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THREE DIMENSIONAL SASAKIAN MANIFOLDS
ADMITTING η-RICCI SOLITONS

Debabrata KAR1 and Pradip MAJHI∗,2

Abstract

In this paper we characterize the three dimensional Sasakian manifolds
admitting η-almost Ricci solitons. After the introduction, in section 2, we
study three dimensional Sasakian manifolds. In section 3, we prove that
an η-Ricci soliton in Sasakian manifolds satisfying the curvature property
R · Q = 0 is shrinking and reduces to Ricci soliton. In section 4, we show
that the necessary and sufficient condition for a Sasakian manifold not ad-
mitting a proper η-Ricci soliton is that it is Ricci symmetric. In sections
5 and 6, we study projectively flat and concircularly flat Sasakian manifold
of dimension 3 respectively and find the type of an η-Ricci soliton on such
manifold. The next section is devoted to the study of such a manifold ad-
mitting η-Ricci soliton and we prove some equivalent conditions. Finally,
in section 8, we prove that in a three dimensional Sasakian manifold an η-
Ricci soliton becomes Ricci soliton if and only if it is Ricci pseudo-symmetric.
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1 Introduction

In 1982, R. S. Hamilton [15] introduced the notion of Ricci flow to find a
canonical metric on a smooth manifold. The Ricci flow is an evolution equation
for metrics on a Riemannian manifold defined as follows:

∂

∂t
g = −2S, (1)

where S denotes the Ricci tensor. Ricci solitons are special solutions of the Ricci
flow equation (1) of the form g = σ(t)ψ∗

t g with the initial condition g(0) = g,
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where ψt are diffeomorphisms of M and σ(t) is the scaling function. A Ricci
soliton is a generalization of an Einstein metric. We recall the notion of Ricci
soliton according to [10]. On the manifold M , a Ricci soliton is a triple (g, V, λ)
with g, a Riemannian metric, V a vector field, called the potential vector field
and λ a real scalar such that

£V g + 2S + 2λg = 0, (2)

where £ is the Lie derivative. Metrics satisfying (2) are interesting and useful
in physics and are often referred to as quasi-Einstein ([11],[12]). Compact Ricci
solitons are the fixed points of the Ricci flow ∂

∂tg = −2S projected from the space
of metrics onto its quotient modulo diffeomorphisms and scalings, and often arise
blow-up limits for the Ricci flow on compact manifolds. Theoretical physicists
have also been looking into the equation of Ricci soliton in relation with string
theory. The initial contribution in this direction is due to Friedan [14] who dis-
cusses some aspects of it. Recently, the notion of almost Ricci soliton has been
introduced [26] by Piagoli, Riogoli, Rimoldi and Setti.

The Ricci soliton is said to be shrinking, steady and expanding accordingly as
λ is negative, zero and positive respectively. Ricci solitons have been studied by
several authors such as ([13], [16], [17], [19], [30]) and many others.
As a generalization of Ricci soliton, the notion of η-Ricci soliton was introduced
by Cho and Kimura [9]. This notion has also been studied in [10] for Hopf hyper-
surfaces in complex space forms. An η-Ricci soliton is a tuple (g, V, λ, µ), where
V is a vector field on M , λ and µ are constants, and g is a Riemannian (or
pseudo-Riemannian) metric satisfying the equation

£V g + 2S + 2λg + 2µη ⊗ η = 0, (3)

where S is the Ricci tensor associated to g. In this connection we may mention
the works of Blaga ([1], [2], [3]), Prakasha et al. [25] and Kar et al. ([18], [21]). In
particular, if µ = 0, then the notion of η-Ricci soliton (g, V, λ, µ) reduces to the
notion of Ricci soliton(g, V, λ). If µ 6= 0, then the η-Ricci soliton is named proper
η-Ricci soliton.

