EXISTENCE OF SOLUTIONS FOR $p(x)$-LAPLACIAN DIRICHLET PROBLEM BY TOPOLOGICAL DEGREE

Mustapha AIT HAMMOU* ${ }^{* 1}$,Elhoussine AZROUL ${ }^{2}$ and Badr LAHMI ${ }^{3}$

Abstract

In this paper, we prove the existence of at least one solution for the Dirichlet problem of $p(x)$-Laplacian $$
-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)=f(x, u, \nabla u),
$$ by using the topological degree theory for a class of demicontinuous operators of generalized $\left(S_{+}\right)$type. The right hand side f is a Carathéodory function satisfying some non-standard growth conditions.

2000 Mathematics Subject Classification: 35J40, 35J60, 35J67, 47H11.
Key words: operator of $(S+)$ type, topological degree, $p(x)$-Laplacian.

1 Introduction

The $p(x)$-Laplacian has been used in the modelling of electrorheological fluids ([10]) and in image processing ([1, 4]). Up to these days, a great deal of results have been obtained for solutions to equations related to this operator.

We consider the following nonlinear degenerated elliptic problem

$$
\begin{cases}-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)=f(x, u, \nabla u) & \text { in } \Omega, \tag{1}\\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain, $p(\cdot)$ is log-Hölder continuous with values in $(1, \infty)$. By using the degree theory for $p(\cdot) \equiv p$ with values in $(2, N)$, Kim and Hong studied in ([7]) the problem

$$
\begin{cases}-\triangle_{p} u=u+f(x, u, \nabla u) & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

[^0]In [5] Fan and Zhang presents several sufficient conditions for the existence of solutions for the problem (1) with f independent of ∇u.

The aim of this paper is to prove an existence of at least weak solution for (1) extending and refining the results in $[5,7]$ by using the topological degree theory for a class of demicontinuous operators of generalized $\left(S_{+}\right)$type.

This paper is divided into four sections. In the second section, we introduce some classes of operators of generalized $\left(S_{+}\right)$type and the topological degree. In the third section, we present some basic properties of generalized LebesgueSobolev spaces $W_{0}^{1, p(x)}$ and several important properties of $p(x)$-Laplacian operator. Finaly, in the fourth section, we give some existence results of weak solutions of problem (1).

2 Some classes of operators and topological degree

Let X and Y be two real Banach spaces and Ω a nonempty subset of X. The symbol $\rightarrow(-)$ stands for strong (weak) convergence. We recall that a mapping $F: \Omega \subset X \rightarrow Y$ is

- bounded, if it takes any bounded set into a bounded set;
- demicontinuous, if for any $\left(u_{n}\right) \subset \Omega, u_{n} \rightarrow u$ implies $F\left(u_{n}\right) \rightharpoonup F(u)$;
- compact if it is continuous and the image of any bounded set is relatively compact.

Let X be a real reflexive Banach space with dual X^{*}. A mapping $F: \Omega \subset X \rightarrow X^{*}$ is said to be

- of class $\left(S_{+}\right)$, if for any $\left(u_{n}\right) \subset \Omega$ with $u_{n} \rightharpoonup u$ and $\limsup \left\langle F u_{n}, u_{n}-u\right\rangle \leq 0$, it follows that $u_{n} \rightarrow u$;
- quasimonotone, if for any $\left(u_{n}\right) \subset \Omega$ with $u_{n} \rightharpoonup u$, it follows that $\limsup \left\langle F u_{n}, u_{n}-u\right\rangle \geq 0$.

For any operator $F: \Omega \subset X \rightarrow X$ and any bounded operator $T: \Omega_{1} \subset X \rightarrow X^{*}$ such that $\Omega \subset \Omega_{1}$, we say that F

- satisfies condition $\left(S_{+}\right)_{T}$, if for any $\left(u_{n}\right) \Omega$ with $u_{n} \rightharpoonup u, y_{n}:=T u_{n} \rightharpoonup y$ and limsup $\left\langle F u_{n}, y_{n}-y\right\rangle \leq 0$, we have $u_{n} \rightarrow u$;
- has the property $(Q M)_{T}$, if for any $\left(u_{n}\right) \subset \Omega$ with $u_{n} \rightharpoonup u, y_{n}:=T u_{n} \rightharpoonup y$, we have $\limsup \left\langle F u_{n}, y-y_{n}\right\rangle \geq 0$.

