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UNIQUENESS OF MEROMORPHIC FUNCTION SHARING
THREE SETS WITH ITS DIFFERENCE OPERATOR
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Abstract

In this paper, we investigate the uniqueness problem of meromorphic
function that shares three sets with its difference operator and obtain some
results which extend some earlier results.
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1 Introduction, Definitions and Results

In this paper by meromorphic functions we shall always mean meromorphic
functions in the complex plane. We assume that the reader is familiar with the
standard notations of Nevanlinna value distribution theory as explained in [7], [18].
For a meromorphic function f , we denote by T (r, f) the Nevanlinna characteristic
function of f and by S(r, f) any quantity satisfying S(r, f) = o(T (r, f)) for all r
outside a possible exceptional set of finite logarithmic measure. The meromorphic
function α is said to be a small function of f if T (r, α) = S(r, f). We define
difference operators by

∆cf(z) = f(z + c)− f(z), ∆n
c f(z) = ∆n−1

c (∆cf(z)),

where c is a nonzero complex number and n ≥ 2 is a positive integer. If c = 1, we
denote ∆cf(z) = ∆f(z).

If f − a and g − a have the same set of zeros with same multiplicities then
we say that f and g share the value a CM and if f − a and g − a have the same
set of zeros ignoring multiplicities we say that f and g share the value a IM. In
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addition, if f and g share ∞ CM, then we say that 1
f and 1

g share 0 CM. For
a ∈ C ∪ {∞} and S ⊂ C ∪ {∞}, we denote by

Ef (S) = ∪a∈S{z : f(z)− a = 0, counting multiplicity},

Ef (S) = ∪a∈S{z : f(z)− a = 0, ignoring multiplicity}.

If Ef (S) = Eg(S), we say that f and g share the set S CM and if Ef (S) = Eg(S),
we say that f and g share the set S IM. Especially, if S = {a} then we get the
definition of usual value sharing. In this direction we need the following definitions.

Definition 1. [10] Let l be a nonnegative integer or infinity. For a ∈ C ∪ {∞}
we denote by El(a; f) the set of all a-points of f where an a-point of multiplicity
m is counted m times if m ≤ l and l + 1 times if m > l. If El(a; f) = El(a; g),
we say that f , g share the value a with weight l.

The definition implies that if f , g share a value a with weight l, then z0 is
an a-point of f with multiplicity m(≤ l) if and only if it is an a-point of g with
multiplicity m(≤ l) and z0 is an a-point of f with multiplicity m(> l) if and only
if it is an a-point of g with multiplicity n(> l), where m is not necessarily equal
to n.

We write f , g share (a, l) to mean that f , g share the value a with weight l.
Clearly if f , g share (a, l) then f , g share (a, p) for any integer p, 0 ≤ p < l. Also
we note that f , g share a IM or CM if and only if f , g share (a, 0) or (a,∞)
respectively.

Definition 2. [10] Let l be a nonnegative integer or infinity. For a ∈ C∪{∞} and
S ⊂ C ∪ {∞} we denote by Ef (S, l) = ∪a∈SEl(a; f). Clearly Ef (S) = Ef (S,∞)
and Ef (S) = Ef (S, 0).

Definition 3. [9] Let a ∈ C ∪ {∞}. We denote by N(r, a; f |= 1) the counting
function of simple a-points of f . For a positive integer k we denote by N(r, a; f |≤
k) the counting function of those a-points of f (counted with proper multiplicities)
whose multiplicities are not greater than k. By N(r, a; f |≤ k) we denote the
corresponding reduced counting function. Analogously, we can define N(r, a; f |≥
k) and N(r, a; f |≥ k). Clearly, N(r, a; f) = N(r, a; f |= 1) +N(r, a; f |≥ 2).

Definition 4. [16, 17] Let f and g be two nonconstant meromorphic functions
such that f and g share the value a IM and z0 be an a-point of f with multiplicity
p and an a-point of g with multiplicity q. We denote by NL(r, a; f) the reduced
counting function of those a-points of f for which p > q. In the same way, we can

define NL(r, a; g). Also we denote by N
1)
E (r, a; f) the counting function of those

a-points of f where p = q = 1.

Definition 5. [5, 7] Let f and g share the value a IM. We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ
from multiplicities of the corresponding a-points of g. Clearly N∗(r, a; f, g) =
N∗(r, a; g, f) = NL(r, a; f) +NL(r, a; g).
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Henceforth we denote by S0, S1, S2 and S3 the sets S0 = {w : wn+awn−m+b =
0, where n and n−m have no common factor and m ≥ 2 }, S1 = {1, ω, ω2, . . . ,
ωn−1}, where ωn = 1, S2 = {∞} and S3 = {0}.

The investigation on the uniqueness of meromorphic function sharing sets with
its shift and difference operator is an important subfield of uniqueness theory. In
this field a lot of research work has been done by many researchers (see [8], [12],
[13]).

In 2010, Zhang [19] investigated the relationship between f(z) and its shift
f(z + c) sharing two sets and obtained the following results.

Theorem A. Let f(z) be a nonconstant meromorphic function of finite order
and n ≥ 4 be an integer. If Ef(z)(Sj ,∞) = Ef(z+c)(Sj ,∞) (j = 1, 2), then
f(z) = tf(z + c), where tn = 1.

Theorem B. Let f(z) be a nonconstant meromorphic function of finite order
and n, m be two positive integers such that n ≥ 2m + 4. If Ef(z)(Sj ,∞) =
Ef(z+c)(Sj ,∞) (j = 0, 2), then f(z) = f(z + c).

In 2012, Chen and Chen [4] replaced f(z+ c) with difference operator ∆cf(z)
and obtained the following results.

Theorem C. Let f(z) be a nonconstant meromorphic function of finite order
and n ≥ 7 be an integer. If Ef(z)(S1, 2) = E∆cf(z)(S1, 2) and Ef(z)(S2,∞) =
E∆cf(z)(S2,∞), then ∆cf(z) = tf(z), where tn = 1 and t 6= −1.

Theorem D. Let f(z) be a nonconstant meromorphic function of finite or-
der and n ≥ 3 be an integer. If Ef(z)(S1, 2) = E∆cf(z)(S1, 2), Ef(z)(S2,∞) =

E∆cf(z)(S2,∞) and N(r,∞; f) +N(r, 0; f) = S(r, f), then ∆cf(z) = tf(z), where
tn = 1 and t 6= −1.