Motivated by the above studies we characterize three dimensional Sasakian
manifolds admitting η-Ricci Solitons.
The present paper is organized as follows:
After the introduction, in section 2, we study three dimensional Sasakian mani-
folds. In section 3, we prove that an η-Ricci soliton in Sasakian manifolds satis-
fying the curvature property R ·Q = 0 is shrinking and reduces to Ricci soliton.
In section 4, we show that the necessary and sufficient condition for a Sasakian
manifold not admitting a proper η-Ricci soliton is that it is Ricci symmetric. In
sections 5 and 6, we study projectively flat and concircularly flat Sasakian man-
ifold of dimension 3 respectively and find the type of an η-Ricci soliton on such
manifold. The next section is devoted to the study of such a manifold admitting
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η-Ricci soliton and we prove some equivalent conditions. Finally, in section 8, we
prove that in a three dimensional Sasakian manifold an η-Ricci soliton becomes
Ricci soliton if and only if it is Ricci pseudo-symmetric.

2 Three dimensional Sasakian manifolds

An odd dimensional smooth manifoldM2n+1 (n ≥ 1) is said to admit an almost
contact structure, sometimes called a (φ, ξ, η)-structure, if it admits a tensor field
φ of type (1, 1), a vector field ξ and a 1-form η satisfying ([5], [6])

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0. (4)

The first and one of the remaining three relations in (4) imply the other two
relations in (4). An almost contact structure is said to be normal if the induced
almost complex structure J on Mn × R defined by

J(X, f
d

dt
) = (φX − fξ, η(X)

d

dt
) (5)

is integrable, where X is any smooth vector field to M , t is the coordinate of R
and f is a smooth function on Mn×R. Let g be a compatible Riemannian metric
with (φ, ξ, η), structure, that is,

g(φX, φY ) = g(X,Y )− η(X)η(Y ) (6)

or equivalently,
g(X,φY ) = −g(φX, Y ) (7)

and
g(X, ξ) = η(X), (8)

for any smooth vector fields X, Y on M . Then M becomes an almost contact
metric manifold equipped with an almost contact metric structure (φ, ξ, η, g).

An almost contact metric structure becomes a contact metric structure if

g(X,φY ) = dη(X,Y ), (9)

for any smooth vector fields X, Y on M . The 1-form η is then a contact form
and ξ is its characteristic vector field.

Given the contact metric manifold (M,η, ξ, φ, g), we define a symmetric (1,1)-
tensor field h as h = 1

2Lξφ, where Lξφ denotes Lie differentiation of φ in the
direction of ξ. We have the following identities ([5], [6]):

hξ = 0, hφ+ φh = 0, (10)

∇Xξ = −φX − φhX, (11)
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∇ξφ = 0, (12)

R(ξ,X)ξ − φR(ξ, φX)ξ = 2(h2 + φ2)X, (13)

(∇ξh)X = φX − h2φX + φR(ξ,X)ξ, (14)

S(ξ, ξ) = 2n− trh2. (15)

Here, ∇ is the Levi-Civita connection and R is the Riemannian curvature
tensor of (M, g) with the sign convention defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, (16)

for any smooth vector fields X, Y , Z on M . The tensor l = R(., ξ)ξ is the Jacobi
operator with respect to the characteristic field ξ.

If the characteristic vector field ξ is a Killing vector field , the contact metric
manifold (M,η, ξ, φ, g) is called K-contact manifold. This is the case if and only
if h = 0. The contact structure on M is said to be normal if the almost complex
structure on M × R defined by J(X, fddt ) = (φX − fξ, η(X) ddt), where f is a real
function on M × R, is integrable. A normal contact metric manifold is called a
Sasakian manifold. Sasakian metrices are K-contact and K-contact 3-metrices
are Sasakian. For a Sasakian manifold, the following hold ([5], [6]):

∇Xξ = −φX, (17)

(∇Xφ)Y = g(X,Y )ξ − η(Y )X, (18)

(∇Xη)Y = g(X,φY ), (19)

R(X,Y )ξ = η(Y )X − η(X)Y, (20)

Qξ = 2nξ, (21)

where ∇, R and Q denote respectively, the Riemannian connection, curvature
tensor and the (1, 1)-tensor metrically equivalent to the Ricci tensor of g. The
curvature tensor of a 3-dimensional Riemannian manifold is given by

R(X,Y )Z = [S(Y, Z)X − S(X,Z)Y + g(Y,Z)QX − g(X,Z)QY ]

−r
2

[g(Y, Z)X − g(X,Z)Y ], (22)

where S and r are the Ricci tensor and scalar curvature respectively and Q is the
Ricci operator defined by g(QX,Y ) = S(X,Y ).