For any $\Omega \subset X$, we consider the following classes of operators:
$\mathcal{F}_{1}(\Omega):=\left\{F: \Omega \rightarrow X^{*} \mid F\right.$ is bounded, demicontinuous and satifies condition $\left.\left(S_{+}\right)\right\}$,
$\mathcal{F}_{\mathrm{T}}(\Omega):=\left\{F: \Omega \rightarrow X \mid F\right.$ is demicontinuous and satifies condition $\left.\left(S_{+}\right)_{T}\right\}$.

Existence of solutions for $p(x)$-Laplacian Dirichlet problem

For any $\Omega \subset D_{F}$, where D_{F} denotes the domain of F, and any $T \in \mathcal{F}_{1}(\Omega)$. Let \mathcal{O} be the collection of all bounded open set in X. Define

$$
\mathcal{F}(\mathrm{X}):=\left\{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}(\overline{\mathrm{G}}) \mid \mathrm{G} \in \mathcal{O}, \mathrm{~T} \in \mathcal{F}_{1}(\overline{\mathrm{G}})\right\},
$$

Here, $T \in F_{1}(\overline{\mathrm{G}})$ is called an essential inner map to F.
Lemma 1. [7, Lemma 2.3] Suppose that $T \in \mathcal{F}_{1}(\overline{\mathrm{G}})$ is continuous and $S: D_{S} \subset X^{*} \rightarrow X$ is demicontinuous such that $T(\bar{G}) \subset D_{s}$, where G is a bounded open set in a real reflexive Banach space X. Then the following statement are true:
(i) If S is quasimonotone, then $I+S o T \in \mathcal{F}_{\mathrm{T}}(\overline{\mathrm{G}})$, where I denotes the identity operator.
(ii) If S is of class $\left(S_{+}\right)$, then $S o T \in \mathcal{F}_{\mathrm{T}}(\overline{\mathrm{G}})$

Definition 1. Let G be a bounded open subset of a real reflexive Banach space $X, T \in \mathcal{F}_{1}(\overline{\mathrm{G}})$ be continuous and let $F, S \in \mathcal{F}_{\mathrm{T}}(\overline{\mathrm{G}})$. The affine homotopy $H:[0,1] \times \bar{G} \rightarrow X$ defined by

$$
H(t, u):=(1-t) F u+t S u \text { for }(t, u) \in[0,1] \times \bar{G}
$$

is called an admissible affine homotopy with the common continuous essential inner map T.

Remark 1 (Lemma 2.5 [7]). The above affine homotopy satisfies condition $\left(S_{+}\right)_{T}$.
As in[7], we introduce a suitable topological degree for the class $\mathcal{F}(X)$:
Theorem 1. Let

$$
\mathcal{M}=\left\{(\mathrm{F}, \mathrm{G}, \mathrm{~h}) \mid \mathrm{G} \in \mathcal{O}, \mathrm{~T} \in \mathcal{F}_{1}(\overline{\mathrm{G}}), \mathrm{F} \in \mathcal{F}_{\mathrm{T}}(\overline{\mathrm{G}}), \mathrm{h} \notin \mathrm{~F}(\partial \mathrm{G})\right\} .
$$

There exists a unique degree function $d: \mathcal{M} \rightarrow \mathbb{Z}$ that satisfies the following properties:

