STUDY ON GENERALIZED PSEUDO (RICCI) SYMMETRIC SASAKIAN MANIFOLD ADMITTING GENERAL CONNECTION

Kanak Kanti BAISHYA ${ }^{1}$ and Ashis BISWAS ${ }^{*, 2}$

Abstract

The object of the present paper is to study the generalized pseudo (Ricci) symmetric Sasakian manifold with respect to a new connection named general connection. The general connection has the flavour of quarter-symmetric connection, generalized Tanaka-Webster connection, Zamkovoy and Schoutenvan Kampen connection. The existence of generalized pseudo (Ricci) symmetric Sasakian manifold with respect to general connection is ensured by an example.

2010 Mathematics Subject Classification: 54A05.
Key words: generalized pseudo symmetric and generalized pseudo Ricci symmetric sasakian manifolds, general connection.

1 Introduction

Let the symbols $\nabla, \nabla^{q}, \nabla^{T}, \nabla^{z}, \nabla^{s}$ and ∇^{*} stand for Levi-civita connection, quarter-symmetric metric connection, Generalized Tanaka-Webster connection, Zamkovoy connection, Schouten-Van Kampen connection and general connections respectively. Also we denote $(G P S)_{n}$ and $(G P R S)_{n}$ for generalized pseudo symmetric Sasakian manifold and generalized pseudo Ricci symmetric Sasakian manifold. In 1924, A. Friedmann and J. A. Schouten[1] founded the idea of semisymmetric connection on a differentiable manifold. In 1932, H. A. Hayden[8] further studied the thought of semi-symmetric connection with torsion on a Riemannian manifold. A comprehensive study of Semi-symmetric metric connection was carriedout by Yano[21]. Semi-symmetric metric connection plays a vital role in Riemannian geometry. Generalising the concept of semi-symmetric connection

[^0]Golab[7] defined and studied the quarter-symmetric connection in 1975. There after, many geometers like as Rastogi ([13], [14]), Mishra et al. [11], Yano et al.[20] and others studied quarter symmetric connection. An affine connection ∇^{q} on an n-dimensional Riemannian manifold (M, g) is called a quarter-symmetric connection[7] if its torsion tensor T of the connection ∇^{q} satisfies

$$
\begin{aligned}
T(X, Y) & =\nabla_{X}^{q} Y-\nabla_{Y}^{q} X-[X, Y] \\
& =\eta(Y) \phi X-\eta(X) \phi Y,
\end{aligned}
$$

where η is a 1 -form and ϕ is a $(1,1)$ tensor field. In particular, if $\phi X=X$, then the quarter-symmetric connection reduces to the semi-symmetric connection[1]. Furthermore, if a quarter-symmetric connection ∇^{q} admits the condition

$$
\left(\nabla_{X}^{q} g\right)(Y, Z)=0,
$$

then ∇^{q} is said to be a quarter-symmetric metric connection, otherwise it is said to be a quarter-symmetric non-metric connection. If ∇ and ∇^{q} are the Levi-civita connection and quarter-symmetric connection respectively, then

$$
\begin{equation*}
\nabla_{X}^{q} Y=\nabla_{X} Y-\eta(X) \phi Y . \tag{1}
\end{equation*}
$$

In 1970 Tanno[18] characterized and considered the idea of summed up TanakaWebster connection by summing up the connection by Tanaka [12] and Webster[17] , which harmonizes with the Tanaka-Webster connection if the related contact Riemann structure is integrable. Likewise J. T. Cho([9],[10]) has considered the Generalized Tanaka-Webster connection with regards to Kahler manifod. Let ∇ and ∇^{T} be the Levi-civita connection and generalized Tanaka-Webster connection respectively.Then

$$
\begin{equation*}
\nabla_{X}^{T} Y=\nabla_{X} Y+\left(\nabla_{X} \eta\right)(Y) \xi-\eta(Y) \nabla_{X} \xi-\eta(X) \phi Y \tag{2}
\end{equation*}
$$

Also Z. Zamkovoy[22] has introduced a new connection known as Zamkovoy connection ∇^{z}, which is related with Levi-civita connection as

$$
\begin{equation*}
\nabla_{X}^{z} Y=\nabla_{X} Y+\left(\nabla_{X} \eta\right)(Y) \xi-\eta(Y) \nabla_{X} \xi+\eta(X) \phi Y . \tag{3}
\end{equation*}
$$

Schouten, J. A. and Van Kampen[16] introduced the Schouten-van Kampen connection in the third decade of last century. The relation[16] between Schouten-van Kampen connection ∇^{s} and Levi-Civita connection ∇ is

$$
\begin{equation*}
\nabla_{X}^{s} Y=\nabla_{X} Y+\left(\nabla_{X} \eta\right)(Y) \xi-\eta(Y) \nabla_{X} \xi \tag{4}
\end{equation*}
$$

In the setting of Sasakian geometry, we like to define a new connection named general connection ∇^{*}, which is related with ∇

$$
\begin{equation*}
\nabla_{X}^{*} Y=\nabla_{X} Y+\lambda\left[\left(\nabla_{X} \eta\right)(Y) \xi-\eta(Y) \nabla_{X} \xi\right]+\mu \eta(X) \phi Y, \tag{5}
\end{equation*}
$$

for all $X, Y \in \chi(M)$ and the pair (λ, μ) being real constants.Connection defined in (5) has an important characteristic because it has a flavour of quarter symmetric metric connection for $(\lambda, \mu) \equiv(0,-1)$; Tanaka Webster connection for
$(\lambda, \mu) \equiv(1,-1) ;$ Zamkovoy connection for $(\lambda, \mu) \equiv(1,1) ;$ Schouten Kampen-Van connection $(\lambda, \mu) \equiv(1,0)$.

