NEW FIXED POINT THEOREM FOR GENERALIZED CONTRACTIONS

Alexandrina Maria PROCA ${ }^{1}$

Abstract

In this paper we give a Ciric type fixed point theorem in a complete metric space; this theorem extends other well-known fixed point theorems ([7], [8], [9]). Two examples are given to demonstrate the importance of our work.

2000 Mathematics Subject Classification: 47H10, 54H25.
Key words: fixed point theory, contraction.

1 Introduction and preliminaries

Definition 1. Let (X, d) be a metric space. A mapping $T: X \rightarrow X$ is a contraction if there exists a number $q, 0 \leq q \leq 1$, such that the condition

$$
d(T x, T y) \leq q \cdot d(x, y)
$$

holds, for all $x, y \in X$.

The well-known Banach contraction principle (BCP) [1] is the following:
Theorem 1. If the $T: X \rightarrow X$ is a contraction mapping of a complete metric space, then:
(i) $(\exists!) x^{*} \in X$, fixed point for T;
(ii) $\left\{T^{n} x\right\} \rightarrow x^{*}$ for $n \rightarrow \infty,(\forall) x \in X$;
(iii) $d\left(T^{n} x, x^{*}\right) \leq \frac{q^{n}}{1-q} d(x, T x)$.

Because of its importance in mathematical theory, many authors gave generalisations of it in many directions (see [1]-[18]). One of the most well-known generalisation of the BCP is Ciric fixed point theorem (see [7],[8], [9]).

[^0]Definition 2. Let (X, d) be a metric space. An operator $T: X \rightarrow X$ is a Picard operator if and only if
(i) $(\exists!) x^{*} \in X$, fixed point for T;
(ii) $\left\{T^{n} x\right\} \rightarrow x^{*}$ for $n \rightarrow \infty$, $(\forall) x \in X$.

Ciric gives the next theorem in [7], which is a very important result in fixed point theory:

Theorem 2. [7] Let (X, d) be a complete metric space, and an operator $T: X \rightarrow$ X. If there exists $a \in[0,1)$ such that

$$
d(T x, T y) \leq a \cdot \max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2}\right\}
$$

$(\forall) x, y \in X$, then T is a Picard operator.
After then, many authors give important generalizations of Ciric's theorem in a complete metric space ([11], [15], [16]) or in partial metric space [13].

2 Main results

In this paper we give a generalisation of Ciric type fixed point theorem, by replacing the value of the maximum with

$$
\begin{align*}
M^{*}(x, y)= & \max \{d(x, y)+|d(x, T x)-d(y, T y)|, \\
& d(x, T x)+|d(x, y)-d(y, T y)| \tag{1}\\
& d(y, T y)+|d(x, y)-d(x, T x)|, \\
& \left.\frac{d(x, T y)+d(y, T x)+|d(x, T x)-d(y, T y)|}{2}\right\}
\end{align*}
$$

Theorem 3. Let (X, d) be a complete metric space, $T: X \rightarrow X$ such that there exist $a \in[0,1)$ and

$$
\begin{equation*}
d(T x, T y) \leq a \cdot M^{*}(x, y), \quad(\forall) x, y \in X, \tag{2}
\end{equation*}
$$

where $M^{*}(x, y)$ is defined in (1). Then, T is a Picard operator.
Proof. Let $x_{0} \in X$. Put $x_{n}=T^{n} x_{0}, x_{0} \in X,(\forall) n \in \mathbb{N}$. If there exists $n \in \mathbb{N}$ such that $x_{n+1}=x_{n}$, then $x_{n+1}=T^{n} x_{0}=T x_{n}=x_{n}$, then, by induction $x_{n+p}=$ $x_{n}, \forall p \in \mathbb{N}$. That is x_{n} is a fixed point of T. Now, we suppose that $x_{n+1} \neq x_{n}$, for all $n \in \mathbb{N}$. Then, $d\left(x_{n}, x_{n+1}\right)>0$, for all $n \in \mathbb{N}$.