1. (Existence) if $d(F, G, h) \neq 0$, then the equation $F u=h$ has a solution in G,
2. (Additivity) Let $F \in \mathcal{F}_{\mathrm{T}}(\overline{\mathrm{G}})$. If G_{1} and G_{2} are two disjoint open subset of G such that $h \notin F\left(\bar{G} \backslash\left(G_{1} \cup G_{2}\right)\right)$, then we have

$$
d(F, G, h)=d\left(F, G_{1}, h\right)+d\left(F, G_{2}, h\right),
$$

3. (Homotopy invariance) Suppose that
$H:[0,1] \times \bar{G} \rightarrow X$ is an admissible affine homotopy with a common continuous essential inner map and $h:[0,1] \rightarrow X$ is a continuous path in X such that $h(t) \notin H(t, \partial G)$ for all $t \in[0,1]$, then the value of $d(H(t,), G,. h(t))$ is constant for all $t \in[0,1]$,
4. (Normalization) For any $h \in G$, we have

$$
d(I, G, h)=1
$$

5. (Boundary dependence) If $F, S \in \mathcal{F}_{\mathrm{T}}(\overline{\mathrm{G}})$ coincide on ∂G and $h \notin F(\partial G)$, then

$$
d(F, G, h)=d(S, G, h)
$$

Remark 2. [7, Definition 3.3] The above degree is defined as follows:

$$
d(F, G, h):=d_{B}\left(\left.F\right|_{\bar{G}_{0}}, G_{0}, h\right)
$$

where d_{B} is the Berkovits degree [2] and G_{0} is any open subset of G with $F^{-1}(h) \subset G_{0}$ and F is bounded on \bar{G}_{0}.

3 The spaces $W_{0}^{1, p(x)}(\Omega)$ and properties of $p(x)$-Laplacian operator

3.1 The spaces $W_{0}^{1, p(x)}(\Omega)$

We introduce the setting of our problem with some auxiliary results of the variable exponent Lebesgue and Sobolev spaces $L^{p(x)}(\Omega)$ and $W_{0}^{1, p(x)}(\Omega)$. For convenience, we only recall some basic facts with will be used later, we refer to $[6,9,13]$ for more details.
Let Ω be an open bounded subset of $\mathbb{R}^{N}, N \geq 2$, with a Lipschitz boundary denoted by $\partial \Omega$. Denote

$$
C_{+}(\bar{\Omega})=\left\{h \in C(\bar{\Omega}) \mid \inf _{x \in \bar{\Omega}} h(x)>1\right\}
$$

For any $h \in C_{+}(\bar{\Omega})$, we define

$$
h^{+}:=\max \{h(x), x \in \bar{\Omega}\}, h^{-}:=\min \{h(x), x \in \bar{\Omega}\}
$$

For any $p \in C_{+}(\bar{\Omega})$ we define the variable exponent Lebesgue space

$$
L^{p(x)}(\Omega)=\left\{u ; u: \Omega \rightarrow \mathbb{R} \text { is measurable and } \int_{\Omega}|u(x)|^{p(x)} d x<+\infty\right\}
$$

endowed with Luxemburg norm

$$
|u|_{p(x)}=\inf \left\{\lambda>0 / \rho_{p(x)}\left(\frac{u}{\lambda}\right) \leq 1\right\}
$$

where

$$
\rho_{p(x)}(u)=\int_{\Omega}|u(x)|^{p(x)} d x, \quad \forall u \in L^{p(x)}(\Omega)
$$

$\left(L^{p(x)}(\Omega),|\cdot|_{p(x)}\right)$ is a Banach space $[9$, Theorem 2.5], separable and reflexive [9, Corollary 2.7]. Its conjugate space is $L^{p^{\prime}(x)}(\Omega)$ where $1 / p(x)+1 / p^{\prime}(x)=1$ for
all $x \in \Omega$. For any $u \in L^{p(x)}(\Omega)$ and $v \in L^{p^{\prime}(x)}(\Omega)$, Hölder inequality holds [9, Theorem 2.1]

$$
\begin{equation*}
\left|\int_{\Omega} u v d x\right| \leq\left(\frac{1}{p^{-}}+\frac{1}{p^{\prime-}}\right)|u|_{p(x)}|v|_{p^{\prime}(x)} \leq 2|u|_{p(x)}|v|_{p^{\prime}(x)} . \tag{2}
\end{equation*}
$$

