*-RICCI SOLITONS ON (ϵ)-PARA SASAKIAN 3-MANIFOLDS

Krishnendu DE ${ }^{1}$ and Chiranjib DEY ${ }^{2}$

Abstract

In the present paper we study $*$-Ricci solitons in (ϵ)-para Sasakian manifolds and prove that if an (ϵ)-para Sasakian 3 -manifold with constant scalar curvature admits a $*$-Ricci soliton, then the $*$-Ricci soliton is steady if and only if $£_{V} \xi$ is g-orthogonal to ξ provided $a=\operatorname{Tr} \phi$ is constant. Beside these, we study gradient $*$-Ricci solitons on $(\epsilon)-$ para Sasakian 3 -manifolds.

2000 Mathematics Subject Classification: 53C15, 53C25.
Key words: (ϵ)-para Sasakian manifolds, *-Ricci solitons, gradient *Ricci solitons, *-Einstein manifold.

1 Introduction

In this paper, we introduce a new type of Ricci solitons, called $*$-Ricci solitons in (ϵ - -para Sasakian manifolds with indefinite metric which play a functional role in contemporary mathematics. The properties of a manifold solely depend on the nature of the metric defined on it. With the help of indefinite metric, A. Bejancu and K. L. Duggal [1] introduced (ϵ)-Sasakian manifolds. Also, Xufeng and Xiaoli [18] showed that every $(\epsilon)-$ Sasakian manifold must be a real hypersurface of some indefinite Kähler manifold. In 2010, Tripathi et.al[14] studied (ϵ)-almost paracontact manifolds, and in particular, (ϵ-para Sasakian manifolds. They introduced the notion of an (ϵ)-para Sasakian structure. Since Sasakian manifolds with indefinite metric play significant role in physics [8], our natural trend is to study various contact manifolds with indefinite metric.

A Ricci soliton is a generalization of an Einstein metric. We recall the notion of Ricci soliton according to [5]. On manifold M, a Ricci soliton is a triple (g, V, λ) with g a Riemannian metric, V a vector field, called potential vector field and λ a real scalar such that

$$
\begin{equation*}
£_{V} g+2 S+2 \lambda g=0, \tag{1}
\end{equation*}
$$

[^0]where $£$ is the Lie derivative. Metrics satisfying (1) are interesting and useful in physics and are often referred as quasi-Einstein ([6],[7]).

The Ricci soliton is said to be shrinking, steady and expanding accordingly as λ is negative, zero and positive respectively. Ricci solitons have been studied by several authors such as ([21],[20],[12], [13]) and many others.

Ricci solitons have been generalized in several ways, such as almost Ricci solitons ([9],[16],[10]), η-Ricci solitons $([2],[3])$, generalized Ricci soliton, *-Ricci solitons and many others.

As a generalization of Ricci soliton, Tachibana [17] introduced the notion of *-Ricci tensor on almost Hermitian manifolds. Later, in [11] Hamada studied *Ricci flat real hypersurfaces in non-flat complex space forms and Blair [4] defined $*$-Ricci tensor in contact metric manifolds by

$$
\begin{equation*}
S^{*}(X, Y)=g\left(Q^{*} X, Y\right)=\operatorname{Trace}\{\phi \circ R(X, \phi Y)\} \tag{2}
\end{equation*}
$$

where Q^{*} is called the $*$-Ricci operator.
Definition 1. [15] A Riemannian (or semi-Riemannian) metric g on M is called *-Ricci soliton if

$$
\begin{equation*}
£_{V} g+2 S^{*}+2 \lambda g=0 \tag{3}
\end{equation*}
$$

where λ is a constant.
Definition 2. [15] A Riemannian (or semi-Riemannian) metric g on M is called gradient $*$-Ricci soliton if

$$
\begin{equation*}
\nabla \nabla f+S^{*}+\lambda g=0 \tag{4}
\end{equation*}
$$

where $\nabla \nabla f$ denotes the hessian of the smooth function f on M with respect to g and λ is a constant.
Definition 3. A contact metric manifold of dimension $n>2$ is called $*$-Einstein if the $*$-Ricci tensor S^{*} of type $(0,2)$ satisfies the relation

$$
\begin{equation*}
S^{*}=\lambda g \tag{5}
\end{equation*}
$$

where λ is a constant.
If an (ϵ)-para Sasakian manifold M satisfies relation (3), then we say that M admits a $*$-Ricci soliton.