This paper is structured as follows: After the introduction, section 2, we give a brief account of the Sasakian manifolds. Section 3 is dedicated to establishing the relation between the curvature tensor of the Sasakian manifolds with respect to the general connection and the levi-civita connection. Section 4 is concerned with generalized pseudo symmetric Sasakian manifolds admitting general connection and we prove that there exists no generalized pseudo symetric Sasakian manifold with respect to general connection unless $\beta-\bar{C} \alpha$ vanishes everywhere, provided $\bar{C} \neq 0$. It is worthy to note that there exists no $\left[(G P S)_{n}, \nabla^{T}\right],\left[(G P S)_{n}, \nabla^{s}\right]$, $\left[(G P S)_{n}, \nabla^{z}\right]$ unless β vanishes everywhere. In the next section, we investigate the generalized pseudo Ricci-symmetric Sasakian manifolds admitting general connection. Finally, we construct an example for the existence of generalized pseudo symmetric and generalized pseudo Ricci-symmetric Sasakian manifolds with respect to the general connection.

2 Preliminaries

Let M be an n-dimensional almost contact metric manifold equipped with an almost contact metric structure (ϕ, ξ, η, g) consisting of a $(1,1)$ tensor field ϕ, a vector field ξ, a 1-form η and a Riemannian metric g. Then

$$
\begin{align*}
\phi^{2} Y & =-Y+\eta(Y) \xi, \eta(\xi)=1, \eta(\phi X)=0, \phi \xi=0 \tag{6}\\
g(X, Y) & =g(\phi X, \phi Y)+\eta(X) \eta(Y) \tag{7}\\
g(X, \phi Y) & =-g(\phi X, Y), \eta(Y)=g(Y, \xi), \forall X, Y \in T M \tag{8}
\end{align*}
$$

An almost contact metric manifold M is said to be (a) a contact metric manifold if

$$
\begin{equation*}
g(X, \phi Y)=d \eta(X, Y), \forall X, Y \in T M \tag{9}
\end{equation*}
$$

(b) a K-contact manifold if the vector field ξ is Killing equivalently

$$
\begin{equation*}
\nabla_{Y} \xi=-\phi Y \tag{10}
\end{equation*}
$$

where ∇ is Riemannian connection and (c) a Sasakian manifold if

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=g(X, Y) \xi-\eta(Y) X, \forall X, Y \in T M \tag{11}
\end{equation*}
$$

A K-contact manifold is a contact metric manifold, while the converse is true if the Lie derivative of ϕ in the characteristic direction ξ vanishes identically. A Sasakian manifold is always a K-contact manifold. A 3-dimensional K-contact manifold is a Sasakian manifold.

It is well known that a contact metric manifold is Sasakian if and only if

$$
\begin{equation*}
R(X, Y) \xi=\eta(Y) X-\eta(X) Y, \forall X, Y \in T M \tag{12}
\end{equation*}
$$

In a Sasakian manifold equipped with the structure (ϕ, ξ, η, g), the following relations also hold ([2], [19], [15]):

$$
\begin{align*}
\left(\nabla_{X} \eta\right) Y & =g(X, \phi Y) \tag{13}\\
R(\xi, X) Y & =g(X, Y) \xi-\eta(Y) X \tag{14}\\
S(X, \xi) & =(n-1) \eta(X) \tag{15}\\
R(X, \xi) Y & =\eta(Y) X-g(X, Y) \xi \tag{16}\\
Q \xi & =(n-1) \xi \tag{17}
\end{align*}
$$

3 Some properties of Sasakian manifold admitting general connection

In Sasakian manifold, the relation (5) reduces to

$$
\begin{equation*}
\nabla_{X}^{*} Y=\nabla_{X} Y+\lambda[g(X, \phi Y) \xi+\eta(Y) \phi X]+\mu \eta(X) \phi Y . \tag{18}
\end{equation*}
$$

Putting $Y=\xi$ in (5)

$$
\begin{equation*}
\nabla_{X}^{\frac{*}{*}} \xi=-\phi X+\lambda \phi X . \tag{19}
\end{equation*}
$$

Now with the help of (18), (10) and (11) we get the followings

$$
\begin{align*}
& \nabla_{X}^{*} \eta(Y) \\
= & \nabla_{X}^{*} g(Y, \xi) \\
= & \eta\left(\nabla_{X} Y\right)+\lambda g(X, \phi Y)-g(Y, \phi X)+\lambda g(Y, \phi X), \tag{20}\\
& \nabla_{X}^{*}(\phi Y) \\
= & \nabla_{X}(\phi Y)-\lambda g(\phi X, \phi Y) \xi-\mu \eta(X) Y+\mu \eta(X) \eta(Y) \xi, \tag{21}\\
& \nabla_{X}^{*} g(Y, \phi Z) \\
= & g\left(\nabla_{X} Y, \phi Z\right)+\mu \eta(X) g(\phi Y, \phi Z)+g\left(Y, \nabla_{X}(\phi Z)\right) \\
& -\mu \eta(X) g(Y, Z)+\mu \eta(X) \eta(Y) \eta(Z) . \tag{22}
\end{align*}
$$