We denote by $d_{n}=d\left(x_{n}, x_{n+1}\right)$. For any $n \in \mathbb{N}$, we have

$$
\begin{equation*}
d\left(T x_{n}, T x_{n+1}\right)=d\left(x_{n+1}, x_{n+2}\right)=d_{n+1} \tag{3}
\end{equation*}
$$

and

$$
\begin{align*}
M^{*}\left(x_{n}, x_{n+1}\right)= & \max \left\{d\left(x_{n}, x_{n+1}\right)+\left|d\left(x_{n}, T x_{n}\right)-d\left(x_{n+1}, T x_{n+1}\right)\right|\right. \\
& d\left(x_{n}, T x_{n}\right)+\left|d\left(x_{n}, x_{n+1}\right)-d\left(x_{n+1}, T x_{n+1}\right)\right| \\
& d\left(x_{n+1}, T x_{n+1}\right)+\left|d\left(x_{n}, x_{n+1}\right)-d\left(x_{n}, T x_{n}\right)\right| \\
& \frac{1}{2}\left(d\left(x_{n}, T x_{n+1}\right)+d\left(x_{n+1}, T x_{n}\right)+\right. \\
& \left.\left.+\left|d\left(x_{n}, T x_{n}\right)-d\left(x_{n+1}, T x_{n+1}\right)\right|\right)\right\} \tag{4}\\
= & \max \left\{d\left(x_{n}, x_{n+1}\right)+\left|d\left(x_{n}, x_{n+1}\right)-d\left(x_{n+1}, x_{n+2}\right)\right|\right. \\
& d\left(x_{n}, x_{n+1}\right)+\left|d\left(x_{n}, x_{n+1}\right)-d\left(x_{n+1}, x_{n+2}\right)\right| \\
& d\left(x_{n+1}, x_{n+2}\right)+\left|d\left(x_{n}, x_{n+1}\right)-d\left(x_{n}, x_{n+1}\right)\right| \\
& \frac{1}{2}\left(d\left(x_{n}, x_{n+2}\right)+d\left(x_{n+1}, x_{n+1}\right)+\right. \\
& \left.\left.+\left|d\left(x_{n}, x_{n+1}\right)-d\left(x_{n+1}, x_{n+2}\right)\right|\right)\right\}
\end{align*}
$$

If $d_{n+1} \geq d_{n}$, then $\left|d_{n}-d_{n+1}\right|=d_{n+1}-d_{n}$ and from triangle inequality $d\left(x_{n}, x_{n+2}\right) \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)$ we obtain

$$
\begin{aligned}
M^{*}\left(x_{n}, x_{n+1}\right) & \leq \max \left\{d_{n+1}, \frac{d_{n}+d_{n+1}+d_{n+1}-d_{n}}{2}\right\} \\
& =d_{n+1}
\end{aligned}
$$

From the assumption of the theorem, we get

$$
\left.\begin{array}{rl}
d_{n+1} & =d\left(x_{n+1}, x_{n+2}\right) \\
& =d\left(T x_{n}, T x_{n+1}\right) \leq a \cdot M^{*}\left(x_{n}, x_{n+1}\right) \\
& \leq a \cdot d_{n+1}
\end{array}\right\}
$$

which is false, because $a \in[0,1)$. So, $d_{n+1}<d_{n},(\forall) n \in \mathbb{N}$.
For $d_{n+1}<d_{n}$, we have $\left|d_{n}-d_{n+1}\right|=d_{n}-d_{n+1}$ and

$$
\begin{align*}
M^{*}\left(x_{n}, x_{n+1}\right) & \leq \max \left\{2 d_{n}-d_{n+1}, d_{n+1}, \frac{1}{2}\left(d_{n}+d_{n+1}+d_{n}-d_{n+1}\right)\right\} \tag{5}\\
& =\max \left\{2 d_{n}-d_{n+1}, d_{n+1}, d_{n}\right\}
\end{align*}
$$

Combining (2), (3) and (5), for $d_{n+1}<d_{n}$ we obtain

$$
\begin{aligned}
d_{n+1} & =d\left(T x_{n}, T x_{n+1}\right) \leq a \cdot M^{*}\left(x_{n}, x_{n+1}\right) \\
& \leq a \cdot \max \left\{2 d_{n}-d_{n+1}, d_{n+1}, d_{n}\right\} \\
& =a \cdot\left(2 d_{n}-d_{n+1}\right)
\end{aligned}
$$

(because $2 d_{n}-d_{n+1}>d_{n}>d_{n+1}$). Hence

$$
\begin{equation*}
d_{n+1} \leq \frac{2 a}{a+1} \cdot d_{n}=k \cdot d_{n} \tag{6}
\end{equation*}
$$

if we denote by $k=\frac{2 a}{a+1}<1,(\forall) a \in[0,1)$. This implies that $\left\{x_{n}\right\}$ is Cauchy sequence. By completeness of (X, d), the sequence $\left\{x_{n}\right\}$ converges to some point $x^{*} \in X$.