The present paper focuses on the study of (ϵ)-para Sasakian 3-manifolds M admitting a $*$-Ricci soliton. More precisely, the following theorems are proved.

Theorem 1. If an (ϵ-para Sasakian 3-manifold ($M, \phi, \xi, \eta, g, \epsilon$) with constant scalar curvature admits $a *$-Ricci soliton, then the $*$-Ricci soliton is steady if and only if $£_{V} \xi$ is g-orthogonal to ξ provided $a=\operatorname{Tr} \phi$ is constant.
Theorem 2. A gradient $*$-Ricci soliton with potential vector field of gradient type, $V=D f$, satisfying $£_{\xi} f=0$ on an (ϵ)-para Sasakian 3 -manifold $(M, \phi, \xi, \eta, g, \epsilon)$ is *-Einstein provided $a=\operatorname{Tr} \phi$ is constant.

2 Preliminaries

A $(2 n+1)$-dimensional smooth manifold M together with a $(1,1)$-tensor field ϕ, a vector field ξ, a 1 -form η and a semi-Riemannian metric g is called an (ϵ)-almost paracontact metric manifold if

$$
\begin{gather*}
\phi^{2} X=X-\eta(X) \xi, \quad \eta(\xi)=1, \tag{6}\\
g(\xi, \xi)=\epsilon, \eta(X)=\epsilon g(X, \xi) \tag{7}\\
g(\phi X, \phi Y)=g(X, Y)-\epsilon \eta(X) \eta(Y), \tag{8}
\end{gather*}
$$

where ϵ is 1 or -1 accordingly as ξ is spacelike or timelike, and the rank of ϕ is $2 n$. It is important to mention that in the above definition, ξ is never a lightlike vector field. It follows that $\phi \xi=0, \eta \circ \phi=0$ and $g(X, \phi Y)=g(\phi X, Y)$, for any $X, Y \in \chi(M)$.

If moreover, the manifold satisfies

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=-g(\phi X, \phi Y) \xi-\epsilon \eta(Y) \phi^{2} X \tag{9}
\end{equation*}
$$

where ∇ denotes the Riemannian connection of g, then we shall call the manifold an $(\epsilon)-$ para Sasakian manifold .

On an (ϵ)-para Sasakian manifold ($M, \phi, \xi, \eta, g, \epsilon$), the following relations hold [14]:

$$
\begin{gather*}
\nabla_{X} \xi=\epsilon \phi X, \tag{10}\\
\left(\nabla_{X} \eta\right) Y=\epsilon g(Y, \phi X), \tag{11}\\
R(X, Y) \xi=\eta(X) Y-\eta(Y) X, \tag{12}\\
\eta(R(X, Y) Z)=\epsilon[g(X, Z) \eta(Y)-g(Y, Z) \eta(X)], \tag{13}\\
S(X, \xi)=-2 n \eta(X), \tag{14}\\
Q \xi=-\epsilon 2 n \xi, \tag{15}
\end{gather*}
$$

where ∇, R, S and Q denote respectively, the Riemannian connection, the curvature tensor of type $(1,3)$, the Ricci tensor of type $(0,2)$ and the Ricci operator of type (1,1).

