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ALMOST RICCI SOLITON AND GRADIENT ALMOST RICCI
SOLITON ON 3-DIMENSIONAL LP-SASAKIAN MANIFOLDS
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Abstract

The object of the present paper is to study almost Ricci solitons and gradi-
ent almost Ricci solitons in 3-dimensional LP-Sasakian manifolds. We prove
that if (g, V, λ) is an almost Ricci soliton on a 3-dimensional LP-Sasakian
manifold M3, then it reduces to a Ricci soliton and the soliton is shrinking
for λ=2. Furthermore, if the scalar curvature is constant on M3, then the
potential vector field is Killing. Also, if the manifold admits a gradient al-
most Ricci soliton (f, ξ, λ), then the manifold is locally isometric to the unit
sphere Sn(1).
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1 Introduction

Ricci soliton equation on a Riemannian or pseudo-Riemannian manifold (M, g),
(see Hamilton [11]) is defined by

1

2
£V g + S = λg, (1)

where £V is the Lie derivative operator along a vector field V , called potential
vector field, λ is a real scalar and S is the Ricci tensor. Einstein manifolds satisfy
the above equation, so that they are considered as trivial Ricci solitons. It will
be called shrinking, steady or expanding according as λ > 0, λ = 0 or λ < 0,
respectively. Otherwise, it will be called indefinite. When the vector field V
is gradient of a smooth function f : Mn → R then the manifold will be called
gradient Ricci soliton. Ricci solitons and gradient Ricci solitons have been studied
in Riemannian manifolds, Contact manifolds, Paracontact manifolds and Kähler
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manifolds by several authors. Recently, almost Ricci soliton was introduced by
Pigola et. al. [17], where essentially they modified the definition of Ricci soliton
by adding the condition on the parameter λ to be variable function in (1).

A general notion of Lorentzian para-Sasakian (briefly LP-Sasakian) manifold
has been introduced by K. Matsumoto [12], in 1989 and several authors ([1], [13],
[14], [18], [19]) have studied Lorentzian para-Sasakian manifolds. Ricci solitons
for pseudo-Riemannian manifolds(in particular Lorentzian) have been studied by
several authors such as ([7], [9], [15], [20]). Recently, Batat et. al [3] proved
that Egorov spaces and ε-spaces have Lorentzian Ricci solitons. In a recent paper
Blaga [4] studied η-Ricci solitons on Lorentzian para-Sasakian manifolds.

The object of the present paper is to study almost Ricci solitons and gradient
almost Ricci solitons on 3-dimensional Lorentzian para-Sasakian manifolds. The
paper is organized as follows: In section 2, we recall some fundamental formulas
and properties of Lorentzian para-Sasakian manifolds. In section 3, we prove that
if (g, V, λ) be an almost Ricci soliton on 3-dimensional Lorentzian para-Sasakian
manifold M , then it reduces to Ricci soliton. Besides these in this section we prove
that if the scalar curvature is constant on M , then the soliton is shrinking for
λ=2 and the flow vector field is Killing. This section concludes with a interesting
corollary. Finally in section 4, it is proved that if a 3-dimensional Lorentzian
para-Sasakian manifold admits gradient almost Ricci soliton then the manifold is
locally isometric to the unit sphere Sn(1).

2 Preliminaries

Let M be an n-dimensional smooth manifold and φ, ξ, η are tensor fields on
M of types (1,1), (1,0) and (0,1) respectively, such that

η(ξ) = −1, φ2 = −I + η ⊗ ξ. (2)

The above equations imply that

φξ = 0, η ◦ φ = 0. (3)

Then M admits a Lorentzian metric g of type (0,2) such that

g(X, ξ) = η(X), g(φX, φY ) = g(X,Y ) + η(X)η(Y ) (4)

for any vector fieldsX,Y . Then the structure (φ, ξ, η, g) is said to be Lorentzian al-
most para-contact structure. The manifold M equipped with a Lorentzian almost
para-contact structure (φ, ξ, η, g) is said to be a Lorentzian almost para-contact
manifold(briefly LAP-manifold).