Theorem E. Let f(z) be a nonconstant meromorphic function of finite order and
n ≥ 7 be an integer. If Ef(z)(S1, 2) = E∆cf(z)(S1, 2), Ef(z)(S2, 0) = E∆cf(z)(S2, 0)

and lim sup
r→∞

N(r, 0; f)

T (r, f)
< 1, then ∆cf(z) = tf(z), where tn = 1 and t 6= −1.

Theorem F. Let f(z) be a nonconstant meromorphic function of finite order
and n be an integer such that n ≥ 15α

2 + 4 for 0 < α ≤ 2. If Ef(z)(S1, 0) =

E∆cf(z)(S1, 0), Ef(z)(S2,∞) = E∆cf(z)(S2,∞) and N(r,∞; f) + N(r, 0; f) ≤
αT (r, f), then ∆cf(z) = tf(z), where tn = 1 and t 6= −1.

Theorem G. Let f(z) be a nonconstant meromorphic function of finite order
and n, m be two positive integers such that n ≥ 2m + 4. If Ef(z)(Sj ,∞) =
E∆cf(z)(Sj ,∞) (j = 0, 2) and N(r, 0; ∆cf) = T (r, f) + S(r, f), then f(z) =
∆cf(z).

In 2016, Banerjee and Bhattacharyya [2] obtained the following results.
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Theorem H. Let f(z) be a nonconstant meromorphic function of finite order
and n ≥ 6 be an integer. If Ef(z)(S1, 2) = E∆cf(z)(S1, 2) and Ef(z)(S2, 0) =
E∆cf(z)(S2, 0), then ∆cf(z) = tf(z), where tn = 1 and t 6= −1.

Theorem I. Let f(z) be a nonconstant meromorphic function of finite order
and n ≥ 7 be an integer. If Ef(z)(S1, 1) = E∆cf(z)(S1, 1) and Ef(z)(S2, 0) =
E∆cf(z)(S2, 0), then ∆cf(z) = tf(z), where tn = 1 and t 6= −1.

In 2017, Deng, Liu and Yang [6] proved the following result.

Theorem J. Let f(z) be a nonconstant meromorphic function of finite order and
Ef(z)(S1, l) = E∆cf(z)(S1, l), Ef(z)(S2,∞) = E∆cf(z)(S2,∞). If l ≥ 2, n ≥ 5 or
l = 1, n ≥ 7, then ∆cf(z) = tf(z), where tn = 1 and t 6= −1.

In this paper, with the notion of weighted sharing we investigate the rela-
tionship between f(z) and its difference operator ∆cf(z) sharing three sets and
obtained the following results.

Theorem 1. Let f(z) be a nonconstant meromorphic function of finite order and
Ef(z)(S0, l) = E∆cf(z)(S0, l), Ef(z)(Sj ,∞) = E∆cf(z)(Sj ,∞) (j = 2, 3). If one of

the conditions (i) l ≥ 2, n ≥ 2m+3; (ii) l = 1, n ≥ 5m
2 +4; (iii) l = 0, n ≥ 5m+8

holds, then ∆cf(z) = f(z).

Theorem 2. Let f(z) be a nonconstant meromorphic function of finite order
and Ef(z)(S0, l) = E∆cf(z)(S0, l), Ef(z)(S2,∞) = E∆cf(z)(S2,∞), Ef(z)(S3, 0) =
E∆cf(z)(S3, 0). If one of the conditions (i) l ≥ 2, n ≥ 3m + 5; (ii) l = 1,

n ≥ 7m
2 + 11

2 ; (iii) l = 0, n ≥ 6m+ 9 holds, then ∆cf(z) = f(z).

Theorem 3. Let f(z) be a nonconstant meromorphic function of finite order
and Ef(z)(S0, l) = E∆cf(z)(S0, l), Ef(z)(S2, 0) = E∆cf(z)(S2, 0), Ef(z)(S3,∞) =
E∆cf(z)(S3,∞). If one of the conditions (i) l ≥ 2, n ≥ 2m + 3; (ii) l = 1,

n ≥ 5m
2 + 9

2 ; (iii) l = 0, n ≥ 5m+ 8 holds, then ∆cf(z) = f(z).

Theorem 4. Let f(z) be a nonconstant meromorphic function of finite order and
Ef(z)(S0, l) = E∆cf(z)(S0, l), Ef(z)(Sj , 0) = E∆cf(z)(Sj , 0) (j = 2, 3). If one of the

conditions (i) l ≥ 2, n ≥ 3m+ 5; (ii) l = 1, n ≥ 7m
2 + 6; (iii) l = 0, n ≥ 6m+ 10

holds, then ∆cf(z) = f(z).

2 Lemmas

In this section we present some lemmas which will be needed in the sequel.
We shall denote by H and V the following functions:

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
(1)

and

V =

(
F ′

F − 1
− F ′

F

)
−
(

G′

G− 1
− G′

G

)
=

F ′

F (F − 1)
− G′

G(G− 1)
. (2)
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Lemma 1. [16, 17] If two nonconstant meromorphic functions F and G share
(1, 0) and H 6≡ 0, then

N
1)
E (r, 1;F ) ≤ N(r,∞;H) + S(r, F ) + S(r,G).

Lemma 2. [11] Suppose that F and G are two nonconstant meromorphic func-
tions sharing (1, 1) and H 6≡ 0, then

N(r, 1;F |= 1) ≤ N(r,∞;H) + S(r, F ) + S(r,G).

Lemma 3. [11] If two nonconstant meromorphic functions F and G share (1, 2),
then

N0(r, 0;G′) +N(r, 1;G |≥ 2) +N∗(r, 1;F,G) ≤ N(r, 0;G) +N(r,∞;G) +S(r,G),

where N0(r, 0;G) denotes the reduced counting function of those zeros of G′ which
are not the zeros of G(G− 1).

Lemma 4. [1] If two nonconstant meromorphic functions F and G share (1, s)
where 0 ≤ s <∞, then

N(r, 1;F ) +N(r, 1;G)−N1)
E (r, 1;F ) +

(
s− 1

2

)
N∗(r, 1;F,G)

≤ 1

2
[N(r, 1;F ) +N(r, 1;G)].

Lemma 5. [14] Let f be a nonconstant meromorphic function and a0(z), a1(z),
. . . , an(z)(6≡ 0) be meromorphic functions such that T (r, ai(z)) = S(r, f) for
i = 0, 1, 2, . . . , n. Then

T (r, anf
n + an−1f

n−1 + . . . + a1f + a0) = nT (r, f) + S(r, f).

