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Abstract: Current deep neural networks are achieving higher and higher 

performances, but this comes to a great computational cost which creates a 
difficulty to use them on embedded platforms like smartphones, tables, 
autonomous cars. Fortunately, this can be addressed using quantization 
techniques, one of which is the ternarization when only 3 bits are used. 
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1. Introduction 
 
Deep neural networks are becoming the alternative approach to many well-known 

applications in the field of machine learning. However, as networks get deeper, it becomes 
increasingly difficult to integrate a network with a large number of parameters on an 
embedded device of reduced size and performance. 

This status quo represents an aspect of interest through the work done by many 
institutions and research teams. From using the half-precision standard [1] to aggressively 
use quantized weights [8], activations [9] and gradients [2] from 8 to 2 bits, researchers 
and engineers try to further reduce the number and difficulty of calculations during 
training. Although a binary neural network can be even 32x smaller than a regular model, 
this extreme compression rate comes along with a sharp drop in accuracy. Courbariaux [2] 
and Zhu [3] proposed ternary neural networks as a fair trade-off between the accuracy 
and size of architecture. 

 
2. Previous Work 
 

The research for this paper followed the Trained Ternary Quantization method [11] 
using two scaling coefficients Wlp, Wln for each layer l and quantized learnable weights 
(or parameters) {- Wln, 0, Wlp } instead of the traditional method {-1, 0, 1} or {-E, 0, E} 
where E represents the absolute average value of the layer, which is not learnable. Also, 
weights are both used ternarized and floating-point during training, but only the 
ternarized version is used during testing/validation. All of this makes it possible to adjust 
which of the three values {- Wln, 0, Wlp } is assigned to a weight. 

                                                 
1
 Dept. of Electronics and Computers, Transilvania University of Braşov, Romania. 



Bulletin of the Transilvania University of Braşov • Vol. 13 (62), No. 2 - 2020 • Series I 

 

24 

Their paper argues that their ternarized methods achieve higher accuracy on the 
CIFAR-10 [11] with AlexNet architecture than the full-precision version. Within the 
current paper, we wanted to study if their claims also apply to other architectures: 
ResNet architectures [3] and also we wanted to study in detail the benefit achieved for 
the hardware and time consumption. 

 
3. Methods 

 
The studied ternarization algorithm is supposed to be a flexible algorithm, applicable 

to each architecture, regardless of deep neural network type (convolutional, generative, 
residual etc.). As it is described in Figure 1, the input of any neural network during the 
training process consists of two types of data: RGB/grayscale images and a label for each 
image, in this case, a class label. The learning process is supervised and once the number 
of iterations is chosen, the quality of the network is evaluated through learning: we 
provide an image at the entrance and we expect the prediction to be as close to the 
image class as possible. 

The ternarization algorithm is used as an additional step in the training process just 
before the gradient is calculated and the weights are optimized. 

The input to the compression algorithm consists in full-precision weights and a 
coefficient or threshold (chosen before training). The output consists in the ternary 
weights corresponding to each layer in the network. Because it is used as an extra step 
in the learning process, the method has the advantage of not being dependent on 
databases or architectures which creates the flexibility advantage. 

 

 
 

Fig. 1. The environment outside the method 
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The process begins with initialising the full-precision weights with a pseudo-random 
distribution as it can be seen in Figure 3. Then, they need to be normalized in the 
range [-1, 1] by dividing each weight by the largest value. Once the distribution is 
within a known interval, the intermediate values which were previously calculated 
based on either a threshold or a sparsity coefficient (chosen before training) are 
quantized. Everything which is less than the value -threshold selected becomes -1, any 
value in the range (-threshold, threshold) becomes 0 and any value greater than the 
threshold becomes 1. The threshold or sparsity coefficient is the same regardless of 
the layer to reduce the search space. Limiting the algorithm to these ternary weights it 
is observed that the learning process is very troublesome because the weights are not 
allowed to change as they need to, causing large losses in accuracy. The other 
algorithm uses two floating-point values that are multiplied with the ternary values, 
the weights, can be changed when training. In essence, the values in the set {-1, 0, 1}, 
are expressed in the set {-Wn, 0, Wp} which are the final ternary values. This change, 
although it involves the introduction of 2 coefficients in floating point for each layer, 
makes the accuracy similar to that of the original network, yet giving us a compression 
rate of approximately 16 times. 

