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Abstract

An effective nonlinear anisotropic diffusion-based algorithm for image restoration
is proposed in this work. The technique considered here employs a novel second-order
partial differential equation (PDE) model, composed of a hyperbolic equation and
several boundary conditions. Our method provides satisfactory feature-preserving fil-
tering results and overcomes successfully the blurring and staircase effects. It also
produces sharper edges because of its hyperbolic equation that is based on a sec-
ond time derivative. The proposed PDE model is well-posed, admitting a unique
and weak solution under certain assumptions, which is computed by using an itera-
tive finite difference-based explicit numerical approximation scheme. Some successful
restoration experiments and method comparisons are also described in this paper.
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1 Introduction

The partial differential equations have been increasingly used for solving various image
processing and analysis tasks in the last three decades. Image denoising and restoration
domain has been successfully approached using PDE-based algorithms [1].

The second-order nonlinear PDE-based denoising schemes represent considerably bet-
ter smoothing solutions than the conventional two-dimension image filters [2], since those
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classic filters may generate the unintended blurring effect that affects the edges and other
essential details. These second-order diffusion-based techniques that provide satisfactory
feature-preserving filtering results and overcome successfully the image blurring, have been
developed in PDE form, such as the influential Perona-Malik anisotropic diffusion scheme
and other models derived from it [3, 4], or variational form, such as the total-variation
based models inspired by TV-ROF Denoising [5, 6, 7, 8].

Unfortunately, they could also generate the so-called staircasing, or blocky, effect [9].
The nonlinear fourth-order diffusion-based algorithms, such as those inspired by the in-
fluential isotropic diffusion scheme introduced by You and Kaveh [10], overcome success-
fully the staircase effect, but may produce over-filtering and speckle noise.

Improving the second-order PDE models such that they become able to deal with all
the undesirable effects represents another solution. We have proposed many improved
nonlinear PDE-based restoration techniques in our past works [11, 12, 13]. In this paper
we consider a novel hyperbolic diffusion-based detail-preserving technique for additive
noise removal. The proposed nonlinear second-order hyperbolic PDE denoising model is
detailed in the following section. The differential model is solved in the third section
using an iterative finite difference method-based numerical approximation algorithm that
is constructed by us.

The image restoration experiments and the method comparisons performed by us are
discussed in the fourth section. The conclusions are drawn in the fifth section and the
paper ends with a list of references.

2 Nonlinear Second-order Hyperbolic PDE Model

A novel second-order nonlinear PDE-based model for additive denoising is proposed in
this section. It is based on the next hyperbolic differential equation with several boundary
conditions, having its origin in the P-M anisotropic diffusion [3] and the mean curvature
motion (MCM)[14] and improving both of them:

λ
∂2u

∂t2
+ α

∂u

∂t
− ξ(‖∇u‖)div(ψu(‖∇u‖)∇u) + E · ∇u = 0

u(x, y, 0) = u0(x, y), ∀(x, y) ∈ Ω

∂u

∂t
(0, x, y) = u1(x, y)

u(t, x, y) = 0, ∀(x, y) ∈ ∂Ω

(1)

where α, λ ∈ (0, 1] and the drift term is modeled as:

E(x, y) =

(
e−

x2+y2

ν , e−
x+y
r

)
, ν, r ≥ 1 (2)

It contains a component that controls the speed of the diffusion process and enhances the
image boundaries, which is based on the next function:{

ξ : (0,∞)→ (0,∞)

ξ(s) = γ(βsk + η)
1
k+1

(3)
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where γ, η, β ∈ (0, 4] and k ∈ [0, 2].

The edge-stopping function of this PDE-based denoising model depends on the evolving
image and has the following form:

ψu : [0,∞)→ [0,∞), ψu(s) =
ε

ϕ(u)
∣∣∣ln( s

ϕ(u)

)∣∣∣k + ρ
(

s
ϕ(u)

)k+1
(4)

where ρ, ε ∈ (1, 5].

The conductance parameter in (4) is constructed as the following statistics-based func-
tion:

ϕ(u) = ‖ζµ(‖∇u‖) + δ median(‖∇u‖)‖ (5)

where ζ, δ ∈ (1, 2), µ( ) returns the average value of the argument and median( ) computes
the median value. This diffusivity (edge-stopping) function is properly modeled for an
effective diffusion-based denoising process, being positive, monotonically decreasing and
converging to zero [1, 3].

The proposed nonlinear second-order hyperbolic diffusion-based model provides an ef-
fective additive noise removal and deblurring. Since it is also based on a second time
derivative, it removes successfully the diffusion effect in the vicinity of the image bound-
aries, thus producing much sharper edges and better details.

Also, the considered PDE restoration model is well-posed, since a unique weak solution
exists under certain conditions. That solution, which represents the recovered image,
is determined by solving numerically this nonlinear PDE-based scheme. The numerical
algorithm that solves the hyperbolic model is described in the next section.