Lemma 6. [3, 5] Let f(z) be a transcendental meromorphic function of finite
order and c ∈ C\{0}. Then

T (r, f(z + c)) = T (r, f) + S(r, f).

Lemma 7. [3, 5] Let f be a nonconstant meromorphic function of finite order ρ
and c ∈ C\{0}. Then for each ε > 0, we have

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= O(rρ−1+ε).

Lemma 8. [2] Let F, G share (1, s) and (∞, 0) where 0 ≤ s <∞. Then

N∗(r, 1;F,G) ≤ 1

s+ 1
{N(r, 0;F ) +N(r, 0;G) + 2N(r,∞;F )}+S(r, F ) +S(r,G).

Lemma 9. [2] Let F, G share (1, s) and (∞, 0) where 0 < s <∞. Then

N∗(r, 1;F,G) ≤ 1

s
{N(r, 0;F ) +N(r,∞;F )}+ S(r, F ) + S(r,G).
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Lemma 10. [15, 16] If F , G share (∞, 0) and V ≡ 0, then F ≡ G.

Lemma 11. Let F = fn+afn−m

−b , G = (∆cf)n+a(∆cf)n−m

−b and V 6≡ 0. If f, ∆cf
share (∞, k), where 0 ≤ k <∞, then

(nk + n− 1)N(r,∞; f |≥ k + 1) ≤ N(r,∞;V ) + S(r, F ) + S(r,G).

Proof. Since f, ∆cf share (∞, k), it follows that F, G share (∞, nk) and so a pole
of F with multiplicity r (≥ nk + 1) is a pole of G with multiplicity s (≥ nk + 1)
and vice-versa. We note that F and G have no poles of multiplicity t where
nk < t < nk + n, so from the definition of V we obtain

(nk + n− 1)N(r,∞; f |≥ k + 1) ≤ N(r, 0;V ) ≤ N(r,∞;V ) + S(r, F ) + S(r,G).

This proves the lemma.

Lemma 12. Let F and G be defined as in Lemma 11 and V 6≡ 0. If f, ∆cf share
(∞,∞), then

(n− 1)N(r,∞; f) ≤ N(r,∞;V ) + S(r, F ) + S(r,G).

Proof. Since f, ∆cf share (∞,∞), the poles of F and G are of equal multi-
plicities. But as F has no pole of multiplicity < n, from the definition of V we
obtain

(n− 1)N(r,∞; f) ≤ N(r, 0;V ) ≤ N(r,∞;V ) + S(r, F ) + S(r,G).

This proves the lemma.

3 Proof of the Theorems

Proof of the Theorem 1. Let F and G be the same as in Lemma 11 and V 6≡ 0.
Since Ef(z)(S0, l) = E∆cf(z)(S0, l) and Ef(z)(Sj ,∞) = E∆cf(z)(Sj ,∞) (j = 2, 3),
it follows that F and G share (1, l), (∞,∞) and (0,∞). We now discuss the
following three cases separately.

Case 1.1. First we suppose that l ≥ 2 and H 6≡ 0. By the second fundamental
theorem of Nevanlinna we have

T (r, F ) ≤ N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F )−N0(r, 0;F ′) + S(r, F ), (3)

where N0(r, 0;F ′) is the reduced counting function of those zeros of F ′ which are
not the zeros of F (F − 1).

If F and G share (1, s) where 0 ≤ s <∞, (∞,∞) and (0,∞), we see from the
definition of V and H

N(r,∞;V ) ≤ N∗(r, 1;F,G) + S(r, F ) + S(r,G) (4)
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and

N(r,∞;H) ≤ N∗(r, 1;F,G) +N0(r, 0;F ′) +N0(r, 0;G′) + S(r, F ) + S(r,G). (5)

Since F and G share (∞,∞) and (0,∞), we have from Lemma 5

N(r, 0;G) = N(r, 0;F ) = N(r, 0; f) +mT (r, f) + S(r, f) (6)

and N(r,∞;G) = N(r,∞;F ) = N(r,∞; f) + S(r, f). (7)

Using (4), (7) and Lemma 9 for s = 2, we obtain from Lemma 12

(2n− 3)N(r,∞; f) ≤ N(r, 0;F ) + S(r, F ). (8)

As F and G share (1, 2), we obtain from (5), Lemma 2 and Lemma 3

N(r, 1;F ) = N(r, 1;F |= 1) +N(r, 1;F |≥ 2)

= N(r, 1;F |= 1) +N(r, 1;G |≥ 2)

≤ N(r,∞;H) +N(r, 1;G |≥ 2) + S(r, F ) + S(r,G)

≤ N∗(r, 1;F,G) +N0(r, 0;F ′) +N0(r, 0;G′)

+N(r, 1;G |≥ 2) + S(r, F ) + S(r,G)

≤ N(r, 0;G) +N(r,∞;G) +N0(r, 0;F ′)

+S(r, F ) + S(r,G). (9)

Using (6)-(9) and Lemma 5, we obtain from (3)

nT (r, f) ≤ N(r, 0;F ) +N(r,∞;F ) +N(r, 0;G)

+N(r,∞;G) + S(r, F ) + S(r,G)

≤ 2N(r, 0;F ) + 2N(r,∞;F ) + S(r, F )

≤
[
2 +

2

2n− 3

]
N(r, 0;F ) + S(r, F )

≤
[
2 +

2

2n− 3

]
{N(r, 0; f) +mT (r, f)}+ S(r, f)

≤
[
2m+ 2 +

2m+ 2

2n− 3

]
T (r, f) + S(r, f),

which contradicts the fact n ≥ 2m+ 3. Hence H ≡ 0. Therefore from (1) we get(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
= 0.

Integrating twice, we obtain

F =
AG+B

CG+D
, (10)

where A, B, C, D are constants with AD − BC 6= 0 and A, C are not simulta-
neously zero as F is not constant. We now consider the following three subcases.
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Subcase 1.1.1. Let AC 6= 0. Then from (10) we have

F − A

C
=

BC −AD
C(CG+D)

. (11)

From (11) we see that the zeros of F− A
C correspond to the poles of G. Since F and

G share (∞,∞), we see from (11) that ∞ as well as A
C are Picard’s exceptional

values of F . So by second fundamental theorem of Nevanlinna, Lemma 5 and (6),
we get

nT (r, f) ≤ N(r, 0;F ) +N(r,∞;F ) +N

(
r,
A

C
;F

)
+ S(r, F )

≤ N(r, 0; f) +mT (r, f) + S(r, f),

which is a contradiction as n ≥ 2m+ 3.