From the assumption of Theorem 3, for $x=x_{n}$ and $y=x^{*}$, we have:

$$
\begin{align*}
d\left(x_{n+1}, T x^{*}\right)= & d\left(T x_{n}, T x^{*}\right)=d\left(x_{n+1}, T x^{*}\right) \leq \\
\leq & a \cdot \max \left\{d\left(x_{n}, x^{*}\right)+\left|d\left(x_{n}, T x_{n}\right)-d\left(x^{*}, T x^{*}\right)\right|,\right. \\
& d\left(x_{n}, T x_{n}\right)+\left|d\left(x_{n}, x^{*}\right)-d\left(x^{*}, T x^{*}\right)\right|, \\
& d\left(x^{*}, T x^{*}\right)+\left|d\left(x_{n}, x^{*}\right)-d\left(x_{n}, T x_{n}\right)\right|, \\
& \left.\frac{1}{2}\left(d\left(x_{n}, T x^{*}\right)+d\left(x^{*}, T x_{n}\right)+\left|d\left(x_{n}, T x_{n}\right)-d\left(x^{*}, T x^{*}\right)\right|\right)\right\} \tag{7}\\
= & a \cdot \max \left\{d\left(x_{n}, x^{*}\right)+\left|d\left(x_{n}, x_{n+1}\right)-d\left(x^{*}, T x^{*}\right)\right|,\right. \\
& d\left(x_{n}, x_{n+1}\right)+\left|d\left(x_{n}, x^{*}\right)-d\left(x^{*}, T x^{*}\right)\right|, \\
& d\left(x^{*}, T x^{*}\right)+\left|d\left(x_{n}, x^{*}\right)-d\left(x_{n}, x_{n+1}\right)\right|, \\
& \left.\frac{1}{2}\left(d\left(x_{n}, T x^{*}\right)+d\left(x^{*}, x_{n+1}\right)+\left|d\left(x_{n}, x_{n+1}\right)-d\left(x^{*}, T x^{*}\right)\right|\right)\right\} .
\end{align*}
$$

Taking the limit as $n \rightarrow \infty$ in (7), we deduce

$$
d\left(x^{*}, T x^{*}\right) \leq a \cdot d\left(x^{*}, T x^{*}\right) .
$$

Since $a \in[0,1)$ it results that

$$
d\left(x^{*}, T x^{*}\right)=0,
$$

that is x^{*} is a fixed point of T.
Finally, we prove that the fixed point of T is unique. For this, let x^{*}, y^{*} be two fixed points of T, and suppose that $x^{*} \neq y^{*}$. It follows, from the assumption of the theorem:

$$
d\left(x^{*}, y^{*}\right) \leq a \cdot d\left(x^{*}, y^{*}\right),
$$

so $d\left(x^{*}, y^{*}\right)=0$. Hence $x^{*}=y^{*}$. Therefore, T has a unique fixed point.
Example 1. Let $X=\{A, B, C, D\}$, d the usual distance, $d(A, B)=d(B, C)=8$, $d(A, C)=d(B, D)=10, d(A, D)=5, d(C, D)=7$ and $T: X \rightarrow X$ such that $T A=A, T B=C, T C=D, T D=A$. We observe that X is a metric space.

For $x=A$ and $y=B$, we have $d(T A, T B)=d(A, C)=10$ and

$$
\begin{aligned}
M(A, B)= & \max \{d(A, B), d(A, T A), d(B, T B), \\
& \left.\frac{1}{2}(d(A, T B)+d(B, T A))\right\} \\
= & \max \left\{8,0,8, \frac{10+8}{2}\right\}=9 .
\end{aligned}
$$

Therefore, T does not satisfy conditions from Theorem 2. Next, we prove that T satisfies hypothesis of Theorem 3.