If we denote Φ(X,Y ) = g(X,φY ), then we have [12]

Φ(X,Y ) = g(X,φY ) = g(φX, Y ) = Φ(Y,X), (5)
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where X, Y are any vector fields.
An LAP-manifold M equipped with the structure (φ, ξ, η, g) is called a Lorentzian
para-contact manifold(briefly LP-manifold) if

Φ(X,Y ) =
1

2
{(∇Xη)Y + (∇Y η)X}, (6)

where Φ is defined by (5) and∇ denotes the covariant differentiation operator with
respect to the Lorentzian metric g . A Lorentzian almost para-contact manifold
M is called Lorentzian para-Sasakian manifold(briefly LP-Sasakian) if it satisfies

(∇Xφ)Y = η(Y )X + g(X,Y )ξ + 2η(X)η(Y )ξ. (7)

Also since the vector field η is closed in an LP-Sasakian manifold we have

(∇Xη)Y = Φ(X,Y ) = g(X,φY ), Φ(X, ξ) = 0, ∇Xξ = φX. (8)

Moreover, the eigen values of φ are -1, 0 and 1; and multiplicity of 0 is one. Let k
and l be the multiplicities of -1 and 1 respectively. Then trace(φ) = l − k. So, if
(trace(φ))2 = (n − 1), then either l=0 or k=0. In this case we call the structure
a trivial LP-Sasakian structure.

Also in an LP-Sasakian manifold, the following relations hold ([1], [12], [19]):

η(R(X,Y )Z) = g(Y,Z)η(X)− g(X,Z)η(Y ), (9)

R(X,Y )ξ = η(Y )X − η(X)Y, (10)

R(ξ,X)Y = g(X,Y )ξ − η(Y )X, (11)

S(X, ξ) = (n− 1)η(X), (12)

∇ξη = 0, (13)

for any vector fields X,Y, Z where R is the Riemannian curvature tensor, S is the
Ricci tensor and ∇ is the Levi-Civita connection associated to the metric g.

Throughout this paper we assume that trace(φ) 6= 0, i.e., ξ is not harmonic.

3 Almost Ricci soliton

The well-known Riemannain curvature tensor of a three dimensional Rieman-
nian manifold is given by

R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y

−r
2

[g(Y, Z)X − g(X,Z)Y ], (14)
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for any vector fields X,Y, Z where Q is the Ricci operator, i.e., g(QX,Y ) =
S(X,Y ) and r is the scalar curvature of the manifold. Replacing Y=Z=ξ in the
above equation and using (10) and (12) we obtain(see [19])

QX =
1

2
[(r − 2)X + (r − 6)η(X)ξ]. (15)

In view of (15) the Ricci tensor is written as

S(X,Y ) =
1

2
[(r − 2)g(X,Y ) + (r − 6)η(X)η(Y )]. (16)

Using (15) and (16) in (14), we deduce

R(X,Y )Z =
(r − 4)

2
{g(Y,Z)X − g(X,Z)Y }

+
(r − 6)

2
{g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ

+η(Y )η(Z)X − η(X)η(Z)Y }. (17)

Now before introducing the detailed proof of our main theorem, we first prove the
following result:

Lemma 3.1. Let M(φ, ξ, η, g) be a 3-dimensional LP-Sasakian manifold. Then
we have

ξr = −(r − 6)trace(φ) (18)

where r denotes the scalar curvature of M .
Proof : The equation (15) can be rewritten as:

QY =
1

2
[(r − 2)Y + (r − 6)η(Y )ξ].

Taking covariant derivative of the above equation with respect to an arbitrary
vector field X and recalling (8) we write

(∇XQ)Y =
(Xr)

2
Y +

(Xr)

2
η(Y )ξ +

(r − 6)

2
g(X,φY )ξ

+
(r − 6)

2
η(Y )φX. (19)

Taking inner product with respect to an arbitrary vector field Z in the above
equation, we have

g((∇XQ)Y, Z) =
(Xr)

2
g(Y,Z) +

(Xr)

2
η(Y )η(Z) +

(r − 6)

2
g(X,φY )η(Z)

(r − 6)

2
η(Y )g(φX,Z). (20)
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Putting X = Z = ei (where {ei} is an orthonormal basis for the tangent space of
M and taking

∑
i, 1 ≤ i ≤ 3 ) in the above equation and using the well-known

formula of Riemannian manifolds divQ = 1
2grad r, we obtain

(ξr)η(Y ) = −(r − 6)η(Y )trace(φ). (21)

Substituting Y = ξ in the above equation we have the required result. This com-
pletes the proof.