Subcase 1.1.2. Let A 6= 0 and C = 0. Then from (10), we get

F =
A

D
G+

B

D
. (12)

If F has no 1-point, then using (6), (7) and Lemma 5 we obtain by the second
fundamental theorem

nT (r, f) ≤ N(r, 0;F ) +N(r,∞;F ) + S(r, F )

≤ N(r, 0; f) +mT (r, f) +N(r,∞; f) + S(r, f),

which is a contradiction as n ≥ 2m+ 3.

If F and G have some 1-points then from (12) we get A
D + B

D = 1.

Suppose B
D 6= 0. Hence 0 and B

D are the Picard’s exceptional value of F as well
as G since F and G share (0,∞). So using (7) and Lemma 5, we get by second
fundamental theorem

nT (r, f) ≤ N(r,∞;F ) + S(r, F )

≤ N(r,∞; f) + S(r, f),

which contradicts n ≥ 2m+ 3.

Next suppose B
D = 0. Then A

D = 1 and so F = G. Therefore

fn + afn−m = (∆cf)n + a(∆cf)n−m.

Next suppose that ∆cf = hf . If h is not constant, then

fm(hn − 1) = −a(hn−m − 1), (13)

i.e., fm =
−a(hn−m − 1)

hn − 1
=
−a(h− u1)(h− u2). . . (h− un−m−1)

(h− v1)(h− v2). . . (h− vn−1)
, (14)
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where uj = e
2π
j
i

for j = 1, 2, . . . , n−m−1 and vk = e
2π
k
i for k = 1, 2, . . . , n−

1. Since n and n−m have no common factors, all uj and vk are different. Suppose
z0 is the zero of h− vk with multiplicity sk for k = 1, 2, . . . , n− 1. Hence z0 is
the pole of f with multiplicity at least m. Thus

mN(r, vk;h) ≤ N(r, vk;h) ≤ T (r, h) + S(r, h). (15)

Then by (15), we have

2 ≥
n−1∑
k=1

Θ(vk;h) =
n−1∑
k=1

(
1− lim

r→∞

N(r, vk;h)

T (r, h)

)
≥

n−1∑
k=1

(
1− 1

m

)
= (n− 1)

(
1− 1

m

)
,

which is impossible as n ≥ 2m + 3 and m ≥ 2. Therefore h is constant. Since f
is a nonconstant meromorphic function, we deduce from (13) that h = 1. Hence
∆cf = f .

Subcase 1.1.3. Let A = 0 and C 6= 0. Then from (10), we have

F =
1

C
BG+ D

B

. (16)

If F has no 1-point, then as in Subcase 1.1.2 we obtain a contradiction.

If F and G have some 1-points then from (16) we get C
B + D

B = 1.

Suppose D
B 6= 0. We see that ∞ is the Picard’s exceptional value of F as F , G

share (∞,∞). So by second fundamental theorem of Nevanlinna, Lemma 5 and
(6), we get

nT (r, f) ≤ N(r, 0;F ) +N

(
r,
B

D
;F

)
+ S(r, F )

= N(r, 0;F ) +N(r, 0;G) + S(r, F )

≤ 2N(r, 0; f) + 2mT (r, f) + S(r, f),

which is contradiction as n ≥ 2m+ 3.

Next suppose D
B = 0. Then C

B = 1 and so FG = 1. Noting that f and ∆cf share

(0,∞) and (∞,∞) we have N
(
r,∞; ∆cf

f

)
= S(r, f) and hence T

(
r, ∆cf

f

)
=

S(r, f), by Lemma 7. Therefore using Lemmas 5 and 6, we get

2nT (r, f) = 2T (r, F ) +O(1) ≤ T
(
r,

1

F 2

)
+ S(r, F ) ≤ T

(
r,
G

F

)
+ S(r, F )

≤ (n−m)T

(
r,

∆cf

f

)
+ T (r, (∆cf)m + a) + T (r, fm + a) + S(r, f)

≤ 3mT (r, f) + S(r, f),

which is a contradiction as n ≥ 2m+ 3.
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Case 1.2. Let l = 1 and H 6≡ 0. By second fundamental theorem of Nevanlinna,
we have

T (r, F ) + T (r,G) ≤ N(r, 1;F ) +N(r, 0;F ) +N(r,∞;F )

+N(r, 1;G) +N(r, 0;G) +N(r,∞;G)

−N0(r, 0;F ′)−N0(r, 0;G′) + S(r, F ) + S(r,G). (17)

As F and G share (1, 1), we have N
1)
E (r, 1;F ) = N(r, 1;F |= 1) and hence using

(5), Lemma 2, Lemmas 4 and 8 for s = 1, we get

N(r, 1;F ) +N(r, 1;G)

≤ 1

2
[T (r, F ) + T (r,G) +N∗(r, 1;F,G)]

+N0(r, 0;F ′) +N0(r, 0;G′) + S(r, F ) + S(r,G)

≤ 1

4
[2T (r, F ) + 2T (r,G) +N(r, 0;F ) +N(r, 0;G) + 2N(r,∞;F )]

+N0(r, 0;F ′) +N0(r, 0;G′) + S(r, F ) + S(r,G). (18)

Using (4), (7) and Lemma 8 for s = 1, we obtain from Lemma 12

(2n− 4)N(r,∞; f) ≤ N(r, 0;F ) +N(r, 0;G) + S(r, F ) + S(r,G). (19)

From (17)-(19) and Lemma 5, we get

n(T (r, f) + T (r,∆cf))

≤ 5

2
N(r, 0;F ) +

5

2
N(r, 0;G) + 5N(r,∞;F ) + S(r, F ) + S(r,G)

≤
[

5

2
+

5

2n− 4

]
[N(r, 0;F ) +N(r, 0;G)] + S(r, F ) + S(r,G)

≤
[

5m

2
+

5

2
+

5m+ 5

2n− 4

]
{T (r, f) + T (r,∆cf)}+ S(r, f) + S(r,∆cf),

which is a contradiction as n ≥ 5m
2 + 4. Hence H ≡ 0. The rest of the theorem

follows from the proof of Case 1.1.