Now we know that

$$
\begin{equation*}
R^{*}(X, Y) Z=\nabla_{X}^{*} \nabla_{Y}^{*} Z-\nabla_{Y}^{*} \nabla_{X}^{*} Z-\nabla_{[X, Y]}^{*} Z . \tag{23}
\end{equation*}
$$

By using (18), (19), (20), (21) and (22) we obtain the following

$$
\begin{align*}
& \nabla_{X}^{*} \nabla_{Y}^{*} Z \\
= & \nabla_{X} \nabla_{Y} Z+\lambda g\left(X, \phi \nabla_{Y} Z\right) \xi+\lambda \eta\left(\nabla_{Y} Z\right) \phi X+\mu \eta(X) \phi \nabla_{Y} Z \\
& +\lambda^{\prime}\left(\nabla_{X} Y, \phi Z\right) \xi+\lambda \mu \eta(X) g(\phi Y, \phi Z) \xi+\lambda g\left(Y, \nabla_{X}(\phi Z)\right) \xi \\
& -\lambda \mu \eta(X) g(Y, Z) \xi+\lambda \mu \eta(X) \eta(Y) \eta(Z) \xi-\lambda g(Y, \phi Z) \phi X \\
& +\lambda^{2} g(Y, \phi Z) \phi X+\lambda \eta\left(\nabla_{X} Z\right) \phi Y+\lambda^{2} g(X, \phi Z) \phi Y \\
& +\lambda^{2} g(Z, \phi X) \phi Y+\lambda \eta(Z) \nabla_{X}(\phi Y)-\lambda^{2} \eta(Z) g(\phi X, \phi Y) \xi \\
& -\lambda \mu \eta(Z) \eta(X) Y+\lambda \mu \eta(Z) \eta(X) \eta(Y) \xi+\mu \eta\left(\nabla_{X} Y\right) \phi Z \\
& +\lambda \mu g(X, \phi Y) \phi Z-\mu g(Y, \phi X) \phi Z+\lambda \mu g(Y, \phi X) \phi Z \\
& +\mu \eta(Y) \nabla_{X}(\phi Z)-\lambda \mu \eta(Y) g(\phi X, \phi Z) \xi-\lambda g(Z, \phi X) \phi Y \\
& -\mu^{2} \eta(Y) \eta(X) Z+\mu^{2} \eta(Y) \eta(X) \eta(Z) \xi, \tag{24}
\end{align*}
$$

$$
\begin{align*}
& \nabla_{Y}^{*} \nabla_{X}^{*} Z \\
= & \nabla_{Y} \nabla_{X} Z+\lambda g\left(Y, \phi \nabla_{X} Z\right) \xi+\lambda \eta\left(\nabla_{X} Z\right) \phi Y+\mu \eta(Y) \phi \nabla_{X} Z \\
& +\lambda g\left(\nabla_{Y} X, \phi Z\right) \xi+A B \eta(Y) g(\phi X, \phi Z) \xi+\lambda g\left(X, \nabla_{Y}(\phi Z)\right) \xi \\
& -\lambda \mu \eta(Y) g(X, Z) \xi+\lambda \mu \eta(Y) \eta(X) \eta(Z) \xi-\lambda g(X, \phi Z) \phi Y \\
& +\lambda^{2} g(X, \phi Z) \phi Y+\lambda \eta\left(\nabla_{Y} Z\right) \phi X+\lambda^{2} g(Y, \phi Z) \phi X \\
& -\lambda g(Z, \phi Y) \phi X+\lambda^{2} g(Z, \phi Y) \phi X+\lambda \eta(Z) \nabla_{Y}(\phi X) \\
& -\lambda^{2} \eta(Z) g(\phi Y, \phi X) \xi-\lambda \mu \eta(Z) \eta(Y) X+\lambda \mu \eta(Z) \eta(Y) \eta(X) \xi \\
& +\mu \eta\left(\nabla_{Y} X\right) \phi Z+\lambda \mu g(Y, \phi X) \phi Z-\mu g(X, \phi Y) \phi Z \\
& +\lambda \mu g(X, \phi Y) \phi Z+\mu \eta(X) \nabla_{Y}(\phi Z)-\lambda \mu \eta(X) g(\phi Y, \phi Z) \xi \\
& -\mu^{2} \eta(X) \eta(Y) Z+\mu^{2} \eta(X) \eta(Y) \eta(Z) \xi, \tag{25}
\end{align*}
$$

and

$$
\begin{align*}
& \nabla_{[X, Y]}^{*} Z \\
= & \nabla_{[X, Y]} Z+\lambda g\left(\nabla_{X} Y, \phi Z\right) \xi-\lambda g\left(\nabla_{Y} X, \phi Z\right) \xi+\lambda \eta(Z) \phi \nabla_{X} Y \\
& -\lambda \eta(Z) \phi \nabla_{Y} X+\mu \eta\left(\nabla_{X} Y\right) \phi Z-\mu \eta\left(\nabla_{Y} X\right) \phi Z . \tag{26}
\end{align*}
$$