1. For $x=A$ and $y=B, d(T x, T y) \leq a \cdot M^{*}(x, y)$ we have $d(T A, T B)=$ $d(A, C) \leq a \cdot M^{*}(A, B)$, where $M^{*}(A, B)=26$, so we obtain $10 \leq a \cdot 26$
2. For $x=A$ and $y=C, d(T x, T y) \leq a \cdot M^{*}(x, y)$ we have $d(T A, T C)=$ $d(A, D) \leq a \cdot M^{*}(A, B)$, where $M^{*}(A, C)=17$ and $d(A, D)=5$, so we obtain $5 \leq a \cdot 17$
3. For $x=A$ and $y=D$, we have $T A=T D=A$, and the relation $d(T x, T y) \leq$ $a \cdot M^{*}(x, y)$ hold for $\forall a \in[0,1)$
4. For $x=B$ and $y=C$, the relation $d(T x, T y) \leq a \cdot M^{*}(x, y)$ is $7 \leq a \cdot 9$
5. For $x=B$ and $y=D$, the relation $d(T x, T y) \leq a \cdot M^{*}(x, y)$ is $10 \leq a \cdot 13$
6. For $x=C$ and $y=D$, the relation $d(T x, T y) \leq a \cdot M^{*}(x, y)$ is $5 \leq a \cdot 9$

It is sufficient that $a=7 / 9$, and we can apply Theorem 3. We deduce that T is a Picard mapping. Therefore, we have a real generalisation of Ciric's theorem.

Example 2. Let $X=\{(0, a), a \in[30,40]\} \cup\{(0,10)\} \cup\{(7,0)\} \cup\{(10,0)\} \cup$ $\{(11,0)\}$. We denote by

$$
\begin{aligned}
& A=\{(0, a), a \in[30,40]\} \\
& B=(0,10), C=(7,0), D=(10,0) \\
& F=(11,0), O(0,0)
\end{aligned}
$$

and let $T: X \rightarrow X$ with

$$
T x= \begin{cases}(0,10) & , x \in A \cup\{(10,0)\} \\ (0,0) & , x=(0,10) \\ (7,0) & , x=(0,0) \\ (11,0) & , x \in\{(7,0),(11,0)\}\end{cases}
$$

F is the fixed point for mapping T, X is a complete metric space with euclidian metric and for the following cases we prove that T does not satisfy the hypothesis of Theorem 2, but satisfies Theorem 3. Therefore, from Theorem 3, T is Picard mapping.
Case 1. $x, y \in A \Rightarrow d(T x, T y)=0$.

Case 2. $x \in A, y=D \Rightarrow d(T x, T y)=0$.
Case 3. $x \in A, y=B \Rightarrow T x=B=y, T B=O \Rightarrow d(T x, T y)=10, d(x, y) \geq 20$. For $a>1 / 2$, the hypothesis of Theorem 3 is true.
Case 4. For $x \in A, y=O$, we deduce that $d(T x, T y)=\sqrt{149}, d(x, y) \geq 30$. For $a>2 / 5$ the hypothesis of Theorem 3 is true.
Case 5. For $x \in A, y \in\{C, F\}, d(T x, T y)=\sqrt{10^{2}+11^{2}}=\sqrt{221}, d(x, T x) \geq 20$, so, for $a>\frac{\sqrt{221}}{20}$ we can apply Theorem 3.
Case 6. For $x=B, y=0, d(T x, T y)=7, d(x, y)=10$. For $a=0.9$, relation (2) is true.
Case 7. For $x=B, y=C, d(T x, T y)=11, d(x, y)=\sqrt{10^{2}+7^{2}}, d(x, y)+$ $|d(x, T x)-d(y, T y)|=\sqrt{149}+|10-4|$. For $a>\frac{11}{\sqrt{149}+6}$, relation (2) is true.
Case 8. For $x=B, y=D, d(T x, T y)=10, d(x, y)=\sqrt{200}$ and (2) is true for $a=0.9$.
Case 9. For $x=B$ and $y=F$ give us $d(T x, T y)=11, d(x, y)=\sqrt{221}$ and (2) is true for $a=0.9$.
Case 10. For $x=O, y=C$, we deduce $d(T x, T y)=4, d(x, y)=7$ and (2) is true for $a=0.9$.
Case 11. For $x=O, y=D$ give us $d(T x, T y)=\sqrt{149}, d(x, y)=10 \cdot d(x, y)+$ $|d(x, T x)-d(y, T y)|=10+|7-\sqrt{200}|=\sqrt{200}+3$. The value $a=0.9$ is right and (2) stays true.
Case 12. For $x=O, y=F, d(T x, T y)=4, d(x, y)=11$ and (2) is true for $a=0.9$.
Case 13. For $x=C, y=D, d(T x, T y)=\sqrt{221}, d(x, y)+|d(x, T x)-d(y, T y)|=$ $3+|4-\sqrt{200}|=\sqrt{200}-1, d(y, T y)+|d(x, y)-d(x, T x)|=\sqrt{200}+|3-4|=$ $\sqrt{200}+1$ so, in this case, for $a=\frac{\sqrt{221}}{\sqrt{200}+1}$, (2) is true.
Case 14. For $x=C, y=F, d(T x, T y)=0$ and (2) is true for all $a \in[0,1)$.
Case 15. For $x=D, y=F, d(T x, T y)=\sqrt{221}, d(x, y)+|d(x, T x)-d(y, T y)|=$ $1+|\sqrt{200}-0|=\sqrt{200}+1$, so, for $a=\frac{\sqrt{221}}{\sqrt{200}+1}$, relation (2) is true.