Case 1.3. Let l = 0 and H 6≡ 0. By second fundamental theorem of Nevanlinna,
we have

T (r, F ) + T (r,G) ≤ N(r, 1;F ) +N(r, 0;F ) +N(r,∞;F )

+N(r, 1;G) +N(r, 0;G) +N(r,∞;G)

−N0(r, 0;F ′)−N0(r, 0;G′) + S(r, F ) + S(r,G). (20)

Since F and G share (1, 0), using (5), Lemma 1, Lemmas 4 and 8 for s = 0,
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we get

N(r, 1;F ) +N(r, 1;G)

≤ 1

2
[T (r, F ) + T (r,G) + 3N∗(r, 1;F,G)]

+N0(r, 0;F ′) +N0(r, 0;G′) + S(r, F ) + S(r,G)

≤ 1

2
[T (r, F ) + T (r,G) + 3N(r, 0;F ) + 3N(r, 0;G) + 6N(r,∞;F )]

+N0(r, 0;F ′) +N0(r, 0;G′) + S(r, F ) + S(r,G). (21)

Using (4), (7) and Lemma 8 for s = 0, we obtain from Lemma 12

(n− 3)N(r,∞; f) ≤ N(r, 0;F ) +N(r, 0;G) + S(r, F ) + S(r,G). (22)

From (20)-(22) and Lemma 5, we get

n(T (r, f) + T (r,∆cf))

≤ 5N(r, 0;F ) + 5N(r, 0;G) + 10N(r,∞;F ) + S(r, F ) + S(r,G)

≤
[
5 +

10

n− 3

]
(N(r, 0;F ) +N(r, 0;G)) + S(r, F ) + S(r,G)

≤
[
5m+ 5 +

10m+ 10

n− 3

]
{T (r, f) + T (r,∆cf)}+ S(r, f) + S(r,∆cf),

which is a contradiction as n ≥ 5m + 8. Hence H ≡ 0. The rest of the theorem
follows from the proof of Case 1.1.

If V ≡ 0, then from Lemma 10 we have F = G and so the theorem follows
from Case 1.1.

Proof of the Theorem 2. Let F and G be the same as in Lemma 11 and
V 6≡ 0. Since Ef(z)(S0, l) = E∆cf(z)(S0, l), Ef(z)(S2,∞) = E∆cf(z)(S2,∞) and
Ef(z)(S3, 0) = E∆cf(z)(S3, 0), it follows that F and G share (1, l), (∞,∞) and
(0, 0). We now discuss the following three cases separately.

Case 2.1. First we suppose that l ≥ 2 and H 6≡ 0. By the second fundamental
theorem of Nevanlinna we have

T (r, F ) ≤ N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F )−N0(r, 0;F ′) + S(r, F ), (23)

where N0(r, 0;F ′) is the reduced counting function of those zeros of F ′ which are
not the zeros of F (F − 1).

If F and G share (1, s) where 0 ≤ s <∞, (∞,∞) and (0, 0), we see from the
definition of V and H

N(r,∞;V ) ≤ N∗(r, 1;F,G) +N∗(r, 0;F,G) + S(r, F ) + S(r,G) (24)

and N(r,∞;H) ≤ N∗(r, 0;F,G) +N∗(r, 1;F,G) +N0(r, 0;F ′)

+N0(r, 0;G′) + S(r, F ) + S(r,G). (25)
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Since F and G share (∞,∞) and (0, 0), we have from Lemma 5

N(r, 0;G) = N(r, 0;F ) = N(r, 0; f) +mT (r, f) + S(r, f), (26)

N(r,∞;G) = N(r,∞;F ) = N(r,∞; f) + S(r, f), (27)

and N∗(r, 0;F,G) ≤ N(r, 0;F ) =
1

2
[N(r, 0;F ) +N(r, 0;G)]. (28)

Using (24), (27) and Lemma 9 for s = 2, we obtain from Lemma 12

(2n− 3)N(r,∞; f) ≤ 3N(r, 0;F ) + S(r, F ). (29)

As F and G share (1, 2), we obtain from (25), Lemma 2 and Lemma 3

N(r, 1;F ) = N(r, 1;F |= 1) +N(r, 1;F |≥ 2)

= N(r, 1;F |= 1) +N(r, 1;G |≥ 2)

≤ N(r,∞;H) +N(r, 1;G |≥ 2) + S(r, F ) + S(r,G)

≤ N∗(r, 0;F,G) +N∗(r, 1;F,G) +N0(r, 0;F ′) +N0(r, 0;G′)

+N(r, 1;G |≥ 2) + S(r, F ) + S(r,G)

≤ N(r, 0;F ) +N(r, 0;G) +N(r,∞;G) +N0(r, 0;F ′)

+S(r, F ) + S(r,G). (30)

Using (25)-(30) and Lemma 5, we obtain from (23)

nT (r, f) ≤ 2N(r, 0;F ) +N(r,∞;F ) +N(r, 0;G)

+N(r,∞;G) + S(r, F ) + S(r,G)

≤ 3N(r, 0;F ) + 2N(r,∞; f) + S(r, F )

≤
[
3 +

6

2n− 3

]
N(r, 0;F ) + S(r, F )

≤
[
3 +

6

2n− 3

]
{N(r, 0; f) +mT (r, f)}+ S(r, f)

≤
[
3m+ 3 +

6m+ 6

2n− 3

]
T (r, f) + S(r, f),

which contradicts the fact n ≥ 3m + 5. Hence H ≡ 0. The rest of the theorem
follows from Case 1.1 of Theorem 1.