Now in reference of (24), (25) and (26) we get from (23)

$$
\begin{align*}
& R^{*}(X, Y) Z \\
= & R(X, Y) Z+\left(\lambda^{2}-2 \lambda\right)[g(Z, \phi X) \phi Y+g(Y, \phi Z) \phi X] \\
& -2 \mu g(Y, \phi X) \phi Z \\
& +(\lambda-\lambda \mu+\mu)[g(X, Z) \eta(Y) \xi-\eta(X) g(Y, Z) \xi] \\
& +(\lambda-\lambda \mu+\mu)[\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X] \tag{27}
\end{align*}
$$

Consequently one can easily bring out the following

$$
\begin{align*}
S^{*}(Y, Z) & =S(Y, Z)-\bar{A} g(Y, Z)+\bar{B} \eta(Y) \eta(Z), \tag{28}\\
S^{*}(Y, \xi) & =-(n-1) \bar{C} \eta(Y), \tag{29}\\
S^{*}(\xi, Z) & =-(n-1) \bar{C} \eta(Z), \tag{30}\\
Q^{*} Y & =Q Y-\bar{A} Y+\bar{B} \eta(Y) \xi, \tag{31}\\
Q^{*} \xi & =-(n-1) \bar{C} \xi \tag{32}\\
r^{*} & =r-\bar{A} n+\bar{B}, \tag{33}\\
R^{*}(X, Y) \xi & =\bar{C}[\eta(X) Y-\eta(Y) X] \tag{34}\\
R^{*}(\xi, Y) Z & =\bar{C}[\eta(Z) Y-g(Y, Z) \xi] \tag{35}\\
R^{*}(X, \xi) Z & =\bar{C}[g(X, Z) \xi-\eta(Z) X] . \tag{36}
\end{align*}
$$

where

$$
\begin{align*}
\bar{A} & =\left(\lambda^{2}-\lambda-\mu-\lambda \mu\right), \tag{37}\\
\bar{B} & =\left[\lambda^{2}+(n-2) \lambda \mu-n(\lambda+\mu)\right], \tag{38}\\
\bar{C} & =(\lambda-\lambda \mu+\mu-1) . \tag{39}
\end{align*}
$$

Therefore, for quarter-symmetric metric connection

$$
\begin{equation*}
\bar{A}=1 ; \bar{B}=n ; \bar{C}=-2, \tag{40}
\end{equation*}
$$

Tanaka Webster connection

$$
\begin{equation*}
\bar{A}=2 ; \bar{B}=3-n ; \bar{C}=0 \tag{41}
\end{equation*}
$$

Zamkovoy connection

$$
\begin{equation*}
\bar{A}=-2 ; \bar{B}=-1-n ; \bar{C}=0, \tag{42}
\end{equation*}
$$

and for Schouten Kampen-Van connection

$$
\begin{equation*}
\bar{A}=0 ; \bar{B}=1-n ; \bar{C}=0 . \tag{43}
\end{equation*}
$$

Thus, we can state the following
Proposition 1. Let M be an n-dimensional Sasakian manifold admitting general connection ∇^{*}, Then
(i) The curvature tensor R^{*} of ∇^{*} is given by (27),
(ii) The Ricci tensor S^{*} of ∇^{*} is given by (28),
(iii) The scalar curvature r^{*} of ∇^{*} is given by (33),
(iv) The Ricci tensor S^{*} of ∇^{*} is symmetric.

Now if we suppose that the Sasakian manifold is Ricci flat with respect to the general connection then from (28) we get

$$
S(Y, Z)=\bar{A} g(Y, Z)-\bar{B} \eta(Y) \eta(Z)
$$

This leads to the following
Theorem 1. If manifold M^{n} is Ricci flat with respect to the general connection if and only if M^{n} is an η-Einstein manifold.

4 Generalised pseudo symmetric Sasakian manifold with respect to general connection

A non-flat Sasakian manifold $\left(M^{n}, g\right)(n \geq 3)$ is said to be pseudo symmetric[3], if the curvature tensor R satisfies the condition.

$$
\begin{aligned}
& \left(\nabla_{X} R\right)(U, V, W, Y) \\
= & 2 \alpha(X) R(U, V, W, Y)+\alpha(U) R(X, V, W, Y) \\
& +\alpha(V) R(U, X, W, Y)+\alpha(W) R(U, V, X, Y) \\
& +\alpha(Y) R(U, V, W, X) .
\end{aligned}
$$

Keeping in tune with Dubey[6], a non-flat Sasakian manifold $\left(M^{n}, g\right)(n \geq 3)$ is said to be generalized pseudo symmetric if the curvature tensor R satisfies the condition

$$
\begin{align*}
& \left(\nabla_{X} R\right)(U, V, W, Y) \\
= & 2 \alpha(X) R(U, V, W, Y)+\alpha(U) R(X, V, W, Y) \\
& +\alpha(V) R(U, X, W, Y)+\alpha(W) R(U, V, X, Y) \\
& +\alpha(Y) R(U, V, W, X)+2 \beta(X) G(U, V, W, Y) \\
& +\beta(U) G(X, V, W, Y)+\beta(V) G(U, X, W, Y) \\
& +\beta(W) G(U, V, X, Y)+\beta(Y) G(U, V, W, X), \tag{44}
\end{align*}
$$

where

$$
\begin{equation*}
G(Y, U, V, W)=[g(U, V) g(Y, W)-g(Y, V) g(U, W)] \tag{45}
\end{equation*}
$$

for all vectors fields $X, U, V \in \chi(M)$ and where non zero one forms α, β are defined by

$$
\begin{equation*}
\alpha(X)=g\left(X, \rho_{1}\right) ; \beta(X)=g\left(X, \rho_{2}\right) \tag{46}
\end{equation*}
$$