Lemma 1. In an (ϵ)-para Sasakian manifold $(M, \phi, \xi, \eta, g, \epsilon)$, we have

$$
\begin{align*}
R(X, Y) \phi Z & =\phi R(X, Y) Z-\epsilon[g(Y, Z) \phi X-g(X, Z) \phi Y] \\
& +\epsilon[g(Y, \phi Z) X-g(X, \phi Z) Y] \\
& +2 \epsilon[g(X, \phi Z) \eta(Y)-g(Y, \phi Z) \eta(X)] \xi \\
& +2[\eta(Y) \phi X-\eta(X) \phi Y] \eta(Z) . \tag{16}
\end{align*}
$$

Proof. To prove the above Lemma we shall use equation (9).
Now

$$
\begin{aligned}
& R(X, Y) \phi Z \\
= & \nabla_{X} \nabla_{Y} \phi Z-\nabla_{Y} \nabla_{X} \phi Z-\nabla_{[X, Y]} \phi Z \\
= & \nabla_{X}\left(\phi\left(\nabla_{Y} Z\right)-g(Y, Z) \xi-\epsilon \eta(Z) Y+2 \epsilon \eta(Y) \eta(Z) \xi\right) \\
- & \nabla_{Y}\left(\phi\left(\nabla_{X} Z\right)-g(X, Z) \xi-\epsilon \eta(Z) X+2 \epsilon \eta(X) \eta(Z) \xi\right) \\
- & \left(\phi\left(\nabla_{[X, Y]} Z\right)-g([X, Y], Z) \xi-\epsilon \eta(Z)[X, Y]+2 \epsilon \eta([X, Y]) \eta(Z) \xi\right) \\
= & \phi\left(\nabla_{X} \nabla_{Y} Z\right)-g\left(X, \nabla_{Y} Z\right) \xi-\epsilon \eta\left(\nabla_{Y} Z\right) X+2 \epsilon \eta(X) \eta\left(\nabla_{Y} Z\right) \xi \\
- & \nabla_{X} g(Y, Z) \xi-\epsilon g(Y, Z) \phi X-\epsilon \nabla_{X} \eta(Z) Y-\epsilon \eta(Z) \nabla_{X} Y \\
+ & 2 \epsilon \nabla_{X} \eta(Y) \eta(Z) \xi+2 \epsilon \eta(Y) \nabla_{X} \eta(Z) \xi+2 \epsilon \eta(Y) \eta(Z) \phi X \\
- & \phi\left(\nabla_{Y} \nabla_{X} Z\right)+g\left(X, \nabla_{X} Z\right) \xi+\epsilon \eta\left(\nabla_{X} Z\right) Y-2 \epsilon \eta(Y) \eta\left(\nabla_{X} Z\right) \xi \\
+ & \nabla_{Y} g(X, Z) \xi+\epsilon g(X, Z) \phi Y+\epsilon \nabla_{Y} \eta(Z) X+\epsilon \eta(Z) \nabla_{Y} X \\
- & 2 \epsilon \nabla_{Y} \eta(X) \eta(Z) \xi-2 \epsilon \eta(X) \nabla_{Y} \eta(Z) \xi-2 \epsilon \eta(X) \eta(Z) \phi Y \\
- & \phi\left(\nabla_{[X, Y]} Z\right)+g\left(\nabla_{X} Y, Z\right) \xi-g\left(\nabla_{Y} X, Z\right) \xi \\
+ & \epsilon \eta(Z) \nabla_{X} Y-\epsilon \eta(Z) \nabla_{Y} X-2 \epsilon \eta\left(\nabla_{X} Y\right) \eta(Z) \xi+2 \epsilon \eta\left(\nabla_{Y} X\right) \eta(Z) \xi \\
= & \phi R(X, Y) Z-\epsilon[g(Y, Z) \phi X-g(X, Z) \phi Y] \\
+ & \epsilon[g(Y, \phi Z) X-g(X, \phi Z) Y] \\
+ & 2 \epsilon[g(X, \phi Z) \eta(Y)-g(Y, \phi Z) \eta(X)] \xi \\
+ & 2[\eta(Y) \phi X-\eta(X) \phi Y] \eta(Z) .
\end{aligned}
$$

This completes the proof.