Case 2.2. Let l = 1 and H 6≡ 0. By the second fundamental theorem of Nevan-
linna, we have

T (r, F ) + T (r,G) ≤ N(r, 1;F ) +N(r, 0;F ) +N(r,∞;F )

+N(r, 1;G) +N(r, 0;G) +N(r,∞;G)

−N0(r, 0;F ′)−N0(r, 0;G′) + S(r, F ) + S(r,G). (31)
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Since F and G share (1, 1), N
1)
E (r, 1;F ) = N(r, 1;F |= 1) and so using (25),

Lemma 2, Lemmas 4 and 8 for s = 1, we get

N(r, 1;F ) +N(r, 1;G)

≤ 1

2
[T (r, F ) + T (r,G) +N∗(r, 1;F,G) + 2N∗(r, 0;F,G)]

+N0(r, 0;F ′) +N0(r, 0;G′) + S(r, F ) + S(r,G)

≤ 1

4
[2T (r, F ) + 2T (r,G) + 3N(r, 0;F ) + 3N(r, 0;G) + 2N(r,∞;F )]

+N0(r, 0;F ′) +N0(r, 0;G′) + S(r, F ) + S(r,G). (32)

Using (24), (27) and Lemma 8 for s = 1, we obtain from Lemma 12

(n− 2)N(r,∞; f) ≤ N(r, 0;F ) +N(r, 0;G) + S(r, F ) + S(r,G). (33)

From (31)-(33) and Lemma 5, we get

n(T (r, f) + T (r,∆cf))

≤ 7

2
N(r, 0;F ) +

7

2
N(r, 0;G) + 5N(r,∞;F ) + S(r, F ) + S(r,G)

≤
[

7

2
+

5

n− 2

]
[N(r, 0;F ) +N(r, 0;G)] + S(r, F ) + S(r,G)

≤
[

7m

2
+

7

2
+

5m+ 5

n− 2

]
(T (r, f) + T (r,∆cf)) + S(r, f) + S(r,∆cf),

which is a contradiction as n ≥ 7m
2 + 11

2 . Hence H ≡ 0. The rest of the theorem
follows from Case 1.1 of Theorem 1.

Case 2.3. Let l = 0 and H 6≡ 0. By the second fundamental theorem of Nevan-
linna, we have

T (r, F ) + T (r,G) ≤ N(r, 1;F ) +N(r, 0;F ) +N(r,∞;F )

+N(r, 1;G) +N(r, 0;G) +N(r,∞;G)

−N0(r, 0;F ′)−N0(r, 0;G′) + S(r, F ) + S(r,G). (34)

Since F and G share (1, 0), using (25), Lemma 1, Lemmas 4 and 8 for s = 0, we
get

N(r, 1;F ) +N(r, 1;G)

≤ 1

2
[T (r, F ) + T (r,G) + 3N∗(r, 1;F,G) + 2N∗(r, 0;F,G)]

+N0(r, 0;F ′) +N0(r, 0;G′) + S(r, F ) + S(r,G)

≤ 1

2
[T (r, F ) + T (r,G) + 4N(r, 0;F ) + 4N(r, 0;G) + 6N(r,∞;F )]

+N0(r, 0;F ′) +N0(r, 0;G′) + S(r, F ) + S(r,G). (35)
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Using (24), (27), (28) and Lemma 8 for s = 0, we obtain from Lemma 12

(2n− 6)N(r,∞; f) ≤ 3(N(r, 0;F ) +N(r, 0;G)) + S(r, F ) + S(r,G). (36)

From (34)-(36) and Lemma 5, we get

n(T (r, f) + T (r,∆cf))

≤ 6N(r, 0;F ) + 6N(r, 0;G) + 10N(r,∞;F ) + S(r, F ) + S(r,G)

≤
[
6 +

15

n− 3

]
(N(r, 0;F ) +N(r, 0;G)) + S(r, F ) + S(r,G)

≤
[
6m+ 6 +

15m+ 15

n− 3

]
(T (r, f) + T (r,∆cf)) + S(r, f) + S(r,∆cf),

which is a contradiction as n ≥ 6m + 9. Hence H ≡ 0. The rest of the theorem
follows from Case 1.1 of Theorem 1.

If V ≡ 0, then from Lemma 10 we have F = G and so the theorem follows
from Case 1.1 of Theorem 1.

Proof of the Theorem 3. Let F and G be the same as in Lemma 11 and V 6≡ 0.
Since Ef(z)(S0, l) = E∆cf(z)(S0, l), Ef(z)(S2, 0) = E∆cf(z)(S2, 0) and Ef(z)(S3,∞)
= E∆cf(z)(S3,∞), it follows that F and G share (1, l), (∞, 0) and (0,∞). We now
discuss three cases as follows.

Case 3.1. Let l ≥ 2 and H 6≡ 0. By the second fundamental theorem of Nevan-
linna we have

T (r, F ) ≤ N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F )−N0(r, 0;F ′) + S(r, F ), (37)

where N0(r, 0;F ′) is the reduced counting function of those zeros of F ′ which are
not the zeros of F (F − 1).

If F and G share (1, s) where 0 ≤ s <∞, (∞, 0) and (0,∞), we see from the
definition of V and H

N(r,∞;V ) ≤ N∗(r, 1;F,G) + S(r, F ) + S(r,G) (38)

and N(r,∞;H) ≤ N∗(r,∞;F,G) +N∗(r, 1;F,G) +N0(r, 0;F ′)

+N0(r, 0;G′) + S(r, F ) + S(r,G). (39)

Since F and G share (∞, 0) and (0,∞), we have from Lemma 5

N(r, 0;G) = N(r, 0;F ) = N(r, 0; f) +mT (r, f) + S(r, f), (40)

N(r,∞;G) = N(r,∞;F ) = N(r,∞; f) + S(r, f), (41)

and N∗(r,∞;F,G) ≤ N(r,∞;F ). (42)
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Using (38), (41) and Lemma 9 for s = 2, we obtain from Lemma 11 for k = 0

(2n− 3)N(r,∞; f) ≤ N(r, 0;F ) + S(r, F ). (43)

As F and G share (1, 2), we obtain from (39), (42), Lemma 2 and Lemma 3

N(r, 1;F ) = N(r, 1;F |= 1) +N(r, 1;F |≥ 2)

= N(r, 1;F |= 1) +N(r, 1;G |≥ 2)

≤ N(r,∞;H) +N(r, 1;G |≥ 2) + S(r, F ) + S(r,G)

≤ N∗(r,∞;F,G) +N∗(r, 1;F,G) +N0(r, 0;F ′) +N0(r, 0;G′)

+N(r, 1;G |≥ 2) + S(r, F ) + S(r,G)

≤ N(r,∞;F ) +N(r, 0;G) +N(r,∞;G) +N0(r, 0;F ′)

+S(r, F ) + S(r,G). (44)

Using (40), (41), (43), (44) and Lemma 5, we obtain from (37)

nT (r, f) ≤ N(r, 0;F ) + 2N(r,∞;F ) +N(r, 0;G)

+N(r,∞;G) + S(r, F ) + S(r,G)

≤ 2N(r, 0;F ) + 3N(r,∞;F ) + S(r, F )

≤
[
2 +

3

2n− 3

]
N(r, 0;F ) + S(r, F )

≤
[
2 +

3

2n− 3

]
{N(r, 0; f) +mT (r, f)}+ S(r, f)

≤
[
2m+ 2 +

3m+ 3

2n− 3

]
T (r, f) + S(r, f),

which contradicts the fact n ≥ 2m + 3. Hence H ≡ 0. The rest of the theorem
follows from Case 1.1 of Theorem 1.

