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Series III: Mathematics, Informatics, Physics, 77-88

EXPONENTIAL GROWTH FOR A SEMI-LINEAR
VISCOELASTIC HEAT EQUATION WITH Lpρ(Rn)-NORM IN

BI-LAPLACIAN TYPE

Abdelkader BRAIK1, Yamina MILOUDI2 and Khaled ZENNIR*3

Abstract

The problem considered here is a class of semi-linear visco-elastic heat
equations in bi-Laplacian type. We introduce a weighted space to overcome
the difficulties in the non-compactness of some operators and some useful
Sobolev embedding inequalities. Under certain conditions on the parameters
p, ρ, η, we prove that the local solutions grow as an exponential function in
the Lpρ-norm, i.e. ‖u‖p

Lpρ(Rn) → +∞ as t tends to +∞.
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1 Introduction and related results

In this paper, we are interested in the exponential growth as t −→ +∞ for
the following problem

u′ + Φ∆2
x

(
u−

∫ t
0 η (t− s)u (x, s) ds

)
= |u|p−2 u,

u (x, 0) = u0 (x) ,

(1)

where x ∈ Rn, t ∈ (0, T ), p, n ≥ 2, u (x, t) ≡ u, ρ (x) ≡ ρ, Φ (x) ≡ Φ and u0 is
the initial data which is chosen in suitable spaces. We assume that the functions
ρ,Φ and η satisfy conditions:
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(H1) Φ(x) : Rn −→ R∗+, and (Φ(x))−1 = ρ(x), ∀x ∈ Rn. the coefficient Φ(x)
represents the speed of sound at the point x ∈ Rn.

(H2) ρ : Rn −→ R∗+, ρ(x) ∈ C0,σ(Rn) with σ ∈ (0, 1) and ρ ∈ Ln/2(Rn)
⋂
L∞(Rn).

(H3) It is assumed for function η that η : R+ −→ R+, bounded of C1, and
non-increasing functions, and for all s ≥ 0,

η(s) ≥ 0, η′(s) ≤ 0 and 1−
∫ +∞

0
η(s)ds = k > 0. (2)

The exponent p is a real constant and satisfies,


p > 1 if n = 1, 2, 3, 4

1 < p < n
n−4 if n > 4

(3)

Further on, we use the following short notations:

‖u (x, t)‖Lr(Rn) ≡ ‖u‖r , r > 1.

For the case when Φ ≡ 1, many researchers studied the initial boundary value
problem of the type of (1) in a bounded domain. The main results are mainly
concerned with the existence/nonexistence, stabilities and long-time dynamics,
and many results may be found in the literature ([3], [6], [9], [13], [14], [18],
[22]...)
In [35], the authors considered the following p-Laplacian evolution equation with
a nonlocal source term

u′ − div
(
|∇u|p−2∇u

)
= um

∫
Ω
un(y, t)dy (4)

subject to initial data

u(x, 0) = u0(x), x ∈ Ω

and weighted non-linear non-local boundary and conditions

u(x, t) =

∫
Ω
φ(x, y)ul(y, t)dy, x ∈ Ω, t ∈ (0, T ),

where p, l,m > 0,m ≥ 0 and Ω is an open bounded domain of RN , N ≥ 1.
The author proved the global existence and blow-up in time properties of non-
negative solutions by using the upper and lower method under certain conditions
on different parameters.
Levine and al. [15] got the global existence and non-existence of solution for the
equation:

|u|l−2 u′ − div(|∇u|m−2∇u) = f(u). (5)
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Pucci and Serrin [25] discussed the stability of solution for (5). Pang and al. [22],
[21] and Berrimi and Messaoudi [3] gave the sufficient and optimal conditions for
the blow-up results to a class of solutions of (5) with positive/negative initial
energy.

When Φ 6= 1, in the pioneer paper [10], the author considered a semi-linear
hyperbolic problem

utt − Φ(x)∆xu+ δu′ + λf(u) = η(x), x ∈ Rn, t > 0,

for δ > 0, n ≥ 3 and ρ(x) = (Φ(x))−1 related with L
n
2 (Rn). The author introduced

an energy space D1,2(Rn)× L2
g(Rn) and proved a local existence of solutions and

global attractor.
Papadopoulos and Stavarakakis [23] studied a degenerate nonlocal quasi-linear
wave equation of Kirchhoff type with a weak dissipative term and established the
existence blow up results of

utt − Φ(x) ‖∇u(t)‖2 ∆xu+ δu′ = |u|a u, x ∈ Rn, t ≥ 0,

where the weighted function related with L
n
2 (Rn) ∩ L∞(Rn).