Lemma 2. In an (ϵ)-para Sasakian manifold $(M, \phi, \xi, \eta, g, \epsilon)$, we have

$$
\begin{align*}
\tilde{R}(X, Y, \phi Z, \phi W) & =\tilde{R}(X, Y, Z, W)+2 g(Y, Z) \eta(X) \eta(W)-2 g(X, Z) \eta(Y) \eta(W) \\
& -\epsilon[g(Y, Z) g(X, W)-g(X, Z) g(Y, W) \\
& -g(X, \phi W) g(Y, \phi Z)+g(Y, \phi W) g(X, \phi Z)] \\
& +2 g(X, W) \eta(Y) \eta(Z)-2 g(Y, W) \eta(X) \eta(Z) \tag{17}
\end{align*}
$$

where $\tilde{R}(X, Y, Z, W)=g(R(X, Y) Z, W)$, for $X, Y, Z, W \in \chi(M)$.

Proof. To prove the above Lemma we shall use equations (8),(13) and (16).

Now

$$
\begin{aligned}
& \tilde{R}(X, Y, \phi Z, \phi W) \\
= & g(\phi R(X, Y) Z, \phi W)-\epsilon[g(Y, Z) g(\phi X, \phi W) \\
- & g(X, Z) g(\phi Y, \phi W)]-\epsilon[g(X, \phi Z) g(Y, \phi W)-g(Y, \phi Z) g(X, \phi W)] \\
- & 2 \epsilon[g(Y, \phi Z) \eta(X)-g(X, \phi Z) \eta(Y)] \eta(\phi W) \\
+ & 2[g(\phi X, \phi W) \eta(Y)-g(\phi Y, \phi W) \eta(X)] \eta(Z) \\
= & g(R(X, Y) Z, W)-\epsilon \eta(R(X, Y) Z) \eta(W)+\epsilon[g(Y, Z) g(X, W) \\
- & \epsilon g(Y, Z) \eta(X) \eta(W)-g(X, Z) g(Y, W)+\epsilon g(X, Z) \eta(Y) \eta(W) \\
- & \epsilon[g(X, \phi Z) g(Y, \phi W)-g(Y, \phi Z) g(X, \phi W)] \\
+ & 2[g(X, W) \eta(Y)-g(Y, W) \eta(X)] \eta(Z) \\
= & \tilde{R}(X, Y, Z, W)+2 g(Y, Z) \eta(X) \eta(W)-2 g(X, Z) \eta(Y) \eta(W) \\
- & \epsilon[g(Y, Z) g(X, W)-g(X, Z) g(Y, W) \\
- & g(X, \phi W) g(Y, \phi Z)+g(Y, \phi W) g(X, \phi Z)] \\
+ & 2 g(X, W) \eta(Y) \eta(Z)-2 g(Y, W) \eta(X) \eta(Z) .
\end{aligned}
$$

This completes the proof.
For a 3-dimensional (ϵ--para Sasakian manifold ($M, \phi, \xi, \eta, g, \epsilon$), we have

$$
\begin{align*}
R(X, Y) Z= & g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y \\
& -\frac{r}{2}[g(Y, Z) X-g(X, Z) Y] \tag{18}
\end{align*}
$$

for any $X, Y, Z \in \chi(M)$, where Q is the Ricci operator, that is, $g(Q X, Y)=$ $S(X, Y)$ and r is the scalar curvature of the manifold.

Putting $Z=\xi$ in (18) and using (12) we have

$$
\begin{equation*}
\eta(Y) Q X-\eta(X) Q Y=\left(\frac{r}{2}+\epsilon\right)[\eta(Y) X-\eta(X) Y] . \tag{19}
\end{equation*}
$$

Again replacing Y by ξ in the foregoing equation and using (15), we get

$$
\begin{equation*}
Q X=\left(\frac{r}{2}+\epsilon\right) X-\left(\frac{r}{2}+3 \epsilon\right) \eta(X) \xi \tag{20}
\end{equation*}
$$

which implies

$$
\begin{equation*}
S(X, Y)=\left(\frac{r}{2}+\epsilon\right) g(X, Y)-\left(\frac{r}{2}+3 \epsilon\right) \epsilon \eta(X) \eta(Y) . \tag{21}
\end{equation*}
$$

