
Bulletin of the Transilvania University of Braşov • Vol. 13 (62) No. 2 - 2020
Series I: Engineering Sciences
https://doi.org/10.31926/but.ens.2020.13.62.1.10

COMPRESSION AND OPTIMIZATION OF NEURAL

NETWORKS BY TERNARIZATION METHODS

A.C. TĂNASĂ1 D. TĂNASĂ1

Abstract: Current deep neural networks are achieving higher and higher

performances, but this comes to a great computational cost which creates a
difficulty to use them on embedded platforms like smartphones, tables,
autonomous cars. Fortunately, this can be addressed using quantization
techniques, one of which is the ternarization when only 3 bits are used.

Key words: neural networks, ternarization, threshold, sparsity.

1. Introduction

Deep neural networks are becoming the alternative approach to many well-known

applications in the field of machine learning. However, as networks get deeper, it becomes
increasingly difficult to integrate a network with a large number of parameters on an
embedded device of reduced size and performance.

This status quo represents an aspect of interest through the work done by many
institutions and research teams. From using the half-precision standard [1] to aggressively
use quantized weights [8], activations [9] and gradients [2] from 8 to 2 bits, researchers
and engineers try to further reduce the number and difficulty of calculations during
training. Although a binary neural network can be even 32x smaller than a regular model,
this extreme compression rate comes along with a sharp drop in accuracy. Courbariaux [2]
and Zhu [3] proposed ternary neural networks as a fair trade-off between the accuracy
and size of architecture.

2. Previous Work

The research for this paper followed the Trained Ternary Quantization method [11]
using two scaling coefficients Wlp, Wln for each layer l and quantized learnable weights
(or parameters) {- Wln, 0, Wlp } instead of the traditional method {-1, 0, 1} or {-E, 0, E}
where E represents the absolute average value of the layer, which is not learnable. Also,
weights are both used ternarized and floating-point during training, but only the
ternarized version is used during testing/validation. All of this makes it possible to adjust
which of the three values {- Wln, 0, Wlp } is assigned to a weight.

1
 Dept. of Electronics and Computers, Transilvania University of Braşov, Romania.

Bulletin of the Transilvania University of Braşov • Vol. 13 (62), No. 2 - 2020 • Series I

24

Their paper argues that their ternarized methods achieve higher accuracy on the
CIFAR-10 [11] with AlexNet architecture than the full-precision version. Within the
current paper, we wanted to study if their claims also apply to other architectures:
ResNet architectures [3] and also we wanted to study in detail the benefit achieved for
the hardware and time consumption.

3. Methods

The studied ternarization algorithm is supposed to be a flexible algorithm, applicable

to each architecture, regardless of deep neural network type (convolutional, generative,
residual etc.). As it is described in Figure 1, the input of any neural network during the
training process consists of two types of data: RGB/grayscale images and a label for each
image, in this case, a class label. The learning process is supervised and once the number
of iterations is chosen, the quality of the network is evaluated through learning: we
provide an image at the entrance and we expect the prediction to be as close to the
image class as possible.

The ternarization algorithm is used as an additional step in the training process just
before the gradient is calculated and the weights are optimized.

The input to the compression algorithm consists in full-precision weights and a
coefficient or threshold (chosen before training). The output consists in the ternary
weights corresponding to each layer in the network. Because it is used as an extra step
in the learning process, the method has the advantage of not being dependent on
databases or architectures which creates the flexibility advantage.

Fig. 1. The environment outside the method

Tănasă, A.C., et al.: Compression and Optimization of Neural Networks… 25

The process begins with initialising the full-precision weights with a pseudo-random
distribution as it can be seen in Figure 3. Then, they need to be normalized in the
range [-1, 1] by dividing each weight by the largest value. Once the distribution is
within a known interval, the intermediate values which were previously calculated
based on either a threshold or a sparsity coefficient (chosen before training) are
quantized. Everything which is less than the value -threshold selected becomes -1, any
value in the range (-threshold, threshold) becomes 0 and any value greater than the
threshold becomes 1. The threshold or sparsity coefficient is the same regardless of
the layer to reduce the search space. Limiting the algorithm to these ternary weights it
is observed that the learning process is very troublesome because the weights are not
allowed to change as they need to, causing large losses in accuracy. The other
algorithm uses two floating-point values that are multiplied with the ternary values,
the weights, can be changed when training. In essence, the values in the set {-1, 0, 1},
are expressed in the set {-Wn, 0, Wp} which are the final ternary values. This change,
although it involves the introduction of 2 coefficients in floating point for each layer,
makes the accuracy similar to that of the original network, yet giving us a compression
rate of approximately 16 times.

The algorithms vary depending on the type of ternarization: based on a threshold (TW
TTQ) as seen in upside of Figure 2 or based on a sparsity coefficient (P TTQ) as seen in
downside of Figure 2. Both of them follow the same steps: normalization, quantization,
multiplication with ternarization factors.