In conclusion, for the value $a=\frac{\sqrt{221}}{\sqrt{200}+1} \in[0,1)$, relation (2) is true, (\forall) $x, y \in X$, and, from Theorem 3, we deduce that T is a Picard operator. Also, we can observe that the hypothesis of Ciric's Theorem 2 is not satisfied in case 15. Because

$$
\begin{aligned}
d(T x, T y) & =d(T D, T F)=\sqrt{221} \\
d(x, y) & =1, d(x, T x)=d(D, T D)=\sqrt{200} \\
d(y, T y) & =d(F, T F)=0 \\
\frac{d(x, T y)+d(y, T x)}{2} & =\frac{d(D, F)+d(F, B)}{2}=\frac{1+\sqrt{221}}{2}
\end{aligned}
$$

we have

$$
\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2}\right\}=\sqrt{200} .
$$

Relation

$$
d(T x, T y) \leq a \cdot \max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2}\right\}
$$

is false for all $a \in[0,1)$.
Therefore, Theorem 3 is a real generalisation of Theorem 2.

References

[1] Banach, S., Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fundamenta Mathematical 3 (1922), 133-181.
[2] Berinde, V., Stability of Picard iteration for contractive mappings satisfying an implicit relation, Carpathian J. Math., 27 (2011), no. 1, 13-23.
[3] Berinde, V., Approximating fixed points of implicit almost contractions, Hacet. J. Math. Stat. 40 (2012) no. 1, 93-102.
[4] Berinde, V., Pacurar, M., Fixed point theorems for nonself single-valued almost contractions, Fixed Point Theory 14 (2013), 301-311.
[5] Berinde, V., Vetro, F., Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory and Applications 2012, $\mathbf{1 0 5}$ (2012) doi:10.1186/1687-1812-2012-105.
[6] Berinde, V., Vetro, F., Fixed point for cyclic ($\psi, C)$-contractions in O-complete metric spaces, Filomat 27 (2013), 1405-1413.
[7] Ciric, Lj., On contraction type mappings, Math. Balcanica 1 (1971), 52-57.
[8] Ciric, Lj., Generalised contractions and fixed point theorems, Publications de l'Institut Mathematique, Nouvelle serie, 26 (1971), 19-26.
[9] Ciric, Lj., A generalisation of Banach's contraction principle, Proceedings of the American Mathematical Society, 45 (1974), no. 2, 267-273.
[10] Ciric, Lj., Multi-valued nonlinear contraction mappings, Nonlinear Anal. 71 (2009), 2716-2723.
[11] Fulga, A., Proca, A.M., Fixed point for Geraghty φ_{E}-contractions, J. Nonlinear Sci. Appl., 10 (2017), 51255131.
[12] Edelstein, M., An extension of Banach's contraction principle, Proc. Amer. Math. Soc. 12 (1961), No. 1, 7-10.
[13] Karapinar, E., Weak φ-contraction on partial metric spaces, J. Comput. Anal. Appl. 14 (2012), 206-210.
[14] Mongkolkeha, C., Cho, Y.E., Kumam, P., Best proximity points for Geraghty's proximal contraction mappings. Fixed Point Theory Appl. 2013, Article ID 180 (2013).
[15] Popescu, O., Some new fixed point theorems for α-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl. 2013, Article ID 329(2013).
[16] Popescu, O., A new type of contractive mappings in complete metric spaces, submitted.
[17] Samet, B., Vetro, C., and Vetro,P., Fixed point theorems for $\alpha-\psi$-contractive type mappings, Nonlinear Anal. 75 (2012), 2154-2165;
[18] Suzuki, T., A generalized Banach contraction principle that characterizes metric completness, Proc.Amer.Math.Soc. 136 (2008), no. 5, 1861-1869.

[^0]: ${ }^{1}$ Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail: alexproca@unitbv.ro