The algorithms vary depending on the type of ternarization: based on a threshold (TW 
TTQ) as seen in upside of Figure 2 or based on a sparsity coefficient (P TTQ) as seen in 
downside of Figure 2. Both of them follow the same steps: normalization, quantization, 
multiplication with ternarization factors.  

 

 
Fig. 2. Ternarization algorithms 
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Fig. 3. Processing ternarization algorithm. Image taken from the article [10] 
 
4. Experiments 
 

The experiments were based on the Cifar10 database and on multiple residual 
networks [5] due to the substantial impact in the community of machine learning. 
Success is based on an observation made by the authors that the gradients vanish from 
the last layer to the first one [12], so they implemented skipped-connections between 
layers. This is an undesirable effect during training and is one of the main reasons why 
deep networks are reluctant. As the network gets deeper the harder the weights will 
change compared to the initialization, which leads to the conclusion that the network 
does not learn the basic features. In the residual networks, the gradient propagates 
conveniently and makes it possible to train deeper networks with hundreds of 
convolutional layers. 

The architectures used for the experiments are the second generation of residual 
neural networks [4]. The CIFAR-10 dataset is a collection of images containing 60,000 
32x32 color images in 10 different classes (airplanes, cars, birds, cats, deer, dogs, frogs, 
horses, ships, and trucks). Each class is represented by 6,000 samples. 

In all our experiments the same hyper-parameters (learning rate, batch size, number 
of epochs and iterations, optimizer) were maintained for a proper comparison. The 
learning rate was programmed in the form of intervals that can be expressed both by 
the number of epochs or iterations. An iteration represents the inference over a subset 
of images and an epoch represents the inference over the entire data set (several 
epochs, implicitly representing the inference over the data set several times). After each 
iteration, the optimizer starts the back-propagation process where all the weights are 
modified to minimize the error between the model prediction and the label. The 
optimizer chosen was the Momentum Optimizer [7], an extension of the Stochastic 
Gradient Descent Optimizer. For integrity, the results were followed both during training 
and validation process. 

In the training process, we followed the ability of the architecture to learn the dataset 
features. The validation process followed the ability of the architecture to generalize 
and classify new images using the learnt features. 

The original architecture with weights expressed in floating-point on 32b (shortened 
Original), the ternarized architecture based on a sparsity coefficient (abbreviated P TTQ) 
and the ternarized architecture based on a threshold (abbreviated T TTQ) are presented 
in the following tables. 
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All architectures were trained from scratch, with the same hyper-parameters, on the 
same hardware. The chosen sparsity coefficient is 0.5, which means that 50% of the 
weights should be found in 0, and the ternarization threshold chosen is 0.05. 

Table 1 shows the classification error obtained after training. Based on the value, the 
model performances to classify and generalize can be tracked. The error in training and 
validation stages need to be as small as possible in order not to encounter the 
phenomenon of overfitting, which means that the model is not able to generalize. 

 
The error obtained on residual architectures on the CIFAR10 data set     Table 1 

Type Arhitecture ResNET18 ResNET30 ResNET54 ResNET102 

Training 

Original 0.00297 0.00089 0.000554 7.4E-05 

P TTQ 0.0843 0.07651 0.07499 0.07704 

T TTQ 0.04771 0.01371 0.00168 0.0037175 

Validation 

Original 0.0826 0.0727 0.0653 0.0626 

P TTQ 0.138 0.1372 0.1366 0.1366 

T TTQ 0.1127 0.0951 0.0823 0.0888 

 
We can express the accuracy, which is the number of correct predictions over the entire 

datatset, as a percentage based on the classification error. This is observable in Table 2. 
 

 The accuracy obtained on residual architectures on the CIFAR10 dataset    Table 2 

Architecture 
Validation Training 

Original P TTQ T TTQ Original P TTQ T TTQ 

ResNET18 91.74% 86.20% 88.73% 99.70% 91.57% 95.23% 

ResNET30 92.73% 86.28% 90.49% 99.91% 92.35% 98.63% 

ResNET54 93.47% 86.34% 91.77% 99.94% 92.50% 99.83% 

ResNET102 93.74% 86.34% 91.12% 99.99% 92.30% 99.63% 

 
For this set of experiments, the original model has better accuracy, but this aspect 

could be improved by optimizing the hyper-parameters for PTTQ and TTTQ with 
different values than the original. 

