak solution of (1). This completes the proof.
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[8] Harjulehto P., Hästö, P, Koskenoja, M, and Varonen, S., The Dirichlet en-
ergy integral and variable exponent Sobolev spaces with zero boundary values,
Potential Anal 25 (2006), 205-222.
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