It is known that the Ricci tensor of a three dimensional Sasakian manifold is
given by [7]

S(X,Y ) =
1

2
{(r − 2)g(X,Y ) + (6− r)η(X)η(Y )}, (23)
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where r is the scalar curvature which needs not be constant, in general. So, g is
Einstein (hence has constant curvature 1) if and only if r = 6.

As a consequence of (23), we have

S(X, ξ) = 2η(X). (24)

Contact metric manifolds have also been studied by several authors such as
([7]-[13], [14]-[28]) and many others.

Definition 1. A Riemannian manifold is said to be Ricci symmetric if the Ricci
tensor satisfies the condition:

(∇ZS)(X,Y ) = 0, (25)

for any smooth vector fields X,Y and Z.

Definition 2. In an n-dimensional Riemannian manifold the projective curvature
tensor of type (0,3) is defined by

P(X,Y )Z = R(X,Y )Z − 1

n− 1
[S(Y, Z)X − S(X,Z)Y ], (26)

for any smooth vector field X,Y and Z.

Definition 3. A Riemannian manifold is said to be projectievely flat if the pro-
jective curvature tensor P vanishes.

Definition 4. In an n-dimensional Riemannian manifold the concircular curva-
ture tensor of type (0,3) is defined by

F(X,Y )Z = R(X,Y )Z − r

n(n− 1)
[g(Y,Z)X − g(X,Z)Y ], (27)

for any smooth vector field X,Y and Z.

Definition 5. A Riemannian manifold is said to be concircularly flat if the con-
circular curvature tensor F vanishes.

Let (M, g) be a Riemannian manifold and let ∇ be the Levi-Civita connection
of (M, g). A Riemannian manifold is called locally symmetric [8] if ∇R = 0,
where R is the Riemannian curvature tensor of (M, g). A Riemannian or a semi-
Riemannian manifold (M, g), n ≥ 3, is called semisymmetric if

R ·R = 0 (28)

holds, where R denotes the curvature tensor of the manifold. It is well known
that the class of semisymmetric manifolds includes the set of locally symmetric
manifolds (∇R = 0) as a proper subset. Semisymmetric Riemannian manifolds
were first studied by Cartan, Lichnerowich, Couty and Sinjukov. A fundamental
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study on Riemannian semisymmetric manifolds was made by Szabó [27], Boeckx
et al [4] and Kowalski [20]. A semi-Riemannian manifold (M, g), n ≥ 3, is said to
be Ricci-semisymmetric if on M we have

R · S = 0, (29)

where S is the Ricci tensor.
The class of Ricci semisymmetric manifolds includes the set of Ricci symmetric

manifolds (∇S = 0) as a proper subset. Ricci semisymmetric manifolds were
investigated by several authors.
For a (0, k + 2)-tensor field Q(g, T ) associated with any (0, k)-tensor field T on a
Riemannian manifold (M, g) is defined as follows [29]:

(Q(g, T ))(X1, ..., Xk;X,Y ) = −((X ∧ Y ).T )(X1, ..., Xk)

= T ((X ∧ Y ))X1, X2, ..., Xk)

+...+ T (X1, ...Xk−1, (X ∧ Y )Xk),

(30)

where X ∧ Y is the endomorphism given by

(X ∧ Y )Z = g(Y,Z)X − g(X,Z)Y. (31)

We define the subsets UR, US of a Riemannian Manifold M by UR = {x ∈M :
R − r

n(n−1)G 6= 0 at x} and US = {x ∈ M : S − r
ng 6= 0 at x} respectively,

where G(X,Y )Z = g(Y,Z)X − g(X,Z)Y . Evidently we have US ⊂ UR. A
Riemannian manifold is said to be pseudo-symmetric [29] if at every point of M
the tensor R.R and Q(g,R) are linearly dependent. This is equivalent to

R ·R = fRQ(g,R)

on UR, where fR is some function on UR. Clearly, every semi-symmetric manifold
is pseudo-symmetric but the converse is not true [29].