Case 3.2. Let l = 1 and H 6≡ 0. By the second fundamental theorem of Nevan-
linna, we have

T (r, F ) + T (r,G) ≤ N(r, 1;F ) +N(r, 0;F ) +N(r,∞;F )

+N(r, 1;G) +N(r, 0;G) +N(r,∞;G)

−N0(r, 0;F ′)−N0(r, 0;G′) + S(r, F ) + S(r,G). (45)

Since F and G share (1, 1), N
1)
E (r, 1;F ) = N(r, 1;F |= 1) and so using (39), (42),

Lemma 2, Lemmas 4 and 8 for s = 1, we get

N(r, 1;F ) +N(r, 1;G)

≤ 1

2
[T (r, F ) + T (r,G) +N∗(r, 1;F,G) + 2N∗(r,∞;F,G)]

+N0(r, 0;F ′) +N0(r, 0;G′) + S(r, F ) + S(r,G)

≤ 1

4
[2T (r, F ) + 2T (r,G) +N(r, 0;F ) +N(r, 0;G) + 6N(r,∞;F )]

+N0(r, 0;F ′) +N0(r, 0;G′) + S(r, F ) + S(r,G). (46)
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Using (38), (41) and Lemma 8 for s = 1, we obtain from Lemma 11 for k = 0

(2n− 4)N(r,∞; f) ≤ N(r, 0;F ) +N(r, 0;G) + S(r, F ) + S(r,G). (47)

Using (40), (41), (46), (47) and Lemma 5, we get from (45)

n(T (r, f) + T (r,∆cf))

≤ 5

2
N(r, 0;F ) +

5

2
N(r, 0;G) + 7N(r,∞;F ) + S(r, F ) + S(r,G)

≤
[

5

2
+

7

2n− 4

]
(N(r, 0;F ) +N(r, 0;G)) + S(r, F ) + S(r,G)

≤
[

5m

2
+

5

2
+

7m+ 7

2n− 4

]
(T (r, f) + T (r,∆cf)) + S(r, f) + S(r,∆cf),

which is a contradiction as n ≥ 5m
2 + 9

2 . Hence H ≡ 0. The rest of the theorem
follows from Case 1.1 of Theorem 1.

Case 3.3. Let l = 0 and H 6≡ 0. Using the second fundamental theorem of
Nevanlinna, we have

T (r, F ) + T (r,G) ≤ N(r, 1;F ) +N(r, 0;F ) +N(r,∞;F )

+N(r, 1;G) +N(r, 0;G) +N(r,∞;G)

−N0(r, 0;F ′)−N0(r, 0;G′) + S(r, F ) + S(r,G). (48)

Since F and G share (1, 0), using (39), (42), Lemma 1, Lemmas 4 and 8 for
s = 0, we get

N(r, 1;F ) +N(r, 1;G)

≤ 1

2
[T (r, F ) + T (r,G) + 3N∗(r, 1;F,G) + 2N∗(r,∞;F,G)]

+N0(r, 0;F ′) +N0(r, 0;G′) + S(r, F ) + S(r,G)

≤ 1

2
[T (r, F ) + T (r,G) + 3N(r, 0;F ) + 3N(r, 0;G) + 8N(r,∞;F )]

+N0(r, 0;F ′) +N0(r, 0;G′) + S(r, F ) + S(r,G). (49)

Using (38), (41) and Lemma 8 for s = 0, we obtain from Lemma 11 for k = 0

(n− 3)N(r,∞; f) ≤ N(r, 0;F ) +N(r, 0;G) + S(r, F ) + S(r,G). (50)

Using (40), (41), (49), (50) and Lemma 5, we get from (48)

n(T (r, f) + T (r,∆cf))

≤ 5N(r, 0;F ) + 5N(r, 0;G) + 12N(r,∞;F ) + S(r, F ) + S(r,G)

≤
[
5 +

12

n− 3

]
(N(r, 0;F ) +N(r, 0;G)) + S(r, F ) + S(r,G)

≤
[
5m+ 5 +

12m+ 12

n− 3

]
(T (r, f) + T (r,∆cf)) + S(r, f) + S(r,∆cf),

which is a contradiction as n ≥ 5m + 8. Hence H ≡ 0. The rest of the theorem
follows from Case 1.1 of Theorem 1.
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If V ≡ 0, then from Lemma 10 we have F = G and so the theorem follows
from Case 1.1 of Theorem 1.

Proof of the Theorem 4. Let F and G be the same as in Lemma 11 and V 6≡ 0.
Since Ef(z)(S0, l) = E∆cf(z)(S0, l) and Ef(z)(Sj , 0) = E∆cf(z)(Sj , 0) (j = 2, 3), it
follows that F and G share (1, l), (∞, 0) and (0, 0). We now discuss the following
cases.

Case 4.1. We assume that l ≥ 2 and H 6≡ 0. By the second fundamental theorem
of Nevanlinna we have

T (r, F ) ≤ N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F )−N0(r, 0;F ′) + S(r, F ), (51)

where N0(r, 0;F ′) is the reduced counting function of those zeros of F ′ which are
not the zeros of F (F − 1).