Now we prove the following Lemma which will be used later.
Lemma 3. In an (ϵ)-para Sasakian 3 -manifold ($M, \phi, \xi, \eta, g, \epsilon$), the $*$-Ricci tensor is given by

$$
\begin{equation*}
S^{*}(X, Y)=S(X, Y)-[\epsilon g(X, Y)+a g(X, \phi Y)]+3 \eta(X) \eta(Y) \tag{22}
\end{equation*}
$$

where S and S^{*} are the Ricci tensor and the $*$-Ricci tensor of type $(0,2)$, respectively and $a=\operatorname{Tr} \phi$.

Proof. Let $\left\{e_{i}\right\}, i=1,2,3$ be an orthonormal basis of the tangent space at each point of the manifold. From (2) and using (17), we infer

$$
\begin{aligned}
S^{*}(Y, Z) & =\sum_{i=1}^{3} \tilde{R}\left(e_{i}, Y, \phi Z, \phi e_{i}\right) \\
& =\sum_{i=1}^{3}\left\{\tilde{R}\left(e_{i}, Y, Z, e_{i}\right)+2 g(Y, Z) \eta\left(e_{i}\right) \eta\left(e_{i}\right)-2 g\left(e_{i}, Z\right) \eta(Y) \eta\left(e_{i}\right)\right. \\
& -\epsilon\left[g(Y, Z) g\left(e_{i}, e_{i}\right)-g\left(e_{i}, Z\right) g\left(Y, e_{i}\right)\right. \\
& \left.-g\left(e_{i}, \phi e_{i}\right) g(Y, \phi Z)+g\left(Y, \phi e_{i}\right) g\left(e_{i}, \phi Z\right)\right] \\
& \left.+2 g\left(e_{i}, e_{i}\right) \eta(Y) \eta(Z)-2 g\left(Y, e_{i}\right) \eta\left(e_{i}\right) \eta(Z)\right\} \\
& =S(Y, Z)-\epsilon[g(Y, Z)+a g(Y, \phi Z)]+3 \eta(Y) \eta(Z)
\end{aligned}
$$

Hence, the $*$-Ricci tensor is

$$
S^{*}(Y, Z)=S(Y, Z)-\epsilon[g(Y, Z)+a g(Y, \phi Z)]+3 \eta(Y) \eta(Z),
$$

for any $Y, Z \in \chi(M)$. This completes the proof.
From the above Lemma, the $(1,1) *$-Ricci operator Q^{*} and the $*$-scalar curvature r^{*} are given by

$$
\begin{gather*}
Q^{*} X=Q X-\epsilon(X+a \phi X)+3 \epsilon \eta(X) \xi, \tag{23}\\
r^{*}=r-4 \epsilon a^{2} \tag{24}
\end{gather*}
$$

Hereafter, unless otherwise stated, let us assume that $a=\operatorname{Tr} \phi$ is constant.

3 Proof of the main theorems

In view of equation (21), the $*$-Ricci tensor is given by

$$
\begin{equation*}
S^{*}(X, Y)=\frac{r}{2} g(X, Y)-\frac{r}{2} \epsilon \eta(X) \eta(Y)-a \epsilon g(X, \phi Y) . \tag{25}
\end{equation*}
$$

Again from the equation of $*$-Ricci soliton we have

$$
\begin{align*}
\left(£_{V} g\right)(X, Y) & =-2 S^{*}(X, Y)-2 \lambda g(X, Y) \tag{26}\\
& =-(r+2 \lambda) g(X, Y)+r \epsilon \eta(X) \eta(Y)+2 a \epsilon g(X, \phi Y) .
\end{align*}
$$