Now we denote the generalised pseudo symmetric-Sasakian manifold with respect to the general connection by $\left(\left[(G P S)_{n}, \nabla^{*}\right]\right)$, whose curvature tensor satisfies the following condition

$$
\begin{align*}
& \left(\nabla_{X}^{*} R^{*}\right)(U, V, W, Y) \\
= & 2 \alpha(X) R^{*}(U, V, W, Y)+\alpha(U) R^{*}(X, V, W, Y) \\
& +\alpha(V) R^{*}(U, X, W, Y)+\alpha(W) R^{*}(U, V, X, Y) \\
& +\alpha(Y) R^{*}(U, V, W, X)+2 \beta(X) G(U, V, W, Y) \\
& +\beta(U) G(X, V, W, Y)+\beta(V) G(U, X, W, Y) \\
& +\beta(W) G(U, V, X, Y)+\beta(Y) G(U, V, W, X) \tag{47}
\end{align*}
$$

which yields after contraction,

$$
\begin{align*}
& \left(\nabla_{X}^{*} S^{*}\right)(V, W) \\
= & 2 \alpha(X) S^{*}(V, W)+\alpha\left(R^{*}(X, V) W\right) \\
& +\alpha(V) S^{*}(X, W)+\alpha(W) S^{*}(V, X) \\
& -\alpha\left(R^{*}(W, X) V\right)+2 \beta(X) n g(V, W) \\
& -2 \beta(X) g(V, W)+\beta(X) g(V, W) \\
& -g(X, W) \beta(V)+\beta(V) n g(X, W) \\
& -\beta(V) g(X, W)+\beta(W) n g(V, X) \\
& -\beta(W) g(X, V)+\beta(X) g(V, W) \\
& -\beta(W) g(X, V) . \tag{48}
\end{align*}
$$

Replacing W by ξ in (48), we get

$$
\begin{align*}
& \left(\nabla_{X}^{*} S^{*}\right)(V, \xi) \\
= & -2(n-1) \bar{C} \alpha(X) \eta(V)+\bar{C} \eta(X) \alpha(V)-\bar{C} \eta(V) \alpha(X) \\
& -(n-1) \bar{C} \alpha(V) \eta(X)+\alpha(\xi) S^{*}(V, X) \\
& -\bar{C} \eta(V) \alpha(X)+\bar{C} g(X, V) \alpha(\xi)+2 n \beta(X) \eta(V) \\
& -2 \beta(X) \eta(V)+\beta(X) \eta(V)-\eta(X) \beta(V) \\
& +\beta(V) n \eta(X)-\beta(V) \eta(X) \\
& +\beta(\xi) n g(V, X)-\beta(\xi) g(X, V) \\
& +\beta(X) \eta(V)-\beta(\xi) g(X, V) . \tag{49}
\end{align*}
$$

Now, by using the definition covariant derivative, (8) and (29) we get the following

$$
\begin{equation*}
\left(\nabla_{X}^{*} S^{*}\right)(V, \xi)=(1-\lambda)[S(V, \phi X)+\bar{C}(n-1) g(V, \phi X)-\bar{A} g(V, \phi X)] . \tag{50}
\end{equation*}
$$

Taking account of (29), (34), (36), (49) and (50) we get

$$
\begin{align*}
& (1-\lambda)[S(V, \phi X)+\bar{C}(n-1) g(V, \phi X)-\bar{A} g(V, \phi X)] \\
= & -2(n-1) \bar{C} \alpha(X) \eta(V)+\bar{C} \eta(X) \alpha(V)-\bar{C} \eta(V) \alpha(X) \\
& -(n-1) \bar{C} \alpha(V) \eta(X)+\alpha(\xi) S^{*}(V, X) \\
& -\bar{C} \eta(V) \alpha(X)+\bar{C} g(X, V) \alpha(\xi)+2 n \beta(X) \eta(V) \\
& -2 \beta(X) \eta(V)+\beta(X) \eta(V)-\eta(X) \beta(V) \\
& +\beta(V) n \eta(X)-\beta(V) \eta(X) \\
& +\beta(\xi) n g(V, X)-\beta(\xi) g(X, V) \\
& +\beta(X) \eta(V)-\beta(\xi) g(X, V) . \tag{51}
\end{align*}
$$

Replacing again, X and V by ξ in the foregoing equation and using (29), (6) we obtain

$$
\begin{equation*}
[\beta(\xi)-\bar{C} \alpha(\xi)]=0 \tag{52}
\end{equation*}
$$

Putting V by ξ in (48) and then using (29), (34), (36) and (50) we get

$$
\begin{align*}
& (1-\lambda)[S(\phi X, W)+\bar{C}(n-1) g(\phi X, W)-\bar{A} g(\phi X, W)] \\
= & -2(n-1) \bar{C} \alpha(X) \eta(W)-2 \bar{C} \eta(W) \alpha(X) \\
& +\bar{C} g(X, W) \alpha(\xi)+\alpha(\xi) S^{*}(X, W) \\
& -(n-1) \bar{C} \alpha(W) \eta(X)+\bar{C} \eta(X) \alpha(W) \\
& +(n-2) \beta(\xi) g(X, W)+(n-1) \beta(W) \eta(X) \\
& -\beta(W) \eta(X)+2 n \beta(X) \eta(W) . \tag{53}
\end{align*}
$$