Fig. 2. Ternarization algorithms

Bulletin of the Transilvania University of Braşov • Vol. 13 (62), No. 2 - 2020 • Series I

26

Fig. 3. Processing ternarization algorithm. Image taken from the article [10]

4. Experiments

The experiments were based on the Cifar10 database and on multiple residual
networks [5] due to the substantial impact in the community of machine learning.
Success is based on an observation made by the authors that the gradients vanish from
the last layer to the first one [12], so they implemented skipped-connections between
layers. This is an undesirable effect during training and is one of the main reasons why
deep networks are reluctant. As the network gets deeper the harder the weights will
change compared to the initialization, which leads to the conclusion that the network
does not learn the basic features. In the residual networks, the gradient propagates
conveniently and makes it possible to train deeper networks with hundreds of
convolutional layers.

The architectures used for the experiments are the second generation of residual
neural networks [4]. The CIFAR-10 dataset is a collection of images containing 60,000
32x32 color images in 10 different classes (airplanes, cars, birds, cats, deer, dogs, frogs,
horses, ships, and trucks). Each class is represented by 6,000 samples.

In all our experiments the same hyper-parameters (learning rate, batch size, number
of epochs and iterations, optimizer) were maintained for a proper comparison. The
learning rate was programmed in the form of intervals that can be expressed both by
the number of epochs or iterations. An iteration represents the inference over a subset
of images and an epoch represents the inference over the entire data set (several
epochs, implicitly representing the inference over the data set several times). After each
iteration, the optimizer starts the back-propagation process where all the weights are
modified to minimize the error between the model prediction and the label. The
optimizer chosen was the Momentum Optimizer [7], an extension of the Stochastic
Gradient Descent Optimizer. For integrity, the results were followed both during training
and validation process.

In the training process, we followed the ability of the architecture to learn the dataset
features. The validation process followed the ability of the architecture to generalize
and classify new images using the learnt features.

The original architecture with weights expressed in floating-point on 32b (shortened
Original), the ternarized architecture based on a sparsity coefficient (abbreviated P TTQ)
and the ternarized architecture based on a threshold (abbreviated T TTQ) are presented
in the following tables.

Tănasă, A.C., et al.: Compression and Optimization of Neural Networks… 27

All architectures were trained from scratch, with the same hyper-parameters, on the
same hardware. The chosen sparsity coefficient is 0.5, which means that 50% of the
weights should be found in 0, and the ternarization threshold chosen is 0.05.

Table 1 shows the classification error obtained after training. Based on the value, the
model performances to classify and generalize can be tracked. The error in training and
validation stages need to be as small as possible in order not to encounter the
phenomenon of overfitting, which means that the model is not able to generalize.

The error obtained on residual architectures on the CIFAR10 data set Table 1

Type Arhitecture ResNET18 ResNET30 ResNET54 ResNET102

Training

Original 0.00297 0.00089 0.000554 7.4E-05

P TTQ 0.0843 0.07651 0.07499 0.07704

T TTQ 0.04771 0.01371 0.00168 0.0037175

Validation

Original 0.0826 0.0727 0.0653 0.0626

P TTQ 0.138 0.1372 0.1366 0.1366

T TTQ 0.1127 0.0951 0.0823 0.0888

We can express the accuracy, which is the number of correct predictions over the entire

datatset, as a percentage based on the classification error. This is observable in Table 2.

 The accuracy obtained on residual architectures on the CIFAR10 dataset Table 2

Architecture
Validation Training

Original P TTQ T TTQ Original P TTQ T TTQ

ResNET18 91.74% 86.20% 88.73% 99.70% 91.57% 95.23%

ResNET30 92.73% 86.28% 90.49% 99.91% 92.35% 98.63%

ResNET54 93.47% 86.34% 91.77% 99.94% 92.50% 99.83%

ResNET102 93.74% 86.34% 91.12% 99.99% 92.30% 99.63%

For this set of experiments, the original model has better accuracy, but this aspect

could be improved by optimizing the hyper-parameters for PTTQ and TTTQ with
different values than the original.

The differences show that the ternarized models with the threshold method converge
better and have higher accuracy than the ternarized ones using the sparsity coefficient.
In the case of threshold ternarization, the accuracy does not differ by more than 3% in
the case of validation.

Figures 4 and 5, emphasize multiple conclusions:
• there are similarities between training and validation stages to all the 12 architectures;
• there is a tendency of training depending on the method of ternarization chosen;
• the original model converges faster;
• ternarized networks with a threshold (also known as the T TTQ attribute) tend to

converge faster, but the slope is smoother compared to the non-ternarized networks;
• ternarized networks with sparsity coefficient tend to converge slower and more poorly.

Bulletin of the Transilvania University of Braşov • Vol. 13 (62), No. 2 - 2020 • Series I

28

Fig. 4. Convergence trends of architectures in training

Fig. 5. The convergence trends of architectures for validation

Another important feature is network compression. The outstanding compression

rates are presented in Table 3.