Taking the covariant derivative with respect to Z, we get

$$
\begin{align*}
\left(\nabla_{Z} £_{V} g\right)(X, Y)= & -(Z r) g(\phi X, \phi Y) \\
& +r[g(\phi X, Z) \eta(Y)+g(\phi Y, Z) \eta(X)] . \tag{27}
\end{align*}
$$

Following Yano ([19], pp. 23), the following formula holds

$$
\begin{aligned}
\left(£_{V} \nabla_{X} g-\nabla_{X} £_{V} g-\right. & \left.\nabla_{[V, X]} g\right)(Y, Z) \\
& =-g\left(\left(£_{V} \nabla\right)(X, Y), Z\right)-g\left(\left(£_{V} \nabla\right)(X, Z), Y\right),
\end{aligned}
$$

for any $X, Y, Z \in \chi(M)$. As g is parallel with respect to the Levi-Civita connection ∇, the above relation becomes

$$
\begin{equation*}
\left(\nabla_{X} £_{V} g\right)(Y, Z)=g\left(\left(£_{V} \nabla\right)(X, Y), Z\right)+g\left(\left(£_{V} \nabla\right)(X, Z), Y\right), \tag{28}
\end{equation*}
$$

for any $X, Y, Z \in \chi(M)$. Since $£_{V} \nabla$ is a symmetric tensor of type $(1,2)$, that is, $\left(£_{V} \nabla\right)(X, Y)=\left(£_{V} \nabla\right)(Y, X)$, then it follows from (28) that

$$
\begin{align*}
& g\left(\left(£_{V} \nabla\right)(X, Y), Z\right) \\
& =\frac{1}{2}\left(\nabla_{X} £_{V} g\right)(Y, Z)+\frac{1}{2}\left(\nabla_{Y} £_{V} g\right)(X, Z)-\frac{1}{2}\left(\nabla_{Z} £_{V} g\right)(X, Y) . \tag{29}
\end{align*}
$$

Using (27) in (29) yields

$$
\begin{align*}
2 g\left(\left(£_{V} \nabla\right)(X, Y), Z\right) & =-(X r) g(\phi Y, \phi Z) \\
& +r[g(X, \phi Y) \eta(Z)+g(X, \phi Z) \eta(Y)] \\
& -(Y r) g(\phi X, \phi Z) \tag{30}\\
& +r[g(\phi X, Y) \eta(Z)+g(Y, \phi Z) \eta(X) \\
& +(Z r) g(\phi X, \phi Y) \\
& -r[g(\phi X, Z) \eta(Y)+g(\phi Y, Z) \eta(X) .
\end{align*}
$$

Removing Z from (30), it follows that

$$
\begin{align*}
2\left(£_{V} \nabla\right)(X, Y) & =-(X r)\{Y-\epsilon \eta(Y) \xi\} \\
& +r[g(X, \phi Y) \xi+\phi X \eta(Y)] \\
& -(Y r)\{X-\epsilon \eta(X) \xi\} \\
& +r[g(\phi X, Y) \xi+\phi Y \eta(X) \tag{31}\\
& +(D r) g(\phi X, \phi Y) \\
& -r[\phi X \eta(Y)+\phi Y \eta(X),
\end{align*}
$$

where $(X \alpha)=g(D \alpha, X)$, for D the gradient operator with respect to g. Substituting $Y=\xi$ in the foregoing equation and using $r=$ constant (hence, $(D r)=0$ and $(\xi r)=0)$, we have

$$
\begin{equation*}
\left(£_{V} \nabla\right)(X, \xi)=0 . \tag{32}
\end{equation*}
$$

Taking the covariant derivative of (32) with respect to Y, we infer

$$
\begin{equation*}
\left(\nabla_{Y} £_{V} \nabla\right)(X, \xi)=0 . \tag{33}
\end{equation*}
$$

Again from [19]

$$
\begin{equation*}
\left(£_{V} R\right)(X, Y, Z)=\left(\nabla_{X} £_{V} \nabla\right)(Y, Z)-\left(\nabla_{Y} £_{V} \nabla\right)(X, Z) . \tag{34}
\end{equation*}
$$