For the viscoelastic problem

utt −∆xu+

∫ t

0
g(t− s)∆xu(x, s)ds = 0, x ∈ Rn, t > 0

Kafini and Messaoudi [7], looked into the equation, for compactly supported initial
data u0, u1

u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ Rn

For an exponentially decaying relaxation function g, they obtained a polynomial
decay for the first energy of solution.
Recently, Zennir [31] considered the following problem

ρ(x)
(
|u′|q−2u′

)′ −M(‖∇xu‖22)∆xu+

∫ t

0
g(t− s)∆xu(s)ds = 0, x ∈ Rn, t > 0 (6)

where q, n ≥ 2 and M is a positive C1 function satisfying for s ≥ 0,m0 > 0,m1 ≥
0, γ ≥ 1, M(s) = m0 + m1s

γ . The author proved a very general decay result of
solutions for a wider class of relaxation functions.
In the present work, we consider problem (1) with appropriate conditions on p, η,
and then we show that the local solutions grow exponentially, when the initial
energy is negative/positive. We will see that the influence of the memory term is
unable to stabilize the problem.

We organize our article as follows: First, we give the preliminary results, then
we give the proof of our main result, in two cases:
1) With negative initial energy.
2) With positive initial energy.
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2 Preliminaries and technical Lemmas

We need to define the weighted spaces in the following definition

Definition 2.1. [27] We define the function spaces of our problem and its norm
as follows:

D2,2(Rn) =
{
f ∈ L2n/(n−4)(Rn) : ∆xf ∈ L2(Rn)

}
(7)

and the spaces L2
g(Rn) to be the closure of C∞0 (Rn) functions with respect to the

inner product

(f, h)L2
g(Rn) =

∫
Rn
gfhdx.

For 1 < q <∞, if f is a measurable function on Rn, we define

‖f‖Lqg(Rn) =

(∫
Rn
g|f |qdx

)1/q

. (8)

and that D2,2(Rn) can be embedded continuously in L2n/(n−4)(Rn),i.e there exists
k > 0 such that

‖u‖L2n/(n−4) ≤ k‖u‖D2,2 . (9)

The separable Hilbert space L2
g(Rn) with

(f, f)L2
g(Rn) = ‖f‖2L2

g(Rn).

consist of all f for which ‖f‖Lqg(Rn) <∞, 1 < q < +∞.
The following Lemma generalized version of Poincaré’s inequality is frequently

used.

Lemma 2.2. (K. J. Brown [4], Lemma 2.1) Let ρ ∈ L
n
2 (Rn). Then there exists

δ = k−2 ‖ρ‖−1

L
n
2
> 0 s.t.∫

Rn
|∆xu|2 dx ≥ δ

∫
Rn
ρ |u|2 dx, ∀u ∈ C∞0 (Rn)

Lemma 2.3. (K. J. Brown [4], Lemma 2.1) Suppose that ρ ∈ L
2n

2n−pn+2p (Rn).
Then, the continuous embedding

D2,2(Rn) ⊂ Lpρ(Rn), ∀1 ≤ p ≤ 2n

n− 2

holds.

Lemma 2.4. ( [11], Lemma 2.4 ) Let ρ ∈ L1(Rn)∩L∞(Rn). Then, the continuous
embedding

Lpρ(Rn) ⊂ Lqρ(Rn)

holds for any 1 ≤ q ≤ p <∞.
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Lemma 2.5. For any u ∈ D2,2(Rn)

‖u‖L2
g(Rn) ≤ ‖g‖Ln/2(Rn)‖∆xu‖L2(Rn). (10)

We also set

E1 =

(
1

2
− 1

p

)
λ2 where λ = C

−1
p−2B

−p
p−2 . (11)

3 Main results and proofs

We are now ready to present the main exponential growth result. We begin
by stating the local existence in time for (1) (see [11], [25]) .

We will use without mention the evolution triple for the spaces, which is

D2,2(Rn) ⊂ L2
ρ(Rn) ⊂ D−1,2(Rn), (12)

Definition 3.1. The weak solutions of (1) are given by the function u s.t.

u ∈ L2
(
0, T ;D2,2(Rn)

)
, u′ ∈ L2

(
0, T ;L2

ρ(Rn)
)
,

where
u(x, 0) = u0(x) ∈ D2,2(Rn).