Notice that if (u_{n}) and $u \in L^{p(.)}(\Omega)$ then the following relations hold true (see [6])

$$
\begin{gather*}
|u|_{p(x)}<1(=1 ;>1) \quad \Leftrightarrow \quad \rho_{p(x)}(u)<1(=1 ;>1), \\
|u|_{p(x)}>1 \Rightarrow|u|_{p(x)}^{p^{-}} \leq \rho_{p(x)}(u) \leq|u|_{p(x)}^{p^{+}}, \tag{3}\\
|u|_{p(x)}<1 \Rightarrow|u|_{p(x)}^{p^{+}} \leq \rho_{p(x)}(u) \leq|u|_{p(x)}^{p^{-}}, \tag{4}\\
\lim _{n \rightarrow \infty}\left|u_{n}-u\right|_{p(x)}=0 \quad \Leftrightarrow \quad \lim _{n \rightarrow \infty} \rho_{p(x)}\left(u_{n}-u\right)=0 . \tag{5}
\end{gather*}
$$

From (3) and (4), we can deduce the inequalities

$$
\begin{gather*}
|u|_{p(x)} \leq \rho_{p(x)}(u)+1, \tag{6}\\
\rho_{p(x)}(u) \leq|u|_{p(x)}^{p^{-}}+|u|_{p(x)}^{p^{+}} . \tag{7}
\end{gather*}
$$

If $p_{1}, p_{2} \in C_{+}(\bar{\Omega}), p_{1}(x) \leq p_{2}(x)$ for any $x \in \bar{\Omega}$, then there exists the continuous embedding $L^{p_{2}(x)}(\Omega) \hookrightarrow L^{p_{1}(x)}(\Omega)$.
Next, we define the variable exponent Sobolev space $W^{1, p(x)}(\Omega)$ as

$$
W^{1, p(x)}(\Omega)=\left\{u \in L^{p(x)}(\Omega) /|\nabla u| \in L^{p(x)}(\Omega)\right\} .
$$

It is a Banach space under the norm

$$
\|u\|=|u|_{p(x)}+|\nabla u|_{p(x)} .
$$

We also define $W_{0}^{1, p(.)}(\Omega)$ as the subspace of $W^{1, p(.)}(\Omega)$ which is the closure of $C_{0}^{\infty}(\Omega)$ with respect to the norm $\|$.$\| . If the exponent p($.$) satisfies the log-$ Hölder continuity condition, i.e. there is a constant $\alpha>0$ such that for every $x, y \in \Omega, x \neq y$ with $|x-y| \leq \frac{1}{2}$ one has

$$
\begin{equation*}
|p(x)-p(y)| \leq \frac{\alpha}{-\log |x-y|}, \tag{8}
\end{equation*}
$$

then we have the Poincaré inequality (see $[8,11]$), i.e. the exists a constant $C>0$ depending only on Ω and the function p such that

$$
\begin{equation*}
|u|_{p(x)} \leq C|\nabla u|_{p(x)}, \forall u \in W_{0}^{1, p(.)}(\Omega) \tag{9}
\end{equation*}
$$

In particular, the space $W_{0}^{1, p(.)}(\Omega)$ has a norm $|$.$| given by$

$$
|u|_{1, p(x)}=|\nabla u|_{p(.)} \text { for all } u \in W_{0}^{1, p(x)}(\Omega),
$$

which is equivalent to $\|$.$\| . In addition, we have the compact embedding$ $W_{0}^{1, p(.)}(\Omega) \hookrightarrow L^{p(.)}(\Omega)($ see $[9])$. The space $\left(W_{0}^{1, p(x)}(\Omega),|\cdot|_{1, p(x)}\right)$ is a Banach space, separable and reflexive (see $[6,9]$). The dual space of $W_{0}^{1, p(x)}(\Omega)$, denoted $W^{-1, p^{\prime}(x)}(\Omega)$, is equipped with the norm

$$
|v|_{-1, p^{\prime}(x)}=\inf \left\{\left|v_{0}\right|_{p^{\prime}(x)}+\sum_{i=1}^{N}\left|v_{i}\right|_{p^{\prime}(x)}\right\},
$$

where the infinimum is taken on all possible decompositions $v=v_{0}-\operatorname{div} F$ with $v_{0} \in L^{p^{\prime}(x)}(\Omega)$ and $F=\left(v_{1}, \ldots, v_{N}\right) \in\left(L^{p^{\prime}(x)}(\Omega)\right)^{N}$.