A Riemannian manifold M is said to Ricci pseudo-symmetric if R · S and
Q(g, S) on M are linearly dependent. This is equivalent to

R · S = fSQ(g, S)

holds on US , where fS is a function defined on US .

Lemma 1. (Proposition 2.1 of [21]) The Ricci tensor of a three dimensional
Sasakian manifold admitting η-Ricci soliton is of the form:

S(X,Y ) = −λg(X,Y )− µη(X)η(Y ). (32)

As a consequence of the above Lemma we have

QX = −λX − µη(X)ξ. (33)
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Lemma 2. (Proposition 2.2 of [21]) For an η-Ricci soliton on a three dimensional
Sasakian manifold we have

λ+ µ = −2. (34)

We use the above Lemmas in the next sections to develop our results.

3 η-Ricci solitons on a three dimensional Sasakian man-
ifold satisfying R ·Q = 0

This section is devoted to the study of η-Ricci solitons on a three dimensional
Sasakian manifold satisfying R ·Q = 0. Then we have

(R(X,Y ) ·Q)Z = 0, (35)

for any smooth vector fields X,Y, Z.
Using (32) in (35) we get

µη(R(X,Y )Z)ξ − µη(Z){η(Y )X − η(X)Y } = 0. (36)

Making (25) and (26) in (22) we obtain

R(X,Y )Z = (2λ+
r

2
){g(X,Z)Y − g(Y, Z)X}

−µη(Y )η(Z)X + µη(X)η(Z)Y

−µg(Y,Z)η(X)ξ + µg(X,Z)η(Y )ξ. (37)

With the help of (37) we get

η(R(X,Y )Z) = (2λ+ µ+
r

2
){g(X,Z)η(Y )− g(Y,Z)η(X)}. (38)

In view of (36) and (38) we have

µη(Z)η(X)Y − µη(Z)η(Y )X

+(λ+
r

2
− 2)µ{g(X,Z)η(Y )− g(Y, Z)η(X)}ξ = 0. (39)

Replacing Z by φ2Z in (39) and using (4) we infer

(λ+
r

2
− 2)µ{g(X,Z)η(Y )− g(Y, Z)η(X)}ξ = 0. (40)

Putting Y = ξ in the last equation gives

(λ+
r

2
− 2)µ{g(X,Z)− η(X)η(Z)}ξ = 0. (41)

Contracting X and Z in (41) we find

(λ+
r

2
− 2)µ = 0, (42)



326 Debabrata Kar and Pradip Majhi

from which it follows that either λ = 2− r
2 or µ = 0.

Contracting X,Y in (32) we get

r = −(3λ+ µ). (43)

If λ = 2− r
2 , then using (43) we have

λ+ µ = −4, (44)

which contradicts the Lemma 2. Hence µ = 0 and then from (34) we obtain
λ = −2. Thus, the η-Ricci soliton is shrinking. Hence, we can state the following:

Theorem 1. An η-Ricci soliton on a three dimensional Sasakian manifold satis-
fying R ·Q = 0 is shrinking.

Also µ = 0 implies that an η-Ricci soliton becomes a Ricci soliton. Thus, we
are in a position to state the following:

Theorem 2. An η-Ricci soliton on a three dimensional Sasakian manifold satis-
fying R ·Q = 0 reduces to a Ricci soliton.

4 Ricci parallel three dimensional Sasakian manifolds
admitting η-Ricci solitons

In this section we consider three dimensional Ricci parallel Sasakian manifolds
admitting η-Ricci solitons. Then the equation (25) holds good.