And for all Ψ ∈ C∞0 ([0, T ]× Rn), u satisfies the generalized formula∫ t
0

∫
Rn ρu

′ (τ) Ψ (τ) dxdτ −
∫ t

0

∫
Rn ρ |u (τ)|p−2 u (τ) Ψ (τ) dxdτ

−
∫ t

0

∫
Rn ∆x

(∫ s
0 η (t− ν)u (ν) ds− u (τ)

)
∆xΨ (τ) dxdτ = 0, ∀t ≥ 0.

(13)

The energy functional E (t) associated with our problem is given as follows

E (t) = 1
2

(
1−

∫ t
0 η (s) ds

)
‖∆xu‖22 + 1

2(η �∆xu) (t)− 1
p ‖u‖

p
Lpρ
. (14)

where

(η �∆xw) (t) =

∫ t

0
η (t− s) ‖∆xw (x, t)−∆xw (x, s)‖22 ds.

Lemma 3.2. The energy functional introduced in (14) is a non-increasing func-
tion along the solution of (1) and satisfies

E′ (t) = −‖u′‖2L2
ρ

+ 1
2

(
(η′ �∆xu) (t)− η (t) ‖∆xu‖22

)
≤ 0,∀t ≥ 0 (15)

and then by (H3)
E (t) ≤ E (0) , for all t ∈ [0, T ). (16)

Proof. We multiply the equation (1) by ρ(x)u′, and we integrate by parts over
Rn, we have

E(t)− E(0) = −
∫ t

0

(
‖uτ‖2L2ρ − 1

2 (η′ �∆xu) (τ) + 1
2η (τ) ‖∆xu‖22

)
dτ,

This gives (16) for all t ≥ 0.
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3.1 Growth with negative initial energy

Theorem 3.3. Suppose that the (3) holds, for u0(x) ∈ D2,2(Rn) satisfying

E(0) < 0,

and ∫ t

0
η (s) ds <

p− 2

p− 1
. (17)

Then the solution of the problem (1) grows exponentially with the Lpρ-norm.

Proof. As in [29] We set

H (t) := −E (t) . (18)

By (15) we have
d

dt
H (t) := − d

dt
E (t) .

Consequently, we have
H (0) > 0.

This imply that
H (t) ≥ H (0) > 0. (19)

Then,

H (t)− 1

p
‖u‖p

Lpρ
≤ 0.

Thus
1

p
‖u‖p

Lpρ
≥ H (t) ≥ H (0) > 0. (20)

for every t in [0;T ).
Let us now define another functional

L (t) := H (t) +
ε

2
‖u‖2L2

ρ
, (21)

for ε small positive constant. By differentiating the functional L (t) and using (1),
we get

L′ (t) = H ′ (t) + ε
∫
Rn ρuu

′dx

= H ′ (t) + ε
∫
Rn ρu

[
−Φ∆2

x

(
u−

∫ t
0 η (t− s)u (s) ds

)
+ |u|p−2 u

]
dx

= H ′ (t) + ε
[
−‖∆xu‖22 +

∫
Rn
∫ t

0 η (t− s) ∆xu (s) ∆xudsdx+ ‖u‖p
Lpρ

]
= H ′ (t) + ε

[
−‖∆xu‖22 −

∫
Rn
∫ t

0 η (t− s) ∆xu (∆xu (t)−∆xu (s)) dsdx

+
∫
Rn
∫ t

0 η (t− s) |∆xu|2 dsdx+ ‖u‖p
Lpρ

]
(22)
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By Cauchy-Schwartz and Young’s inequalities, we estimate I (t) where

I (t) =

∫
Rn

∫ t

0
η (t− s) ∆xu (∆xu (t)−∆xu (s)) dsdx

I (t) ≤ t
0

(∫
Rn η (t − s) |∆xu|2 dx

) 1
2
(∫

Rn η (t − s) |(∆xu (t)−∆xu (s))|2 dx
) 1

2
ds

≤ 1
2

(∫ t
0 η (s) ds ‖∆xu‖22 + (η �∆xu) (t)

)
.