We consider a 3-dimensional LP-Sasakian manifold M admitting an almost
Ricci soliton defined by(1). Using (16) in (1) we write

(£V g)(Y,Z) = (2λ− r + 2)g(Y,Z)− (r − 6)η(Y )η(Z). (22)

Differentiating the above equation with respect to X and making use (8) we obtain

(∇X£V g)(Y, Z) = [2(Xλ)− (Xr)]g(Y,Z)− (Xr)η(Y )η(Z)

−(r − 6){g(X,φY )η(Z) + η(Y )g(X,φZ)}. (23)

Now we recall the following well-known formula(Yano [21]):

(£V∇Xg−∇X£V g−∇[V,X]g)(Y,Z) = −g((£V∇)(X,Y ), Z)−g((£V∇)(X,Z), Y ),

for any vector fields X,Y, Z on M . From this we can easily deduce:

(∇X£V g)(Y,Z) = g((£V∇)(X,Y ), Z) + g((£V∇)(X,Z), Y ). (24)

Since £V∇ is symmetric tensor of type (1,2), it follows from (24) that

g((£V∇)(X,Y ), Z)

=
1

2
(∇X£V g)(Y, Z) +

1

2
(∇Y £V g)(X,Z)− 1

2
(∇Z£V g)(X,Y ). (25)

Using (23) in (25) we get

2g((£V∇)(X,Y ), Z) = [2(Xλ)− (Xr)]g(Y,Z)− (Xr)η(Y )η(Z)

+[2(Y λ)− (Y r)]g(X,Z)− (Y r)η(X)η(Z)

−[2(Zλ)− (Zr)]g(X,Y ) + (Zr)η(X)η(Y )

−2(r − 6)g(X,φY )η(Z). (26)

After substituting X = Y = ei in the above equation and removing Z from both
sides, where {ei} is an orthonormal basis of the tangent space at each point of the
manifold and taking

∑
i, 1 ≤ i ≤ 3, we have

(£V∇)(ei, ei) = −Dλ− (ξr)ξ − 2(r − 6)trace(φ)ξ, (27)

where Xα = g(Dα,X), D denotes the gradient operator with respect to g.
Now differentiating(1) and using it in (24) we can easily determine

g((£V∇)(X,Y ), Z) = (∇ZS)(X,Y )− (∇XS)(Y, Z)− (∇Y S)(X,Z). (28)
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Taking X = Y = ei (where {ei} is an orthonormal frame) in (28) and summing
over i we obtain

(£V∇)(ei, ei) = 0, (29)

for all vector fields Z. Associating (27) and (29) yields

Dλ+ (ξr)ξ + 2(r − 6)trace(φ)ξ = 0. (30)

Using (18) in the above equation we obtain

Dλ = 0. (31)

This implies that λ is constant. This leads to the the following theorem:

Theorem 1. An almost Ricci soliton on 3-dimensional LP-Sasakian manifolds
reduces to Ricci soliton.

Following the above theorem and removing Z from both sides of (26) yields

2(£V∇)(X,Y ) = −(Xr)Y − (Xr)η(Y )ξ − (Y r)X − (Y r)η(X)ξ

+g(X,Y )Dr + η(X)η(Y )Dr − 2(r − 6)g(X,φY )ξ. (32)

Setting Y = ξ in the above equation and using (18) we obtain

2(£V∇)(X, ξ) = (r − 6)trace(φ)(X + η(X)ξ). (33)

Taking covariant derivative of (33) along an arbitrary vector field Y we get

2(∇Y £V∇)(X, ξ) + 2(£V∇)(X,φY ) = (Y r)trace(φ)(X + η(X)ξ)

+(r − 6)trace(φ){(∇Y η)(X)ξ + η(X)φY }. (34)

If, we apply the following formula:

(£VR)(X,Y )Z = (∇X£V∇)(Y, Z)− (∇Y £V∇)(X,Z)

in the above equation we have

2(£VR)(X,Y )ξ = (Xr)trace(φ)(Y + η(Y )ξ)− (Y r)trace(φ)(X + η(X)ξ)

+(r − 6)trace(φ){η(Y )φX − η(X)φY }. (35)

Taking Lie derivative of (10) along V and using (22) we obtain

(£VR)(X,Y )ξ +R(X,Y )£V ξ = (2λ− 4){η(Y )X − η(X)Y }
+g(Y,£V ξ)X − g(X,£V ξ)Y. (36)

Now combining(35) with (36) and contracting over X we write

trace(φ){(Y r) + (ξr)η(Y )} − 2trace(φ)(Y r)