3.2 Properties of $p(x)$-Laplacian operator

We discuss the $p(x)$-Laplacian operator

$$
-\Delta_{p(x)} u:=-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right) .
$$

Consider the following functional:

$$
J(u)=\int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} d x, \quad u \in W_{0}^{1, p(x)}(\Omega)
$$

We know that (see [3]), $J \in C^{1}\left(W_{0}^{1, p(x)}(\Omega), \mathbb{R}\right)$, and the $p(x)$-Laplacian operator is the derivative operator of J in the weak sense.
We denote $L=J^{\prime}: W_{0}^{1, p(x)}(\Omega) \rightarrow W^{-1, p^{\prime}(x)}(\Omega)$, then

$$
\langle L u, v\rangle=\int_{\Omega}|\nabla u|^{p(x)-2} \nabla u \nabla v d x, \text { for all } u, v \in W_{0}^{1, p(x)}(\Omega)
$$

Theorem 2. [3, Theorem 3.1]
(i) $L: W_{0}^{1, p(x)}(\Omega) \rightarrow W^{-1, p^{\prime}(x)}(\Omega)$ is a continuous, bounded and strictly monotone operator;
(ii) L is a mapping of class $\left(S_{+}\right)$;
(iii) L is a homeomorphism.

4 Existence of solutions

In this section, we study the Dirichlet boundary value problem (1) based on the degree theory in Section 2 , where $\Omega \subset \mathbb{R}^{N}, N \geq 2$, is a bounded domain with a Lipschitz boundary $\partial \Omega, p \in C_{+}(\bar{\Omega})$ satisfy the log-Hölder continuity condition (8), $1<p^{-} \leq p(x) \leq p^{+}<\infty$ and $f: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a real-valued function such that:
$\left(f_{1}\right) f$ satisfies the Carathéodory condition, that is, $f(., \eta, \zeta)$ is measurable on Ω for all $(\eta, \zeta) \in \mathbb{R} \times \mathbb{R}^{N}$ and $f(x, .,$.$) is continuous on \mathbb{R} \times \mathbb{R}^{N}$ for a.e. $x \in \Omega$.
$\left(f_{2}\right) f$ has the growth condition

$$
|f(x, \eta, \zeta)| \leq c\left(k(x)+|\eta|^{q(x)-1}+|\zeta|^{q(x)-1}\right)
$$

for a.e. $x \in \Omega$ and all $(\eta, \zeta) \in \mathbb{R} \times \mathbb{R}^{N}$, where c is a positive constant, $k \in L^{p^{\prime}(x)}(\Omega)$ and $1<q^{-} \leq q(x) \leq q^{+}<p^{-}$.

Definition 2. We call that $u \in W_{0}^{1, p(x)}(\Omega)$ is a weak solution of (1) if

$$
\int_{\Omega}|\nabla u|^{p(x)-2} \nabla u \nabla v d x=\int_{\Omega} f(x, u, \nabla u) v d x, \quad \forall v \in W_{0}^{1, p(x)}(\Omega) .
$$

Lemma 2. Under assumptions $\left(f_{1}\right)$ and $\left(f_{2}\right)$, the operator $S: W_{0}^{1, p(x)}(\Omega) \rightarrow W^{-1, p^{\prime}(x)}(\Omega)$ setting by

$$
\langle S u, v\rangle=-\int_{\Omega} f(x, u, \nabla u) v d x, \quad \forall u, v \in W_{0}^{1, p(x)}(\Omega)
$$

is compact.
Proof. Let $\phi: W_{0}^{1, p(x)}(\Omega) \rightarrow L^{p^{\prime}(x)}(\Omega)$ be an operator defined by

$$
\phi u(x):=-f(x, u, \nabla u) \text { for } u \in W_{0}^{1, p(x)}(\Omega) \text { and } x \in \Omega .
$$