Setting $X=\xi$ in (53) and using (6), and (36) we obtain

$$
\begin{align*}
& 0 \\
= & -3(n-1) \bar{C} \alpha(\xi) \eta(W)-\bar{C} \eta(W) \alpha(\xi) \\
& -(n-1) \bar{C} \alpha(W)+\bar{C} \alpha(W) \\
& +3 n \beta(\xi) \eta(W)-2 \beta(\xi) \eta(W) \\
& +(n-2) \beta(W) . \tag{54}
\end{align*}
$$

Taking $W=\xi$ in (53) and using (6), and (36) we obtain

$$
\begin{align*}
& 0 \\
= & -2(n-1) \bar{C} \alpha(X)-2 \bar{C} \alpha(X)+2 \bar{C} \eta(X) \alpha(\xi) \\
& -2(n-1) \bar{C} \eta(X) \alpha(\xi)+2(n-2) \beta(\xi) \eta(X) \\
& +2 n \beta(X) . \tag{55}
\end{align*}
$$

Replacing W by X in (54)

$$
\begin{align*}
= & 0 \\
& -3(n-1) \bar{C} \alpha(\xi) \eta(X)-\bar{C} \eta(X) \alpha(\xi) \\
& -(n-1) \bar{C} \alpha(X)+\bar{C} \alpha(X) \\
& +3 n \beta(\xi) \eta(X)-2 \beta(\xi) \eta(X) \\
& +(n-2) \beta(X) . \tag{56}
\end{align*}
$$

Finally, in view of (52), (54) and (55) we get

$$
\begin{equation*}
[\beta(X)-\bar{C} \alpha(X)]=0 \tag{57}
\end{equation*}
$$

Thus, we can state following
Theorem 2. There exists no generalised pseudo symmetric Sasakian manifold admitting a general connection, unless $\beta=\bar{C} \alpha$ everywhere, provided $\bar{C} \neq 0$.

Corollary 1. There do not exist $\left[(G P S)_{n}, \nabla^{T}\right],\left[(G P S)_{n}, \nabla^{s}\right],\left[(G P S)_{n}, \nabla^{z}\right]$ unless $\beta=0$, everywhere.

5 Generalised pseudo Ricci symmetric Sasakian manifold admitting general connection

A non flat n-dimensional Sasakian manifold $M^{n}(n \geq 3)$ is said to be generalised pseudo Ricci symmetric with respect to general connection briefly if the Ricci tensor S^{*} satisfies the following condition

$$
\begin{align*}
& \left(\nabla_{X}^{*} S^{*}\right)(U, V) \\
= & 2 \alpha^{*}(X) S^{*}(U, V)+\alpha^{*}(U) S^{*}(X, V)+\alpha^{*}(V) S^{*}(U, X) \\
& +2 \beta^{*}(X) g(U, V)+\beta^{*}(U) g(X, V)+\beta^{*}(V) g(U, X) . \tag{58}
\end{align*}
$$

for all vectors fields $U, V \in \chi(M)$ and where α, β being non zero one forms defined by

$$
\begin{equation*}
\alpha^{*}(X)=g(X, \rho) ; \beta^{*}(X)=g(X, \sigma) . \tag{59}
\end{equation*}
$$

Replacing V by ξ in (58) and using (36) and (50)

$$
\begin{align*}
& \left(\nabla_{X}^{*} S^{*}\right)(U, \xi) \\
= & -2(n-1) \bar{C} \alpha^{*}(X) \eta(U)-(n-1) \bar{C} \alpha^{*}(U) \eta(X)+\alpha^{*}(\xi) S^{*}(U, X) \\
& +2 \beta^{*}(X) \eta(U)+\beta^{*}(U) \eta(X)+\beta^{*}(\xi) g(U, X), \tag{60}
\end{align*}
$$

Putting $X=U=\xi$ in foregoing equation and using (36) we get

$$
\begin{equation*}
-(n-1) \bar{C} \alpha^{*}(\xi)+\beta^{*}(\xi)=0 . \tag{61}
\end{equation*}
$$

By replacing X by ξ in (60) and using (36), (6) we obtain

$$
\begin{align*}
& 0 \\
= & -3(n-1) \bar{C} \alpha^{*}(\xi) \eta(U)-(n-1) \bar{C} \alpha^{*}(U) \\
& +3 \beta^{*}(\xi) \eta(U)+\beta^{*}(U) \tag{62}
\end{align*}
$$

Putting $U=\xi$ in (60) and using (36), (6) we get

$$
\begin{align*}
& 0 \\
= & -2(n-1) \bar{C} \alpha^{*}(X)-2(n-1) \bar{C} \alpha^{*}(\xi) \eta(X) \\
& +2 \beta^{*}(X)+2 \beta^{*}(\xi) \eta(X) . \tag{63}
\end{align*}
$$

Finally, in view of (61), (62) and (63) we obtain

$$
\begin{equation*}
0=-(n-1) \bar{C} \alpha^{*}(X)+\beta^{*}(X) . \tag{64}
\end{equation*}
$$

Thus, we can state followings
Theorem 3. There exists no generalised pseudo ricci symmetric Sasakian manifold admitting a general connection, unless $(n-1) \bar{C} \alpha^{*}=\beta^{*}$ everywhere, provided $\bar{C} \neq 0$.
Corollary 2. There do not exist $\left[(G P R S)_{n}, \nabla^{T}\right],\left[(G P R S)_{n}, \nabla^{s}\right]$ and $\left[(G P R S)_{n}, \nabla^{z}\right]$ unless $\beta^{*}=0$.