Therefore (33) and (34) yield

$$
\begin{equation*}
\left(£_{V} R\right)(X, Y, \xi)=0, \tag{35}
\end{equation*}
$$

for any $X, Y \in \chi(M)$. Setting $Y=\xi$ in (26) it follows that $\left(£_{V} g\right)(X, \xi)=$ $-2 \lambda \epsilon \eta(X)$. Lie-differentiating the equation (7) along V and by virtue of the last equation we have

$$
\begin{equation*}
\left(£_{V} \eta\right)(X)-\epsilon g\left(£_{V} \xi, X\right)+2 \lambda \eta(X)=0 . \tag{36}
\end{equation*}
$$

Putting $X=\xi$ in the foregoing equation gives

$$
\begin{equation*}
\lambda=\eta\left(£_{V} \xi\right) . \tag{37}
\end{equation*}
$$

Thus, we can say that the $*$-Ricci soliton is steady if and only if $£_{V} \xi$ is g orthogonal to ξ. This completes the proof of Theorem 1.1.

Let $(M, \phi, \xi, \eta, g, \epsilon)$ be an (ϵ)-para Sasakian 3-manifold with g as a gradient *-Ricci soliton. Then equation (4) can be written as

$$
\begin{equation*}
\nabla_{X} D f+Q^{*} X+\lambda X=0 \tag{38}
\end{equation*}
$$

for any $X \in \chi(M)$, where D denotes the gradient operator with respect to g. From (38) it follows that

$$
\begin{equation*}
R(X, Y) D f=\left(\nabla_{Y} Q^{*}\right) X-\left(\nabla_{X} Q^{*}\right) Y, \quad X, Y \in \chi(M) \tag{39}
\end{equation*}
$$

Using (12), we have

$$
\begin{equation*}
g(R(\xi, X) D f, \xi)=\eta(X)(\xi f)-\epsilon(X f) \tag{40}
\end{equation*}
$$

With the help of (25), we have

$$
\begin{align*}
\left(\nabla_{X} Q^{*}\right) Y & =\frac{(X r)}{2}[Y-\epsilon \eta(Y) \xi] \\
& -\frac{r}{2}[g(X, \phi Y) \xi+\eta(Y) \phi X] \tag{41}\\
& +a \epsilon[g(X, Y) \xi-2 \epsilon \eta(X) \eta(Y) \xi-\epsilon \eta(Y) X] .
\end{align*}
$$

Interchanging X and Y, we have

$$
\begin{align*}
\left(\nabla_{Y} Q^{*}\right) X & =\frac{(Y r)}{2}[X-\epsilon \eta(X) \xi] \\
& -\frac{r}{2}[g(Y, \phi X) \xi+\eta(X) \phi Y] \tag{42}\\
& +a \epsilon[g(X, Y) \xi-2 \epsilon \eta(X) \eta(Y) \xi-\epsilon \eta(X) Y]
\end{align*}
$$

Making use of (41) and (42) we get

$$
\begin{align*}
\left(\nabla_{Y} Q^{*}\right) X-\left(\nabla_{X} Q^{*}\right) Y & =\frac{(X r)}{2}[Y-\epsilon \eta(Y) \xi]-\frac{(Y r)}{2}[X-\epsilon \eta(X) \xi] \tag{43}\\
& -\frac{r}{2}[\eta(Y) \phi X-\eta(X) \phi Y]+a[\eta(Y) X-\eta(X) Y]
\end{align*}
$$

Putting $X=\xi$ in (43) and taking inner product with ξ, we infer that

$$
\begin{equation*}
g\left(\left(\nabla_{Y} Q^{*}\right) \xi-\left(\nabla_{\xi} Q^{*}\right) Y, \xi\right)=0 \tag{44}
\end{equation*}
$$

for any $Y \in \chi(M)$. From (40) and (44) we get

$$
\begin{equation*}
\epsilon(X f)=\eta(X)(\xi f), \tag{45}
\end{equation*}
$$

for any $X \in \chi(M)$. Therefore, $D f=(\xi f) \xi$. Taking the covariant derivative with respect to X and using (38) it follows that

$$
\begin{equation*}
S^{*}(X, Y)=-[\lambda+(\xi f) \xi] g(X, Y)-\epsilon(\xi f) g(\phi X, Y) \tag{46}
\end{equation*}
$$

for any $X, Y \in \chi(M)$. This completes the proof of Theorem 1.2.
Also remark that if we assume $£_{\xi} f=0$, from (45) we obtain that f is a constant function.