We first show that ϕ is bounded and continuous.
For each $u \in W_{0}^{1, p(x)}(\Omega)$, we have the growth condition $\left(f_{2}\right)$, the inequalities (6) and (7) that

$$
\begin{aligned}
|\phi u|_{p^{\prime}(x)} & \leq \rho_{p^{\prime}(x)}(\phi u)+1 \\
& =\int_{\Omega} \mid f\left(x, u(x),\left.\nabla u(x)\right|^{p^{\prime}(x)}+1\right. \\
& \leq \operatorname{const}\left(\rho_{p^{\prime}(x)}(k)+\rho_{r(x)}(u)+\rho_{r(x)}(\nabla u)\right)+1 \\
& \leq \operatorname{const}\left(|k|_{p^{\prime}(x)}^{p^{\prime}}+|u|_{r(x)}^{r+}+|u|_{r(x)}^{r-}+|\nabla u|_{r(x)}^{r^{+}}+|\nabla u|_{r(x)}^{r-}\right)+1,
\end{aligned}
$$

where $r(x)=(q(x)-1) p^{\prime}(x)<p(x)$. By the continuous embedding $L^{p(x)} \hookrightarrow L^{r(x)}$ and the Poincaré inequality (9), we have

$$
|\phi u|_{p^{\prime}(x)} \leq \operatorname{const}\left(|k|_{p^{\prime}(x)}^{p^{\prime+}}+|u|_{1, p(x)}^{r^{+}}+|u|_{1, p(x)}^{r^{-}}\right)+1
$$

This implies that ϕ is bounded on $W_{0}^{1, p(x)}(\Omega)$.
To show that ϕ is continuous, let $u_{n} \rightarrow u$ in $W_{0}^{1, p(x)}(\Omega)$. Then $u_{n} \rightarrow u$ in $L^{p(x)}(\Omega)$ and $\nabla u_{n} \rightarrow \nabla u$ in $\left(L^{p(x)}(\Omega)\right)^{N}$. Hence there exist a subsequence $\left(u_{k}\right)$ of $\left(u_{n}\right)$ and measurable functions h in $L^{p(x)}(\Omega)$ and g in $\left(L^{p(x)}(\Omega)\right)^{N}$ such that

$$
\begin{aligned}
& u_{k}(x) \rightarrow u(x) \text { and } \nabla u_{k}(x) \rightarrow \nabla u(x), \\
& \left|u_{k}(x)\right| \leq h(x) \text { and }\left|\nabla u_{k}(x)\right| \leq|g(x)|
\end{aligned}
$$

for a.e. $x \in \Omega$ and all $k \in \mathbb{N}$. Since f satisfies the Carathodory condition, we obtain that

$$
f\left(x, u_{k}(x), \nabla u_{k}(x)\right) \rightarrow f(x, u(x), \nabla u(x)) \text { a.e. } x \in \Omega
$$

it follows from $\left(f_{2}\right)$ that

$$
\left|f\left(x, u_{k}(x), \nabla u_{k}(x)\right)\right| \leq c\left(k(x)+|h(x)|^{q(x)-1}+|g(x)|^{q(x)-1}\right)
$$

for a.e. $x \in \Omega$ and for all $k \in \mathbb{N}$.
Since

$$
k+|h|^{q(x)-1}+|g(x)|^{q(x)-1} \in L^{p^{\prime}(x)}(\Omega),
$$

and taking into account the equality

$$
\rho_{p^{\prime}(x)}\left(\phi u_{k}-\phi u\right)=\int_{\Omega}\left|f\left(x, u_{k}(x), \nabla u_{k}(x)\right)-f(x, u(x), \nabla u(x))\right|^{p^{\prime}(x)} d x
$$

the dominated convergence theorem and the equivalence (5) implies that

$$
\phi u_{k} \rightarrow \phi u \text { in } L^{p^{p^{\prime}}(x)}(\Omega)
$$

Thus the entire sequence $\left(\phi u_{n}\right)$ converges to ϕu in $L^{p^{\prime}(x)}(\Omega)$.
Since the embedding $I: W_{0}^{1, p(x)}(\Omega) \rightarrow L^{p(x)}(\Omega)$ is compact, it is known that the adjoint operator $I^{*}: L^{p^{\prime}(x)}(\Omega) \rightarrow W^{-1, p^{\prime}(x)}(\Omega)$ is also compact. Therefore, the composition $I^{*} o \phi: W_{0}^{1, p(x)}(\Omega) \rightarrow W^{-1, p^{\prime}(x)}(\Omega)$ is compact. This completes the proof.