Differentiating (32) covariantly with respect to an arbitrary vector field Z and
using (19) we obtain

(∇ZS)(X,Y ) = µ[g(X,φZ)η(Y ) + g(Y, φZ)η(X)]. (45)

Comparing (25) and (45) and then substituting X = φX we get

µ{g(X,Z)− η(X)η(Z)} = 0. (46)

Contracting X,Z in (46) we have

µ = 0. (47)

Also, in view of (45), it is easy to see that if µ = 0, then (25) holds. Thus, we
have the following:

Theorem 3. A three dimensional Sasakian manifold does not admit proper η-
Ricci soliton if and only if it is Ricci symmetric.
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5 Projectively flat three dimensional Sasakian mani-
folds admitting η-Ricci solitons

In this section, we classify the projectively flat three dimensional Sasakian
manifolds admitting η-Ricci solitons. The projectiev curvature tensor P is given
by (26).
Using (25) and (37) in (26) and on the hypothesis that the manifold is projectively
flat we obtain

P(X,Y )Z =
3λ+ r

2
{g(X,Z)Y − g(Y,Z)X}

+2µη(Z){η(X)Y − η(Y )X}
+µ{g(X,Z)η(Y )− g(Y,Z)η(X)}ξ = 0. (48)

Substituting X = φX and Y = φY in the last equation we have

3λ+ r

2
{g(φX,Z)φY − g(φY,Z)φX} = 0. (49)

Taking the inner product of (49) with respect to an arbitrary vector field W yields

3λ+ r

2
{g(φX,Z)g(φY,W )− g(φY,Z)g(φX,W )} = 0. (50)

Contracting X and Z in (50) and using Trφ = 0 and (6) we get

(3λ+ r){g(Y,W )− η(Y )η(W )} = 0. (51)

Contracting Y and W in the above equation we infer

λ = −r
3
. (52)

By the virtue of (34) and (52) we find

µ =
r

3
− 2. (53)

Since, λ is constant, then from (52) it follows that r is constant.
Hence we can state the next theorem as follows:

Theorem 4. An η-Ricci soliton on a projectievely flat three dimensional Sasakian
manifold is of the type (g, ξ,− r

3 ,
r
3 − 2).

6 Concircularly flat three dimensional Sasakian man-
ifolds admitting η-Ricci solitons

In this section, we classify the concircularly flat three dimensional Sasakian
manifolds admitting η-Ricci solitons. The concircular curvature tensor F is given
by (27).
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Applying (37) in (27) and using the hypothesis that the manifold is concircularly
flat it follows that

2(λ+
r

3
){g(X,Z)Y − g(Y, Z)X}+ µη(Z){η(X)Y − η(Y )X}

+µ{g(X,Z)η(Y )− g(Y, Z)η(X)}ξ = 0. (54)

Substituting X = φX and Y = φY in the last equation we have

2(λ+
r

3
){g(φX,Z)φY − g(φY,Z)φX} = 0. (55)

Taking the inner product of (56) with respect to an arbitrary vector field W yields

(λ+
r

3
){g(φX,Z)g(φY,W )− g(φY,Z)g(φX,W )} = 0. (56)

Contracting X and Z in (56) and using Trφ = 0 and (6) we get

(λ+
r

3
){g(Y,W )− η(Y )η(W )} = 0. (57)

Contracting Y and W in the above equation we infer

λ = −r
3
. (58)

By virtue of (34) and (51) we find

µ =
r

3
− 2. (59)

Since, λ is constant, then from (58) it follows that r is constant.
Thus, we have the following:

Theorem 5. An η-Ricci soliton on a concircularly flat three dimensional Sasakian
manifold is of the type (g, ξ,− r

3 ,
r
3 − 2).