The differences show that the ternarized models with the threshold method converge 
better and have higher accuracy than the ternarized ones using the sparsity coefficient. 
In the case of threshold ternarization, the accuracy does not differ by more than 3% in 
the case of validation. 

Figures 4 and 5, emphasize multiple conclusions: 
• there are similarities between training and validation stages to all the 12 architectures; 
• there is a tendency of training depending on the method of ternarization chosen; 
• the original model converges faster; 
• ternarized networks with a threshold (also known as the T TTQ attribute) tend to 

converge faster, but the slope is smoother compared to the non-ternarized networks; 
• ternarized networks with sparsity coefficient tend to converge slower and more poorly. 
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Fig. 4. Convergence trends of architectures in training 
 

 

Fig. 5. The convergence trends of architectures for validation 
 
Another important feature is network compression. The outstanding compression 

rates are presented in Table 3. 
 

Memory compression                               Table 3 

Architecture 
Number of 
parameters 

Number  
of layers 

Memory in full –  
precision *MB+ 

Compressed  
memory *MB+ 

Compression  
rate 

ResNET18 269722 59 1.078888 0.0681385 15.83 

ResNET30 464154 95 1.856616 0.1171785 15.84 

ResNET54 853018 167 3.412072 0.2152585 15.85 

ResNET102 1630746 311 6.522984 0.4114185 15.85 
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As last metric, an interpretative analysis of the method was used by visual 
comparison of the histograms from the input and output of the ternarization method. 
In Figure 6, it is shown in blue the weight distribution before the ternarization method 
and after with a sparsity coefficient of 50%. It was considered that the evaluation of a 
single layer (the first convolutional layer from the first residual block) would be 
sufficient to avoid the redundancy caused by the pseudo-random initialization of the 
weights on each layer. 

In this three-dimensional histogram, the Ox axis represents the value of the weights 
(in floating-point), the Oy axis represents the number of weights of that value, and the 
Oz axis represents the number of the iteration (the front one representing the newest 
iteration). 

These distributions were chosen because in Figure 6 the distribution appears to be 
Gaussian and the values were distributed according to the requirement given by the 
sparsity coefficient. Visually, one can conclude that over 50% of the weights are 
centered in 0. In Figure 6 the orange distribution seems much narrower and by choosing 
the 0.05 threshold we were able to divide the distribution into three distinct areas, 
highlighting the performance of the method. After the experiments performed on the 
CIFAR10 database, it is observed that the ternarization method presents both 
advantages and disadvantages. The degradation in accuracy of the architectures can also 
be seen as unfinished training because once we introduced the ternarization algorithm 
no changes were made to hyperparameters that have a direct implication in the 
evaluation metric. The compression is particularly good and the rate is the same as the 
one presented in the article. 

 

 

Fig. 6. Distribution of weights before (left blue) and after (right blue) the ternarization  
method according to the sparsity coefficient and the distribution of weights before (left 

orange) and after (right orange) the ternarization method according to the threshold 
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5. Conclusions 
 

Starting from the need given by the increasingly complex systems and their integration 
into progressively superior, iterative products, computer vision reaches a peak of 
technique, algorithms and hardware. The last decade has been marked by the transition 
to such solutions, related machine learning, which aim to solve a high number of 
previously unresolvable problems. The necessity of the product on the market attracts 
progressively more restrictive, more spectacular, more "friendly" specifications with the 
hardware field. The mobile and automotive domain attracts the need for low power 
consumption, the application domain raises the problem of performance, the embedded 
domain requires small and achievable methods. We can consider, at the end of this 
study, that ternarization can be a response to the requests of the domains. 

As detailed in this paper, the applicability, compression performance and classification 
performance were tracked. From all these points of view, the TTQ method can be 
considered a worthwhile solution to the deployment, compression and classification 
performance of deep learning architectures. 
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