References

[1] Bejancu, A. and Duggal, K. L., Real hypersurfaces of indefinite Kähler manifolds, Internat. J. Math. and Math. Sci. 16 (1993), 545-556.
[2] Blaga, A.M., η-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat 30 (2016), no. 2, 489-496.
[3] Blaga, A.M., η-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl. 20 (2015), 1-13.
[4] Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Progress in Math. 203, Birkhauser Boston, Inc., Boston, 2010.
[5] Calin, C. and Crasmareanu, M., From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds, Bull. Malays. Math. Soc. 33 (2010), 361-368.
[6] Chave, T. and Valent, G., Quasi-Einstein metrics and their renormalizability properties, Helv. Phys. Acta 69 (1996) 344-347.
[7] Chave, T. and Valent, G., On a class of compact and non-compact quasiEinstein metrics and their renormalizability properties, Nuclear Phys. B 478 (1996), 758-778.
[8] Duggal, K. L., Space time manifold and contact structures, Internat. J. Math. and Math. Sci. 16 (1990), 545-553.
[9] Duggal, K. L., Almost Ricci Solitons and Physical Applications, Int. El. J. Geom. 2 (2017), 1-10.
[10] Gomes, J. N., Wang, Q. and Xia, C., On the h-almost Ricci soliton, J. Geom. Phys. 114 (2017), 216-222.
[11] Hamada, T., Real Hypersurfaces of Complex Space Forms in Terms of Ricci *-Tensor, Tokyo J. Math. 25 (2002), 473-483.
[12] Hamilton, R. S., The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math. 71, American Math. Soc., 1988.
[13] Ivey, T., Ricci solitons on compact 3-manifolds, Diff. Geom. Appl. 3 (1993), 301-307.
[14] Tripathi, M. M., Kihc, E., Perktas, S. Y. and Keles, S., Indefinite almost paracontact metric manifolds, Int. J. Math. Math. Sci., (2010), Art. ID 846195, 19pp.
[15] Kaimakamis, G. and Panagiotidou, K., *-Ricci solitons of real hypersurfaces in non-flat complex space forms, J. Geom. and Phys. 86 (2014), 408-413.
[16] Pigola, S., Rigoli, M., Rimoldi,M. and Setti, A., Ricci almost solitons, Ann. Sc. Norm. Super. Pisa Cl. Sci. 10(2011), 757-799.
[17] Tachibana, S., On almost-analytic vectors in almost-Kählerian manifolds, Tohoku Math. J. 11 (1959), 247-265.
[18] Xufeng X., and Xiaoli, C., Two theorems on (ϵ - Sasakian manifolds, Internat J. Math. and Math. Sci. 21 (1998), 249-254.
[19] Yano, K., Integral Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970.
[20] Turan, M., De, U. C. and Yildiz, A., Ricci solitons and gradient Ricci solitons in three-dimensional trans-sasakian manifolds, Filomat 26 (2012), 363-370.
[21] Yildiz, A., De, U. C. and Turan, M., On 3-dimensional f-Kenmotsu manifolds and Ricci solitons, Ukrainian Math.J. 65 (2013), 684-693.

[^0]: ${ }^{1}$ Assistant Professor of Mathematics, Kabi Sukanta Mahavidyalaya, Bhadreswar, e-mail: krishnendu.de@outlook.in
 ${ }^{2}$ Dhamla JR. High School, Hooghly, e-mail: dey9chiranib@gmail.com