6 Example of a Sasakian manifold with ($\left.\left[(G P S)_{n}, \nabla^{*}\right]\right)$

With the help of [5](See, Ex. 3.1, P.P. 21-22) we introduce an example of 3dimensional Sasakian manifold spanned by a set of vector fields $\left\{e_{1}, e_{2}, e_{3}\right\}$ defined by

$$
e_{1}=x\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right)-2 y \frac{\partial}{\partial z}, \quad e_{2}=\frac{\partial}{\partial y}, \quad e_{3}=\xi=\frac{\partial}{\partial z}
$$

where $\{x ; y ; z\}$ is a standard coordinate in R^{3}. Define 1 -form η, characteristic vector field ξ, Riemannian metric g and (1-1) tensor ϕ by $\eta(Z)=g\left(Z, e_{3}\right), \xi=\frac{\partial}{\partial z}$, $g\left(e_{i}, e_{j}\right)=\delta_{i j}$ and $\phi e_{1}=-e_{2}, \phi e_{2}=e_{1}$ and $\phi e_{3}=0$. Let ∇ be the Levi-Civita connection with respect to the Riemannian metric g. Then we have $\left[e_{1}, e_{2}\right]=2 e_{3}$, $\left[e_{1}, e_{3}\right]=0, \quad\left[e_{2}, e_{3}\right]=0$. Thus, $M(\phi, \xi, \eta, g)$ defines a Sasakian manifold and the Levi-Civita connection ∇ of the metric tensor g can be obtained by using Koszul's formulas which are as follows:

$$
\begin{array}{rlrl}
\nabla_{e_{1}} e_{3} & =-e_{2}, & \nabla_{e_{1}} e_{2}=e_{3}, & \nabla_{e_{1}} e_{1}=0 \\
\nabla_{e_{2}} e_{3} & =e_{1}, & \nabla_{e_{2}} e_{2}=0, & \nabla_{e_{2}} e_{1}=-e_{3} \\
\nabla_{e_{3}} e_{3} & =0, & \nabla_{e_{3}} e_{2}=e_{1}, & \nabla_{e_{3}} e_{1}=-e_{2}, \\
R\left(e_{1}, e_{2}\right) e_{2} & =-3 e_{1}, & R\left(e_{1}, e_{3}\right) e_{3}=e_{1}, \quad R\left(e_{2}, e_{3}\right) e_{3}=e_{2}, \\
R\left(e_{1}, e_{2}\right) e_{3} & =0, & R\left(e_{3}, e_{2}\right) e_{2}=e_{3}, & R\left(e_{2}, e_{1}\right) e_{1}=-3 e_{2}, \\
R\left(e_{1}, e_{3}\right) e_{2} & =0, \quad R\left(e_{3}, e_{1}\right) e_{1}=e_{3}, & R\left(e_{2}, e_{1}\right) e_{3}=0, \tag{66}
\end{array}
$$

and

$$
\begin{equation*}
S\left(e_{1}, e_{1}\right)=-2, S\left(e_{2}, e_{2}\right)=-2, S\left(e_{3}, e_{3}\right)=2 \tag{67}
\end{equation*}
$$

Using (18), (27) (28), (65) and (66) we obatin the following

$$
\begin{align*}
& \nabla_{e_{1}}^{*} e_{2}= e_{3}+\lambda e_{3}, \nabla_{e_{1}}^{*} e_{1}=0 ; \nabla_{e_{1}}^{*} e_{3}=-e_{2}-\lambda e_{2} ; \\
& \nabla_{e_{2}}^{*} e_{1}=-e_{3}-\lambda e_{3} ; \nabla_{e_{2}}^{*} e_{2}=0 ; \nabla_{e_{2}}^{*} e_{3}=e_{1}+\lambda e_{1} ; \\
& \nabla_{e_{3}}^{*} e_{1}=-e_{2}-\mu e_{2} ; \nabla_{e_{3}}^{*} e_{2}=e_{1}+\mu e_{1} ; \nabla_{e_{3}}^{*} e_{3}=0, \tag{68}\\
& R^{*}\left(e_{1}, e_{2}\right) e_{2}=-3 e_{1}-\left(\lambda^{2}-2 \lambda\right) e_{1}+2 \mu e_{1}, \\
& R^{*}\left(e_{2}, e_{3}\right) e_{3}=e_{2}-(\lambda-\lambda \mu+\mu) e_{2}, \\
& R^{*}\left(e_{1}, e_{3}\right) e_{3}=e_{1}-(\lambda-\lambda \mu+\mu) e_{1} \\
& R^{*}\left(e_{2}, e_{1}\right) e_{1}=-3 e_{2}-\left(\lambda^{2}-2 \lambda\right) e_{2}+2 \mu e_{2}, \\
& R^{*}\left(e_{3}, e_{2}\right) e_{2}=e_{3}-(\lambda-\lambda \mu+\mu) e_{3}, \\
& R^{*}\left(e_{2}, e_{1}\right) e_{3}=0, R^{*}\left(e_{1}, e_{2}\right) e_{3}=0, \\
& R^{*}\left(e_{3}, e_{1}\right) e_{1}=e_{3}-(\lambda-\lambda \mu+\mu) e_{3}, \\
& R^{*}\left(e_{1}, e_{3}\right) e_{2}=0, \tag{69}
\end{align*}
$$