(23)
By (23), (22), we get

L′ (t) = H ′ (t)− ε
(

1− 1
2

∫ t
0 η (s) ds

)
‖∆xu‖22 −

ε
2(η �∆xu) (t) + ε ‖u‖p

Lpρ
,

(24)
we then substitute for ‖u‖p

Lpρ
from (14) hence, (24) becomes

L′ (t) = H ′ (t)− ε
(

1− 1
2

∫ t
0 η (s) ds

)
‖∆xu‖22 −

ε
2η �∆xu (t)

+ε
[
pH (t) + p

2

(
1−

∫ t
0 η (s) ds

)
‖∆xu‖22 + p

2η �∆xu (t)
]

≥ H ′ (t) + εpH (t) + ε
(
p
2 − 1−

(p
2 −

1
2

) ∫ t
0 η (s) ds

)
‖∆xu‖22

+ε
(p

2 −
1
2

)
(η �∆xu) (t) ,

(25)

Taking δ1 = p
2 − 1−

(p
2 −

1
2

) ∫ t
0 η (s) ds, then by (14), we get

L′ (t) ≥ H ′ (t) + ε (p− δ1)H (t) + εδ1 ‖∆xu‖22 + ε
(p

2 −
1
2

)
η �∆xu (t)

−εδ1
1
2

(
1−

∫ t
0 η (s) ds

)
‖∆xu‖22 −

1
2εδ1η �∆xu (t) + 1

pεδ1 ‖u‖pLpρ

≥ H ′ (t) + ε (p− δ1)H (t) + εδ1

(
1
2 −

∫ t
0 η (s) ds

)
‖∆xu‖22

+ ε
2 (p− 1− δ1) η �∆xu (t) + εδ1

p ‖u‖
p
Lpρ

≥ H ′ (t) + C1H (t) + C2η �∆xu (t) + C3 ‖∆xu‖22 + C4 ‖u‖pLpρ ,

(26)

by inequality (17), we can get δ1 > 0 and Ci > 0, ∀ i = 1, 2, 3, 4.

This implies

L′ (t) ≥ C
(
H (t) +H ′ (t) + (η �∆xu) (t) + ‖∆xu‖22 + ‖u‖p

Lpρ

)
(27)
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where

C = min {1, C1, C2, C3, C4} .

Therefore by (21), we have

L (t) = H (t) + ε
2

(
‖∆xu‖22 + ‖u‖2L2

ρ

)
≤ H (t) + ε

2

(
‖∆xu‖22 + c0

(
‖u‖p

Lpρ

) 2
p

) (28)

Since 2
p < 1, now applying the following inequality

ar ≤
(

1 +
1

b

)
(a+ b) , for all a, b ∈ R+ and r ∈ [0, 1]. (29)

Then from (20), we have(
‖u‖p

Lpρ

) 2
p ≤

(
1 + 1

H(0)

)(
‖u‖p

Lpρ
+H (0)

)
≤ c1 ‖u‖pLpρ ,

(30)

where c1 = c0(1 + (H (0))−1)(p+ 1)p−1.

by substituting (30) in (28), we get

L (t) ≤ H (t) + ε
2 ‖∆xu‖22 + εc1

2 ‖u‖
p
Lpρ

≤ H (t) +H ′ (t) + ε
2 ‖∆xu‖22 + εc1

2 ‖u‖
p
Lpρ

+ η �∆xu (t)

≤ d0

(
H (t) +H ′ (t) + (η �∆xu) (t) + ‖∆xu‖22 + ‖u‖p

Lpρ

)
,

(31)

this implies that, for some positive constant Γ s. t.

L′ (t) ≥ ΓL (t) . (32)

We integrate now (32) over [0, t] to obtain

L (t) ≥ L (0) eγt. (33)

Lemma 3.4. Let u be the solution of problem (1). There exists a positive constant
β, such that

β ‖u‖p
Lpρ
≥ L (t) . (34)
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Proof. Using (18), (21) and (29), to obtain

L (t) = H (t) + ε
2

(
‖∆xu‖22 + ‖u‖2L2

ρ

)
≤ 1

p ‖u‖
p
Lpρ
− 1

2

(
1− ε−

∫ t
0 η (s) ds

)
‖∆xu‖22 −

1
2(η �∆xu) (t) + εc0

2

(
‖u‖p

Lpρ

) 2
p

≤≤ 1
p ‖u‖

p
Lpρ

+ εc0
2

(
1 + 1

H(0)

)(
1 + 1

p

)
‖u‖p

Lpρ

≤
(

1
p + εc0

2

(
1 + 1

H(0)

)(
1 + 1

p

))
‖u‖p

Lpρ
.

(35)
By (33) and (34), we deduce that the solution of (1) in the Lpρ-norm growths
exponentially.

3.2 Growth with positive initial energy

Lemma 3.5. [28] Let u be a solution of (1). Suppose that (3) holds. Assume
further that

E(0) < E1

and
‖u0‖D2,2(Rn) > λ.

Then there exists a constant β > α such that

‖u‖D2,2(Rn) > β.