7 η-Ricci solitons on three dimensional Sasakian man-
ifolds satisfying Q(g, S) = 0

This section is devoted to the study of η-Ricci solitons on three dimensional
Sasakian manifolds satisfying the curvature property

Q(g, S)(X,Y ;U, V ) = 0, (60)

where
Q(g, S)(X,Y ;U, V ) = ((X ∧g Y ) · S)(U, V ). (61)

In view of (60) and (61) we obtain

Q(g, S)(X,Y ;U, V ) = −S((X ∧g Y )U, V )− S((X ∧g Y )V,U). (62)
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Making use of (31) in the preceeding equation entails that

Q(g, S)(X,Y ;U, V ) = g(Y,U)S(X,V )− g(X,U)S(Y, V )

+g(Y, V )S(X,U)− g(X,V )S(Y, U). (63)

From (32) and (63) it follows that

Q(g, S)(X,Y ;U, V ) = µ{g(X,U)η(Y )η(V ) + g(X,V )η(Y )η(U)

−g(Y,U)η(X)η(V )− g(Y, V )η(X)η(U)}. (64)

From (60) and (64) we have

µ{g(X,U)η(Y )η(V ) + g(X,V )η(Y )η(U)

−g(Y,U)η(X)η(V )− g(Y, V )η(X)η(U)} = 0. (65)

Contracting X and V in (64) we get

µ{g(Y,U)− 3η(Y )η(U)} = 0. (66)

Replacing Y by φY in last equation we have

µg(φY,U) = 0, (67)

from which it follows that
µφY = 0 (68)

and hence
µ = 0, if Y 6= ξ. (69)

If Y = ξ, condition (60) implies that

µ{2η(X)η(U)η(V )− g(X,U)η(V )− g(X,V )η(U)} = 0. (70)

Contracting X and V yields
µ = 0. (71)

Therefore, η-Ricci soliton becomes Ricci soliton. Contrapositively, if µ = 0, then
Q(g, S)(X,Y ;U, V ) = 0. Hence, we can conclude that

Theorem 6. In a three dimensional Sasakian manifold, η-Ricci solitons become
Ricci soliton if and only if Q(g, S)(X,Y ;U, V ) = 0.

In view of Theorem 3 and Theorem 6 we have the following:

Theorem 7. In a three dimensional Sasakian manifold M3 the following state-
ments are equivalent:

(i) M3 does not admit a proper η-Ricci soliton.

(ii) M3 is Ricci symmetric.

(iii) M3 satisfies Q(g, S) = 0.
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8 Ricci pseudo-symmetric three dimensional Sasakian
manifolds admitting η-Ricci soliton

In this section we study η-Ricci soliton on Ricci pseudo-symmetric three di-
mensional Sasakian manifolds. Then we have

(R(X,Y ) · S)(U, V ) = fSQ(g, S)(X,Y ;U, V ), (72)

wherein fS is a smooth function.
Let us assume that fS 6= r

2 + λ− 2.
With the help of (32) and (37) we deduce that

(R(X,Y ) · S)(U, V ) = (λ+
r

2
− 2)µ{g(Y,U)η(X)η(V )

+g(Y, V )η(X)η(U)g(X,U)η(Y )η(V )

+g(X,V )η(Y )η(U)}. (73)

By the virtue of (64), (72) and (73) gives

(λ+
r

2
− 2 + fS)µ{g(Y,U)η(X)η(V )

+g(Y, V )η(X)η(U)g(X,U)η(Y )η(V )

+g(X,V )η(Y )η(U)} = 0. (74)

Contracting X and U in above equation we find

(λ+
r

2
− 2 + fS)µ{g(Y, V )− 3η(Y )η(V ))} = 0. (75)

On contraction of Y and V in last equation we get

(λ+
r

2
− 2 + fS)µ = 0, (76)

from which it follows that

µ = 0. (77)

On the other hand, µ = 0 implies that the manifold is Ricci pseudo-symmetric
which is followed from the equations (64), (72) and (73). Thus, we are in a position
to state that

Theorem 8. In a three dimensional Sasakian manifold the η-Ricci soliton be-
comes Ricci soliton if and only if it is Ricci psudo-symmetric.
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