+(trace(φ))2(r − 6)η(Y ) + 2S(Y,£V ξ)

= 8(λ− 2)η(Y ) + 4g(Y,£V ξ). (37)
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Putting Y = ξ in (37) and making use of (18) we have

−3(r − 6)(trace(φ))2 = 8(λ− 2). (38)

If r=constant, then from Lemma(3.1) we obtain r=6.
Using r = 6 in (38) we have λ = 2. Thus we can state the following:

Theorem 2. If a 3-dimensional LP-Sasakian manifold M admitting almost Ricci
solitons has constant scalar curvature, then the soliton is shrinking for λ = 2.

Moreover, using r=6 and λ = 2 in (22) we get (£V g)(Y,Z) = 0 which implies
that the potential vector field V is a Killing vector field. Also putting the value
r = 6 in (17) we find that the manifold is of constant curvature 1. Consequently
the space is locally isometric to the unit Sphere Sn(1) ( see O’Neill [16]).

As V is KIlling, we also conclude that £V ξ = 0. Finally, Lie-differentiating the
equation η(X) = g(X, ξ) along V and since Lie-derivation commutes with exterior
derivation, we conclude £V φ = 0. Thus, V is an infinitesimal automorphism of
the contact metric structure on M . Hence we can state the following:

Corollary 3.1. If a 3-dimensional LP-Sasakian manifold M admitting almost
Ricci solitons has constant scalar curvature, then the flow vector V is Killing and
also V is an infinitesimal automorphism of the contact metric structure on M .
Moreover the manifold is locally isometric to the unit Sphere Sn(1).

4 Gradient almost Ricci soliton

If the vector field V is the gradient of a potential function −f , then g is called
a gradient almost Ricci soliton. Then (1) takes the form

∇∇f + S = λg.

This reduces to

∇YDf = −QY + λY. (39)

where D denotes the gradient operator of g.
Differentiating (39) covariantly in the direction of X yields

∇X∇YDf = −∇XQY + (Xλ)Y + λ∇XY. (40)

Similarly we get

∇Y∇XDf = −∇YQX + (Y λ)X + λ∇YX, (41)

and

∇[X,Y ]Df = −Q[X,Y ] + λ[X,Y ]. (42)
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In view of (40),(41) and (42) we have

R(X,Y )Df = ∇X∇YDf −∇Y∇XDf −∇[X,Y ]Df

= −(∇XQ)Y + (∇YQ)X + (Xλ)Y − (Y λ)X. (43)

In view of (19) we obtain

R(X,Y )Df =
(Y r)

2
X − (Xr)

2
Y +

(Y r)

2
η(X)ξ − (Xr)

2
η(Y )ξ

+
(r − 6)

2
η(X)φY − (r − 6)

2
η(Y )φX + (Xλ)Y − (Y λ)X.(44)

This reduces to

g(R(X,Y )ξ,Df) = (Y λ)η(X)− (Xλ)η(Y ). (45)

Using (10) in the above equation we obtain

η(Y )(Xf)− η(X)(Y f) = (Y λ)η(X)− (Xλ)η(Y ). (46)

Putting Y = ξ in (46) we have

d(f + λ) = −ξ(f + λ)η. (47)

Operating (47) by d and using Poincare lemma d2 ≡0, we obtain

d[ξ(f + λ)]η ∧ dη = 0. (48)

Since in a 3-dimensional LP-Sasakian manifold η ∧ dη 6= 0, we have

f + λ = constant. (49)

Now contracting Y in (44) and using (18) we obtain

S(X,Df) =
1

2
(Xr)− 2(Xλ). (50)

Comparing (16) and (50) we have

1

2
(Xr)− 2(Xλ) =

(r − 2)

2
(Xf) +

(r − 6)

2
η(X)(ξf). (51)

Substituting X = ξ and using (18) in (51) we obtain

d(f + λ) =
(r − 6)

4
trace(φ)η. (52)

In view of (49) and (52) we get r=6. Moreover, using r=6 in (17) we easily find
that the manifold is of constant curvature 1. Consequently the space is locally
isometric to the unit sphere Sn(1). Hence we can state the following:

Theorem 3. If a 3-dimensional LP-Sasakian manifold admits a gradient almost
Ricci soliton (f, ξ, λ), then the manifold is locally isometric to the unit sphere
Sn(1).
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