The following Theorem in our second main result.

Theorem 3.6. Suppose that (3) holds. Let u0 ∈ D2,2(Rn) satisfying ‖u0‖D2,2(Rn) >
λ and E1 > E(0) ≥ 0. Then the local solutions of the problem (1) grow up as an
exponential function as t −→∞ with Lpρ-norm.

Proof. Now, we set
H(t) = E1 − E(t) (36)

Then, by (15), we have

H ′(t) = −E′(t) ≥ 0

Consequently,

H(0) = E1 − E(0) > 0

It is clear that,

0 < H(0) ≤ H(t)

By (11), E(t) and Lemma (3.5), we have
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H(t) = E1 − 1
2

(
1−

∫ t
0 η (s) ds

)
‖∆xu‖22 −

1
2(η �∆xu) (t) + 1

p ‖u‖
p
Lpρ

≤ E1 − 1
2λ

2 + 1
p ‖u‖

p
Lpρ

≤ −1
pλ

2 + 1
p ‖u‖

p
Lpρ

< 1
p ‖u‖

p
Lpρ
.

(37)

This implies that
1

p
‖u‖p

Lpρ
> H(t) ≥ H(0) > 0. (38)

Then, it is not hard to follow the steps of the proof for Theorem 3.3.

References

[1] Benaissa,A., Ouchenane, D. and Zennir, Kh., Blow up of positive initial-
energy solutions to systems of nonlinear wave equations with degenerate
damping and source terms, Nonl. stud. 19 (2012), no. 4, 523-535.

[2] Beniani, A.,Benaissa, A. and Zennir, Kh., Polynomial Decay of Solutions to
the Cauchy Problem for a Petrovsky?Petrovsky System in Rn, Acta. Appl.
Math. 146 (2016), 67-79.

[3] Berrimi, S. and Messaoudi, S. A., A decay result for a quasilinear parabolic
system, Prog. Nonl. Di. Eq. App. 63 (2005) 4350.

[4] Brown, K. J. and Stavrakakis, N. M., Global bifurcation results for a semi-
linear elliptic equation on all of RN , Duke Math J, 85 (1996), no. 1, 77-94.

[5] Cavalcanti, M. M., Domingos, V. N. and Soriano, J. A.: Exponential decay for
the solution of semilinear viscoelastic wave equations with localized damping,
Elec. J. Diff. Eq., 2002 (2002) 1-14.

[6] Li, C., Sun, L. and Fang, Z. B., Global and blow-up solutions for quasilinear
parabolic equations with a gradient term and nonlinear boundary flux, J. Ineq.
Appl., (2014), 2014:234.

[7] Kafini, M. and Messaoudi, S. A., On the uniform decay in viscoelastic prob-
lems in Rn, App. Math. Comp., 215 (2009), 1161-1169.

[8] Kafini, M. and Messaoudi, S. A., A blow-up result in a Cauchy viscoelastic
problem, Appl. Math. Lett. 21 (2008) 549553.

[9] Kalantarov, V. K. and Ladyzhenskaya, O. A., Te occurrence of collapse for
quasilinear equations of parabolic and hyperbolic types. J. Soviet Math., 10
(1978), no. 1, 5370.



Semi-linear viscoelastic heat equation in bi-Laplacian 87

[10] Karachalios, N. I. and Stavrakakis, N.M., Existence of a global attractor for
semilinear dissipative wave equations on RN , J. Diff. Eq. 157 (1999), 183205.

[11] Karachalios, N. and Stavrakakis, N., Asymptotic behavior of soulitions of
some nonlinear damped wave equations on RN , Top. Meth. Nonl. Anal. J.
Juliusz Schauder Center, 18 (2001) 7387.

[12] Korpusov, M. O. and Sveshnikov, A. G., Sufcient close-tonecessary conditions
for the blow-up of solutions to a strongly nonlinear generalized Boussinesq
equation, Comp. Math. Math. Phy. 48 (2008), no. 9, 1591-1599.

[13] Lingwei, M. and Fang, Z. B., Blow-up phenomena for a semilinear parabolic
equation with weighted inner absorption under nonlinear boundary flux, Math.
Meth. Appl. Sci. 40 (2017), 115-128.

[14] Levine, H. A., Some nonexistence and instability theorems for solutions of
formally parabolic equations of the form Put = Au+F (u), Arch. Rat. Mech.
Anal. 51 (1973), 371386.