Theorem 3. Under assumptions $\left(f_{1}\right)$ and $\left(f_{2}\right)$, problem (1) has a weak solution u in $W_{0}^{1, p(x)}(\Omega)$.
Proof. Let $S: W_{0}^{1, p(x)}(\Omega) \rightarrow W^{-1, p^{\prime}(x)}(\Omega)$ be as in Lemma 2 and $L: W_{0}^{1, p(x)}(\Omega) \rightarrow W^{-1, p^{\prime}(x)}(\Omega)$, as in subsection 3.2, setting by

$$
\langle L u, v\rangle=\int_{\Omega}|\nabla u|^{p(x)-2} \nabla u \nabla v d x, \text { for all } u, v \in W_{0}^{1, p(x)}(\Omega)
$$

Then $u \in W_{0}^{1, p(x)}(\Omega)$ is a weak solution of (1) if and only if

$$
\begin{equation*}
L u=-S u \tag{10}
\end{equation*}
$$

Thanks to the properties of the operator L seen in Theorem 2 and in view of Minty-Browder Theorem (see [14], Theorem 26A), the inverse operator $T:=L^{-1}: W^{-1, p^{\prime}(x)}(\Omega) \rightarrow W_{0}^{1, p(x)}(\Omega)$ is bounded, continuous and satisfies condition $\left(S_{+}\right)$. Moreover, note by Lemma 2 that the operator S is bounded, continuous and quasimonotone.
Consequently, equation (10) is equivalent to

$$
\begin{equation*}
u=T v \text { and } v+S o T v=0 \tag{11}
\end{equation*}
$$

To solve equation (11), we will apply the degree theory introducing in section 2 . To do this, we first claim that the set

$$
B:=\left\{v \in W^{-1, p^{\prime}(x)}(\Omega) \mid v+t S o T v=0 \text { for some } t \in[0,1]\right\}
$$

is bounded. Indeed, let $v \in B$. Set $u:=T v$, then $|T v|_{1, p(x)}=|\nabla u|_{p(x)}$.
If $|\nabla u|_{p(x)} \leq 1$, then $|T v|_{1, p(x)}$ is bounded.
If $|\nabla u|_{p(x)}>1$, then we get by the implication (3), the growth condition $\left(f_{2}\right)$, the Hölder inequality (2), the inequality (7)and the Young inequality the estimate

$$
\begin{aligned}
|T v|_{1, p(x)}^{p^{-}} & =|\nabla u|_{p(x)}^{p-} \leq \rho_{p(x)}(\nabla u) \\
& =\langle L u, u\rangle=\langle v, T v\rangle \\
& =-t\langle S o T v, T v\rangle \\
& =t \int_{\Omega} f(x, u, \nabla u) u d x \\
& \leq \operatorname{const}\left(\int_{\Omega}|k(x) u(x)| d x+\rho_{q(x)}(u)+\int_{\Omega}|\nabla u|^{q(x)-1}|u| d x\right) \\
& \leq \operatorname{const}\left(2|k|_{p^{\prime}(x)}|u|_{p(x)}+|u|_{q(x)}^{q^{+}}+|u|_{q(x)}^{q^{-}}+\frac{1}{q^{\prime-}} \rho_{q(x)}(\nabla u)+\frac{1}{q^{-}} \rho_{q(x)}(u)\right) \\
& \leq \operatorname{const}\left(|u|_{p(x)}+|u|_{q(x)}^{q^{+}}+|u|_{q(x)}^{q^{-}}+|\nabla u|_{q(x)}^{q^{+}}\right) .
\end{aligned}
$$

From the Poincaré inequality (9) and the continuous embedding $L^{p(x)} \hookrightarrow L^{q(x)}$, we can deduct the estimate

$$
|T v|_{1, p(x)}^{p^{-}} \leq \operatorname{const}\left(|T v|_{1, p(x)}+|T v|_{1, p(x)}^{q^{+}}\right) .
$$