Memory compression Table 3

Architecture
Number of
parameters

Number
of layers

Memory in full –
precision *MB+

Compressed
memory *MB+

Compression
rate

ResNET18 269722 59 1.078888 0.0681385 15.83

ResNET30 464154 95 1.856616 0.1171785 15.84

ResNET54 853018 167 3.412072 0.2152585 15.85

ResNET102 1630746 311 6.522984 0.4114185 15.85

Tănasă, A.C., et al.: Compression and Optimization of Neural Networks… 29

As last metric, an interpretative analysis of the method was used by visual
comparison of the histograms from the input and output of the ternarization method.
In Figure 6, it is shown in blue the weight distribution before the ternarization method
and after with a sparsity coefficient of 50%. It was considered that the evaluation of a
single layer (the first convolutional layer from the first residual block) would be
sufficient to avoid the redundancy caused by the pseudo-random initialization of the
weights on each layer.

In this three-dimensional histogram, the Ox axis represents the value of the weights
(in floating-point), the Oy axis represents the number of weights of that value, and the
Oz axis represents the number of the iteration (the front one representing the newest
iteration).

These distributions were chosen because in Figure 6 the distribution appears to be
Gaussian and the values were distributed according to the requirement given by the
sparsity coefficient. Visually, one can conclude that over 50% of the weights are
centered in 0. In Figure 6 the orange distribution seems much narrower and by choosing
the 0.05 threshold we were able to divide the distribution into three distinct areas,
highlighting the performance of the method. After the experiments performed on the
CIFAR10 database, it is observed that the ternarization method presents both
advantages and disadvantages. The degradation in accuracy of the architectures can also
be seen as unfinished training because once we introduced the ternarization algorithm
no changes were made to hyperparameters that have a direct implication in the
evaluation metric. The compression is particularly good and the rate is the same as the
one presented in the article.

Fig. 6. Distribution of weights before (left blue) and after (right blue) the ternarization
method according to the sparsity coefficient and the distribution of weights before (left

orange) and after (right orange) the ternarization method according to the threshold

Bulletin of the Transilvania University of Braşov • Vol. 13 (62), No. 2 - 2020 • Series I

30

5. Conclusions

Starting from the need given by the increasingly complex systems and their integration
into progressively superior, iterative products, computer vision reaches a peak of
technique, algorithms and hardware. The last decade has been marked by the transition
to such solutions, related machine learning, which aim to solve a high number of
previously unresolvable problems. The necessity of the product on the market attracts
progressively more restrictive, more spectacular, more "friendly" specifications with the
hardware field. The mobile and automotive domain attracts the need for low power
consumption, the application domain raises the problem of performance, the embedded
domain requires small and achievable methods. We can consider, at the end of this
study, that ternarization can be a response to the requests of the domains.

As detailed in this paper, the applicability, compression performance and classification
performance were tracked. From all these points of view, the TTQ method can be
considered a worthwhile solution to the deployment, compression and classification
performance of deep learning architectures.

References

1. Amodei, D., Anubhai, R., et al.: Deep Speech 2: End-to-end Speech Recognition in

English and Mandarin. In: arXiv preprint arXiv: 1512.02595, 2015.
2. Courbariaux, M.: Binarized Neural Networks: Training Deep Neural Networks with

Weights and Activations Constrained to +1 or -1. In: arXiv preprint arXiv: 1602.02830,
2016.

3. Fengfu, L., Bin, L.: Ternary Weight Networks. In: arXiv preprint arXiv: 1605.04711, 2016.
4. He, K., Zhang, X., et al.: Identity Mappings in Deep Residual Networks. In: arXiv

preprint arXiv: 1603.05027, 2016.
5. He, K., Zhang, X., et al.: Deep Residual Learning for Image Recognition. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, p. 770-778.

6. Itay, H., Courbariaux, M., et al.: Quantized Neural Networks: Training Neural
Networks with Low Precision Weights and Activations. In: arXiv preprint arXiv:
1609.07061, 2016.

7. Qian, N.: On the Momentum Term in Gradient Descent Learning Algorithms. In:
Neural Networks: The Official Journal of the International Neural Network Society
12(1) (1999), p. 145-151.

8. Rastegari, M., Ordonez, V., et al.: Xnor-net: Imagenet Classification Using Binary
Convolutional Neural Networks. In: arXiv preprint arXiv: 1603.05279, 2016.

9. Shuchang, Z., Zekun, N., et al.: Dorefa-net: Training Low Bitwidth Convolutional Neural
Networks With Low Bitwidth Gradients. In: arXiv preprint arXiv: 1606.06160, 2016.

10. Zhu, C., Song, H., et al.: Trained Ternary Quantization. In: arXiv preprint arXiv:
1612.01064, 2016.

11. https://en.wikipedia.org/wiki/Vanishing_gradient_problem. Accessed: 15.01.2019.
12. https://en.wikipedia.org/wiki/CIFAR-10. Accessed: 08.02.2019.