$$
\begin{equation*}
S^{*}\left(e_{1}, e_{1}\right)=-2-\bar{A}, \tag{70}
\end{equation*}
$$

$$
\begin{gather*}
S^{*}\left(e_{2}, e_{2}\right)=-2-\bar{A}, \tag{71}\\
S^{*}\left(e_{3}, e_{3}\right)=-2 \bar{C}, \tag{72}
\end{gather*}
$$

and

$$
\begin{equation*}
S^{*}\left(e_{1}, e_{1}\right)=-2-\bar{A}, S^{*}\left(e_{2}, e_{2}\right)=-2-\bar{A}, S^{*}\left(e_{3}, e_{3}\right)=-2 \bar{C} . \tag{73}
\end{equation*}
$$

Using the above results of curvature tensor and (47) and (58) we obtain

$$
\left[\beta\left(e_{i}\right)-\bar{C} \alpha\left(e_{i}\right)\right]=0 ; \forall i=1,2,3 ; \text { provided } \bar{C} \neq 0 .
$$

and

$$
-(n-1) \bar{C} \alpha\left(e_{i}\right)+\beta\left(e_{i}\right)=0, \forall i=1,2,3 ; \text { provided } \bar{C} \neq 0 .
$$

Hence, this example is the necessary condition for the existence of generalized pseudo symmetric and generalized pseudo Ricci-symmetric Sasakian manifolds admitting a general connection, that is, this example supports Theorem4.1 and Theorem5.1.

References

[1] Friedmann, A. and Schouten, J. A., Uber die geometrie der halbsymmetrischen ubertragung. Math. Zeitschr, 21 (1924), 211-233.
[2] Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser, Boston, (2002)
[3] Chaki, M. C., On pseudo symmetric manifolds, Analele Şciinţifice ale Universităţii Al. I. Cuza din Iaşi, 33 (1987), 54-58.
[4] Chaki, M. C., On pseudo Ricci symmetric manifolds, Bulg. J. Physics, 15 (1988), 526-531.
[5] Dey, S. K. and Baishya, K. K., On the existence of some types on Kenmotsu manifolds, Universal Journal of Mathematics and Mathematical Sciences. 3, (2014), no. 2, 13-32.
[6] Dubey, R. S. D., Generalized recurrent spaces, Indian J. Pure Appl. Math., 10 (1979), 1508-1513.
[7] Golab, S., On semi-symmetric and quarter-symmetric linear connections, Tensor(N.S.), 2729 (1975), 249-254.
[8] Hayden, H. A., Subspaces of space with torsion, Proc. London Math. Soc. 34 (1932), 27-50.
[9] Cho, J. T., Cho, CR-structures on real hypersurfaces of a complex space form, Publ. Math. 54 (1999), 473-487.
[10] Cho, J. T., Pseudo-Einstein CR-structures on real hypersurfaces in a complex space form, Hokkaido Math. J. 37 (2008), 1-17.
[11] Mishra, R. S., and Pandey, S. N., On quarter-symmetric metric Fconnections, Tensor(N.S.), 34 (1980), 1-7.
[12] Tanaka, N., On non-degenerate real hypersurface, graded Lie algebra and Cartan connections, Japan. J. Math., New Ser. 2 (1976), 131-190.
[13] Rastogi, S. C., On quarter-symmetric metric connection, C.R. Acad. Sci. Bulgar, 31 (1978), 811-814.
[14] Rastogi, S. C., On quarter-symmetric metric connection, Tensor (N.S.), 44 (1987), 133-141.
[15] Sasaki, S., Lectures Notes on Almost Contact Manifolds, Part I, Tohoku University, (1975).
[16] Schouten, J. A. and Van Kampen, E. R., Zur Einbettungs-und Kr "ummungstheorie nichtholonomer Gebilde, Math. Ann. 103 (1930), 752-783.
[17] Webster, S. M., Pseudohermitian structures on a real hypersurface, J. Differ. Geom. 13 (1978), 25-41.
[18] Tanno, S., The automorphism groups of almost contact Riemannian manifold, Tohoku Math. J. 21 (1969), 21-38.
[19] Yano, K. and Kon, M., Structures on manifolds, World Scientific Publishing Co1984, 41.Acad. Bucharest, (2008), 249-308.
[20] Yano, K. and Imai, T., Quarter-symmetric metric connections and their curvature tensors, Tensor (N.S.), 38 (1982), 13-18.
[21] Yano, K., On semi-symmetric connection, Revue Roumanie de Mathematiques Pures et appliquees, 15 (1970), 1579-1586.
[22] Zamkovoy, S., Canonical connections on paracontact manifolds, Ann. Global Anal. Geom. 36 (2008), no. 1, 37-60.

[^0]: ${ }^{1}$ Department of Mathematics, Kurseong College, Darjeeling,
 W. Bengal-734203, India, e-mail: kanakkanti.kc@gmail.com

 2* Corresponding author, Department of Mathematics, Mathabhanga College, Coochbehar, W. Bengal -736 146, India, e-mail: biswasashis9065@gmail.com