It follows that $\{T v \mid v \in B\}$ is bounded.
Since the operator S is bounded, it is obvious from (11) that the set B is bounded in $W^{-1, p^{\prime}(x)}(\Omega)$. Consequently, there exists $R>0$ such that

$$
|v|_{-1, p^{\prime}(x)}<R \text { for all } v \in B .
$$

This says that

$$
v+t S o T v \neq 0 \text { for all } v \in \partial B_{R}(0) \text { and all } t \in[0,1] .
$$

From Lemma (1) it follows that

$$
I+S o T \in \mathcal{F}_{\mathrm{T}}\left(\overline{\mathrm{~B}_{\mathrm{R}}(0)}\right) \text { and } \mathrm{I}=\mathrm{LoT} \in \mathcal{F}_{\mathrm{T}}\left(\overline{\mathrm{~B}_{\mathrm{R}}(0)}\right) .
$$

Consider a homotopy $H:[0,1] \times \overline{B_{R}(0)} \rightarrow W^{-1, p^{\prime}(x)}(\Omega)$ given by

$$
H(t, v):=v+t S o T v \text { for }(t, v) \in[0,1] \times \overline{B_{R}(0)}
$$

Applying the homotopy invariance and normalization property of the degree d stated in Theorem(1), we get

$$
d\left(I+S o T, B_{R}(0), 0\right)=d\left(I, B_{R}(0), 0\right)=1,
$$

and hence there exists a point $v \in B_{R}(0)$ such that

$$
v+S o T v=0
$$

We conclude that $u=T v$ is a weak solution of (1). This completes the proof.

References

[1] Aboulaich, R., Meskine, D. and Souissi, A., New diffusion models in image processing, Comput. Math. Appl. 56 (2008), 874-882.
[2] Berkovits, J., Extension of the Leray-Schauder degree for abstract Hammerstein type mappings, J. Differ. Equ. 234 (2007), 289-310.
[3] Chang, K. C., Critical point theory and applications, Shanghai Scientific and Technology Press, Shanghai, 1986.
[4] Chen, Y.. Levine, S. and Rao, M., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), 1383-1406.
[5] Fan, X. L., Zhang,Q.H., Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003) 1843-1852.
[6] Fan, X. L. and Zhao, D., On the Spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.
[7] Kim, I. S. and Hong, S. J., A topological degree for operators of generalized $\left(S_{+}\right)$type, Fixed Point Theory and Appl. (2015) 2015:194.
[8] Harjulehto P., Hästö, P, Koskenoja, M, and Varonen, S., The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values, Potential Anal 25 (2006), 205-222.
[9] Kováčik, O. and Rákosník, J., On spaces $L^{p(x)}$ and $W^{1, p(x)}$, Czechoslovak Math. J. 41 (1991), 592-618.
[10] Ru̇žička, M., Electrorheological fuids: modeling and mathematical theory, Lecture Notes in Mathematics, 1748, Springer-Verlag, Berlin, 2000.
[11] Samko, S. G., Density of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ in the generalized Sobolev spaces $W^{m, p(x)}\left(\mathbb{R}^{N}\right)$, Dokl Akad Nauk, 369 (1999), no. 4, 451-454.
[12] Wolanski, N., Local bounds, Harnack's inequality and Hölder continuity for divergence type elliptic equations with non-standard growth, Revista de la Unión Mathemática Argentina, 56 (2015), no. 1, 73-105.
[13] Zhao, D., Qiang, W. J. and Fan, X. L., On generalizerd Orlicz spaces $L^{p(x)}(\Omega)$, J. Gansu Sci. 9 (1996), no. 2, 1-7.
[14] Zeidler, E., Nonlinear functional analysis and its applications, II/B: Nonlinear monotone operators, Springer, New York, 1990.

[^0]: ${ }^{1 *}$ Corresponding author, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco, e-mail: mus.aithammou@gmail.com
 ${ }^{2}$ Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco, e-mail: azroulelhoussine@gmail.com
 ${ }^{3}$ Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco, e-mail: lahmi.badr@gmail.com