If F and G share (1, s) where 0 ≤ s <∞, (∞, 0) and (0, 0), from the definition
of V and H it is obvious that

N(r,∞;V ) ≤ N∗(r, 1;F,G) +N∗(r, 0;F,G) + S(r, F ) + S(r,G) (52)

and

N(r,∞;H) ≤ N∗(r, 0;F,G) +N∗(r,∞;F,G) +N∗(r, 1;F,G)

+N0(r, 0;F ′) +N0(r, 0;G′) + S(r, F ) + S(r,G). (53)

Since F and G share (∞, 0) and (0, 0), we have from Lemma 5

N(r, 0;G) = N(r, 0;F ) = N(r, 0; f) +mT (r, f) + S(r, f), (54)

N(r,∞;G) = N(r,∞;F ) = N(r,∞; f) + S(r, f), (55)

N∗(r, 0;F,G) ≤ N(r, 0;F ) =
1

2
[N(r, 0;F ) +N(r, 0;G)] (56)

and N∗(r,∞;F,G) ≤ N(r,∞;F ). (57)

Using (52), (55), (56) and Lemma 9 for s = 2, we obtain from Lemma 11 for
k = 0

(2n− 3)N(r,∞; f) ≤ 3N(r, 0;F ) + S(r, F ) + S(r,G). (58)

As F and G share (1, 2), we obtain from (53), (56), (57), Lemmas 2 and 3

N(r, 1;F ) = N(r, 1;F |= 1) +N(r, 1;F |≥ 2)

= N(r, 1;F |= 1) +N(r, 1;G |≥ 2)

≤ N(r,∞;H) +N(r, 1;G |≥ 2) + S(r, F ) + S(r,G)

≤ N∗(r, 0;F,G) +N∗(r,∞;F,G) +N∗(r, 1;F,G) +N0(r, 0;F ′)

+N0(r, 0;G′) +N(r, 1;G |≥ 2) + S(r, F ) + S(r,G)

≤ N(r,∞;F ) +N(r, 0;F ) +N(r, 0;G) +N(r,∞;G)

+N0(r, 0;F ′) + S(r, F ) + S(r,G). (59)
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Using (54), (55), (58), (59) and Lemma 5, we obtain from (51)

nT (r, f) ≤ 3N(r, 0;F ) + 3N(r,∞;F ) + S(r, F )

≤
[
3 +

9

2n− 3

]
N(r, 0;F ) + S(r, F )

≤
[
3 +

9

2n− 3

]
{N(r, 0; f) +mT (r, f)}+ S(r, f)

≤
[
3m+ 3 +

9m+ 9

2n− 3

]
T (r, f) + S(r, f),

which contradicts the fact that n ≥ 3m+5. Hence H ≡ 0. The rest of the theorem
follows from Case 1.1 of Theorem 1.

Case 4.2. Let l = 1 and H 6≡ 0. By the second fundamental theorem of Nevan-
linna, we have

T (r, F ) + T (r,G) ≤ N(r, 1;F ) +N(r, 0;F ) +N(r,∞;F )

+N(r, 1;G) +N(r, 0;G) +N(r,∞;G)

−N0(r, 0;F ′)−N0(r, 0;G′) + S(r, F ) + S(r,G). (60)

Since F and G share (1, 1), we have N
1)
E (r, 1;F ) = N(r, 1;F |= 1) and so using

(53), (56), (57), Lemma 2, Lemmas 4 and 8 for s = 1, we get

N(r, 1;F ) +N(r, 1;G)

≤ 1

2
[T (r, F ) + T (r,G) +N∗(r, 1;F,G)] +N∗(r, 0;F,G)

+N∗(r,∞;F,G) +N0(r, 0;F ′) +N0(r, 0;G′) + S(r, F ) + S(r,G)

≤ 1

4
[2T (r, F ) + 2T (r,G) + 3N(r, 0;F ) + 3N(r, 0;G) + 6N(r,∞;F )]

+N0(r, 0;F ′) +N0(r, 0;G′) + S(r, F ) + S(r,G). (61)

Using (52), (55), (56) and Lemma 8 for s = 1, we obtain from Lemma 11 for
k = 0

(n− 2)N(r,∞; f) ≤ N(r, 0;F ) +N(r, 0;G) + S(r, F + S(r,G). (62)

Using (54), (55), (61), (62) and Lemma 5, we get from (60)

n(T (r, f) + T (r,∆cf))

≤ 7

2
N(r, 0;F ) +

7

2
N(r, 0;G) + 7N(r,∞;F ) + S(r, F ) + S(r,G)

≤
[

7

2
+

7

n− 2

]
(N(r, 0;F ) +N(r, 0;G)) + S(r, F ) + S(r,G)

≤
[

7m

2
+

7

2
+

7m+ 7

n− 2

]
(T (r, f) + T (r,∆cf)) + S(r, f) + S(r,∆cf),

which is a contradiction as n ≥ 7m
2 + 6. Hence H ≡ 0. The rest of the theorem

follows from the proof of Case 1.1 of Theorem 1.
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Case 4.3. Let l = 0 and H 6≡ 0. By the second fundamental theorem of Nevan-
linna, we have

T (r, F ) + T (r,G) ≤ N(r, 1;F ) +N(r, 0;F ) +N(r,∞;F )

+N(r, 1;G) +N(r, 0;G) +N(r,∞;G)

−N0(r, 0;F ′)−N0(r, 0;G′) + S(r, F ) + S(r,G). (63)

Since F and G share (1, 0), using (53), (56), (57), Lemma 1, Lemmas 4 and 8
for s = 0, we get

N(r, 1;F ) +N(r, 1;G)

≤ 1

2
[T (r, F ) + T (r,G) + 3N∗(r, 1;F,G)] +N∗(r, 0;F,G)

+N∗(r,∞;F,G) +N0(r, 0;F ′) +N0(r, 0;G′) + S(r, F ) + S(r,G)

≤ 1

2
[T (r, F ) + T (r,G) + 4N(r, 0;F ) + 4N(r, 0;G) + 8N(r,∞;F )]

+N0(r, 0;F ′) +N0(r, 0;G′) + S(r, F ) + S(r,G). (64)

Using (52), (55), (56) and Lemma 8 for s = 0, we obtain from Lemma 11 for
k = 0

(2n− 6)N(r,∞; f) ≤ 3[N(r, 0;F ) +N(r, 0;G)] + S(r, F ) + S(r,G). (65)

Using (54), (55), (64), (65) and Lemma 5, we get from (63)

n(T (r, f) + T (r,∆cf))

≤ 6N(r, 0;F ) + 6N(r, 0;G) + 12N(r,∞;F ) + S(r, F ) + S(r,G)

≤
[
6 +

18

n− 3

]
(N(r, 0;F ) +N(r, 0;G)) + S(r, F ) + S(r,G)

≤
[
6m+ 6 +

18m+ 18

n− 3

]
(T (r, f) + T (r,∆cf)) + S(r, f) + S(r,∆cf),

which is a contradiction as n ≥ 6m+ 10. Hence H ≡ 0. The rest of the theorem
follows from Case 1.1 of Theorem 1.

If V ≡ 0, then from Lemma 10 we have F = G and so the theorem follows
from Case 1.1 of Theorem 1.
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