3 Numerical Approximation Algorithm

We construct a numerical approximation scheme using the finite-difference method
to solve the proposed differential model [15]. First, the time and space coordinates are
quantized as follows:

x = ih, y = jh, t = n∆t, i ∈ {1, . . . , I}, j ∈ {1, ..., J}, n ∈ {1, ..., N} (6)

Then, the hyperbolic PDE in (1) is expressed as:

λ
∂2u

∂t2
+ α

∂u

∂t
= ξ(‖∆u‖)

(
∂

∂x
(ψu(|∇u|)ux) +

∂

∂y
(ψu(|∇u|)uy)

)
− E · ∇u (7)

Its left term is discretized by using finite differences [15], as follows:

λ
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i,j + 2uni,j − u

n−∆t
i,j
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+ α
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2λ− α∆t

(∆t)2
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i,j

λ

(∆t)2

(8)
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Next, the right term of (7) is approximated by using the central differences [14]. So,
one computes ξi,j = ξ(‖ui,j‖) and ψi,j = ψu(‖ui,j‖), where

‖ui,j‖ ≈

√(
ui+h,j − ui−h,j

2h

)2

+

(
ui,j+h − ui,j−h

2h

)2

.

Then, ∂
∂x (ψu(‖∇u‖)ux) is discretized as ψi+h

2
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2
,j(ui,j − ui−h,j), while

∂
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2
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2
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2
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2
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2
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2
(9)

One may use h = 1 and ∆t = 1, respectively. Thus, one obtains the following implicit
approximation:
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It leads to the next explicit iterative finite difference-based numerical approximation
scheme:
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The explicit numerical approximation scheme (11) is stable and consistent to the nonlinear
hyperbolic PDE-based model. It is also converging fast to its weak solution representing
the filtered image. It is then used in our successful image restoration experiments which
are described in the next section.

4 Denoising Experiments and Method Comparison

The second order hyperbolic diffusion-based filtering technique proposed here has been
applied to hundreds of images corrupted with various levels of white additive Gaussian
noise (AWGN). Several well-known image collections, such as the volumes of the USC-SIPI
database, have been used in our experiments.

The denoising performance of the proposed approach has been assessed using simi-
larity metrics such as Peak Signal to Noise Ratio (PSNR), Mean Squared Error (MSE)
and Structural Similarity Index (SSIM) [16]. Our hyperbolic PDE-based technique re-
moves successfully the additive noise, while avoiding the multiplicative (speckle) noise. It
overcomes properly the image blurring and also alleviates the staircasing effect.

Also, it preserves the image details very well, enhancing the edges and other features.
And it has a low execution time, of around 1 second, because of its fast-converging nu-
merical approximation scheme.
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The described restoration framework outperforms the classic two-dimension filters,
such as the Average, Gaussian and other conventional filters, by providing a much better
smoothing and deblurring. It also performs better than nonlinear second-order diffusion-
based models inspired by Perona-Malik scheme and the total variation approaches derived
from TV-ROF Denoising, since it provides a better filtering, sharper details and reduces
the unintended staircase effect. It may even represent a better denoising solution than
fourth-order PDE-based schemes, like You-Kaveh model, because it avoids the speckle
noise and the image over-filtering.

The average PSNR values achieved by some PDE and non-PDE filtering methods when
applied on the chosen set of corrupted images are displayed in Table 1. One can see that
our restoration techniques gets higher values than other models.

Table 1. Average PSNR values

Restoration Technique Average PSNR value

This PDE-based model 28.3446 (dB)

2D Gaussian filter 23.4271(dB)

Average filter 25.0026 (dB)

Wiener filter 25.8983 (dB)

Perona-Malik 26.3244 (dB)

TV-ROF model 27.8782 (dB)

A method comparison example is described in Figure 1. The original Lenna image is
displayed in (a) and its version corrupted by an additive Gaussian noise of µ = 0.1 and
var = 0.08 is depicted in (b).
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Figure 1: Method comparison example

The restoration achieved by our hyperbolic model is displayed in (c), the Average
filtering is depicted in (d), Gaussian 2D filtering in (e), Wiener filtering in (f), output of
Perona-Malik scheme in (g), TV-ROF Denoising in (h) and the denoising of You-Kaveh
algorithm in (i).

5 Conclusions

We have proposed a nonlinear second order hyperbolic diffusion-based technique for
additive white Gaussian noise removal in this paper. The considered PDE model is based
on a nonlinear diffusion term that assures a strong feature-preserving image restoration,
a component that has the role of controlling the speed of the diffusion process and a
drift term introduced to enhance the image edges. Those edges are also defined by the
second-order time derivative from the considered hyperbolic equation.
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The unique weak solution of this differential model is computed by using a finite-
difference method based iterative explicit numerical approximation algorithm that is sta-
ble, consistent to the PDE-based model and converges quite fast to it. It has been suc-
cessfully applied in our restoration experiments which have proved the effectiveness of the
proposed denoising approach. Our restoration framework has provided proper smooth-
ing results while avoiding the undesirable effects. It outperforms not only the classic 2D
filtering models, but also many nonlinear second-order and fourth-order PDE-based ap-
proaches. Also, it outperforms many of our past PDE-based denoising schemes, such as
those based on parabolic anisotropic diffusion equations [11] or other diffusion-based mod-
els [17], which use equations of the porous materials [18], by providing not only a better
noise removal but also better edges.

Given its edge-preserving and edge-defining character, this nonlinear diffusion-based
filtering model could be further used for edge extraction and applied in the object detection
domain.
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