[15] Levine, H. A., Park, S. R. and Serrin, J., Global existence and nonexistence
theorems for quasilinear evolution equations of formally parabolic type, J. Di.
Equ. 142 (1998), no. 1, 212229.

[16] M. Marin, A temporally evolutionary equation in elasticity of micropolar bod-
ies with voids, U.P.B. Sci. Bull., Series A- Appl. Math. Phy. 60 (3-4) (1998)
3-12.

[17] Messaoudi, S. A., Blow-up and global existence in a nonlinear viscoelastic
wave equation, Math. Nachr. 260 (2003), 58-66.

[18] Messaoudi, S. A., Blow-up of solutions of a semilinear heat equation with a
visco-elastic term, Prog. Nonl. Diff. Equ. Appl. 64 (2005), 351356.

[19] Messaoudi, S. A., Blow-up of positive-initial-energy solutions of a nonlinear
viscoelastic hyperbolic equation, J. Math. Anal. Appl. 320 (2006), no. 2, 902-
915.

[20] Ouchenane, D., Zennir, Kh. and Bayoud, M., Global nonexistence of solutions
for a system of nonlinear viscoelastic wave equations with degenerate damping
and source terms, Ukr. Math. J. 65 (2013), n0. 7, 723-739.

[21] Pang, J.-S. and Hu, Q. Y., Global nonexistence for a class of quasilinear
parabolic equation with source term and positive initial energy,, (Chinese). J.
Henan Univ. (Nat. Sci.), 37 (2007), no. 5, 448451.

[22] Pang, J.-S. and Zhang, H.-W., Existence and nonexistence of the global so-
lution on the quasilinear parabolic equation, (Chinese), Quar. J. Math. 22
(2007), no. 3, 444450.



88 Abdelkader Braik, Yamina Miloudi and Khaled Zennir

[23] Papadopulos, P. G. and Stavrakakis, N. M., Global existence and blow-up
results for an equations of Kirchhoff type on RN , Meth. Nonl. Anal. 17
(2001), 91109.

[24] Payne, L. E., Philippin, G. A. and Piro, S. V., Blow-up phenomena for a
semilinear heat equation with nonlinear boundary condition, I, Z. Angew.
Math. Phys. 61 (2010), 999-1007.

[25] Pucci, P. and Serrin, J., Asymptotic stability for nonlinear parabolic systems,
in Energy Methods in Continuum Mechanics, Kluwer Academic Publishers,
Dordrecht, Te Netherlands, 1996.

[26] Tahamtani, F. and Pyravi, A., Global existence, uniform decay and expo-
nential growth of solutions for a system of viscoelastic Petrovsky equations,
Turkish J. Math. 38 (2014), no. 1, 87-109.

[27] Van Der Vorst, R. C. A. M., Best constant for the embedding of the space
H2 ∩H1

0 (Ω) into L2n/n−4(Ω), Diff. Int. Eq. 6 (1993), no. 2, 259-276.

[28] Vitillaro, E., E. Global existence theorems for a class of evolution equations
with dissipation, Arch. Ration. Mech. Anal. 149 (1999), 155-182.

[29] Zennir, Kh., Growth of solutions with positive initial energy to system of de-
generately damped wave equations with memory, Lobach. j. math., 35 (2014),
no. 2, 147-156.

[30] Zennir, Kh., Exponential growth of solutions with Lpnorm ofa nonlinear vis-
coelastic hyperbolic equation, J. Nonl. Sci. Appl. 6 (2013), 252-262.

[31] Zennir, Kh., General decay of solutions for damped wave equation of Kirchhoff
type with density in Rn.Ann Univ Ferrara, 61 (2015), 381-394.

[32] Zennir, Kh. and Zitouni, S., On the absence of solutions to damped system of
nonlinear wave equations of Kirchhoff-type. Vladik. Mat. J., 17 (2015), no.
4, 44-58.

[33] Zennir, Kh. and Guesmia, A., Existence of solutions to nonlinear kth-order
coupled Klein-Gordon equations with nonlinear sources and memory term,
App. Math. E-Notes, 15 (2015), 121-136.

[34] Zitouni, S. and Zennir, Kh., On the existence and decay of solution for vis-
coelastic wave equation with nonlinear source in weighted spaces, Rend. Circ.
Mat. Palermo, II. Ser, 66 (2017), 337353.

[35] Fang, Z. B. and Zhang, J., Global and blow-up solutions for the nonlocal p-
Laplacian evolution equation with weighted nonlinear nonlocal boundary con-
dition, J. Inte. Eq. App. 24 (2014), no. 2.


