ON THE EIGENGRAPH FOR p-BIHARMONIC EQUATIONS WITH RELLICH POTENTIALS AND WEIGHT

Abdelouahed EL KHALIL ${ }^{1}$, Mohamed LAGHZAL*2, My Driss MORCHID ALAOUI ${ }^{3}$ and Abdelfattah TOUZANI ${ }^{4}$

Abstract

Using a variational technique and inequality of Hardy-Rellich, we prove the existence of infinitely many eigencurve sequences of the p-biharmonic operator involving a Rellich potentials. A variational formulation of the first curve (eigengraph) is given.

2000 Mathematics Subject Classification: 58E05; 35J35; 35J60; 47J10.
Key words: p-biharmonic operator, variational methods, Ljusternik-Schnirelman theory, Rellich potential.

1 Introduction

Nonlinear eigenvalue problems involving Rellich potential have been studied by many authors; see e.g. $[2,4,6]$. The study of eigencurve problems is a subject of several works, see $[1,5]$ and the references therein.

[^0]We investigate in the present paper the following nonlinear eigenvalue problem

$$
\begin{align*}
& \Delta\left(|\Delta u|^{p-2} \Delta u\right)= \lambda w(x) \frac{|u|^{p-2} u}{\delta(x)^{2 p}}+\mu \frac{|u|^{p-2} u}{\delta(x)^{2 p}} \text { in } \Omega \tag{1}\\
& u \in W_{0}^{2, p}(\Omega)
\end{align*}
$$

where $\Delta_{p}^{2} u:=\Delta\left(|\Delta u|^{p-2} \Delta u\right)$ denotes the fourth order differential operator p biharmonic, Ω is a bounded domain in $\mathbb{R}^{N}(N \geq 3)$ with smooth boundary $\partial \Omega$, $\delta(x):=\min _{y \in \partial \Omega}|x-y|$ denotes the distance between a given $x \in \Omega$ and the boundary $\partial \Omega, 1<p<\frac{N}{2}, w$ is an indefinite weight in $L^{\infty}(\Omega)$ with (the Lebesgue measure)

$$
\begin{equation*}
\operatorname{mes}(\{x \in \Omega: w(x) \neq 0\}) \neq 0 \tag{2}
\end{equation*}
$$

λ is a real parameter such that $0 \leq \lambda<\frac{H}{\|w\|_{\infty}}$, where

$$
H:=\left[\frac{N(p-1)(N-2 p)}{p^{2}}\right]^{p}
$$

is the best constant in the following classical Hardy's inequality (see[8]):

$$
\begin{equation*}
\int_{\Omega}|\Delta u|^{p} d x \geq H \int_{\Omega} \frac{|u|^{p}}{\delta(x)^{2 p}} d x, \quad \forall u \in W_{0}^{2, p}(\Omega) \tag{3}
\end{equation*}
$$

While μ stands for a function depending on λ generating the corresponding eigengraphs. More precisely, we mean by eigengraphs whose sets in \mathbb{R}^{2} defined by $\{(\lambda, \mu(\lambda)$ such that $\lambda \in \mathbb{R}\}$.

In [6], authors have considered the case: $\mu=0$ and $w(x)=1$. For which problem (1) has a sequence of positive eigenvalues. The smallest eigenvalue λ_{1} of $\left(\Delta_{p}^{2}, W_{0}^{2, p}(\Omega)\right)$ is positive and admits the following variational characterization:

$$
\begin{equation*}
\lambda_{1}=\inf \left\{\|\Delta v\|_{p}^{p}, v \in W_{0}^{2, p}(\Omega) \left\lvert\, \int_{\Omega} \frac{|v|^{p}}{\delta(x)^{2 p}} d x=1\right.\right\} \tag{4}
\end{equation*}
$$

where $\|\Delta v\|_{p}=\left(\int_{\Omega}|\Delta v|^{p} d x\right)^{\frac{1}{p}}$ denotes the norm of $W_{0}^{2, p}(\Omega)$.
In this paper our result is partly motivated by these nice papers. More precisely, the Ljusternik-Schnirelmann principle on C^{1}-manifolds [9] provides a whole sequence of eigencurves $\left(\mu_{k}(\lambda)\right)_{k \geq 1}$, such that $\mu_{k}(\lambda) \nearrow+\infty$.

The paper is organized as follows: In Section 2, we recall and we prove some preliminary results which will be used later. In Section 3, we establish the existence of at least one non-decreasing sequence of nonnegative eigencurve to problem (1).

2 Preliminaries and useful results

Let X be a real reflexive Banach space and X^{*} its topological dual with respect to the pairing $\langle\cdot, \cdot\rangle$. The strong convergence in X (and in X^{*}) is denoted
by \rightarrow and the weak convergence by \rightarrow.
We solve problem (1) in the space $X:=W_{0}^{2, p}(\Omega)$ equipped with the norm

$$
\|\Delta v\|_{p}:=\left(\int_{\Omega}|\Delta v|^{p} d x\right)^{\frac{1}{p}} .
$$

Let us notice that $W_{0}^{2, p}(\Omega)$ endowed with this norm is a uniformly convex Banach space for $1<p<+\infty$. The norm $\|\Delta(\cdot)\|_{p}$ is uniformly equivalent on $W_{0}^{2, p}(\Omega)$ to the usual norm of $W_{0}^{2, p}(\Omega)[7]$.

By the compact embedding $W_{0}^{2, p}(\Omega) \hookrightarrow L^{p}(\Omega)$, there exists a positive constant K such that

$$
\|u\|_{L^{p}(\Omega)} \leq K\|\Delta u\|_{p} \quad \forall u \in W_{0}^{2, p}(\Omega)
$$

where K is the best constant of the embedding.
We will introduce the following formulation involving a mini-max argument over sets of genus greater than k. We set

$$
\begin{equation*}
\mu_{1}(\lambda)=\inf \left\{\left.\frac{\|\Delta u\|_{p}^{p}-\lambda \int_{\Omega} w(x) \frac{|u|^{p}}{\delta(x)^{2 p}} d x}{\int_{\Omega} \frac{|u|^{p}}{\delta(x)^{2 p}} d x} \right\rvert\, u \in W_{0}^{2, p}(\Omega) \backslash\{0\}\right\} . \tag{5}
\end{equation*}
$$

Definition 1. $u \in W_{0}^{2, p}(\Omega)$ is a weak solution of (1), if for all $v \in W_{0}^{2, p}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega}|\Delta u|^{p-2} \Delta u \Delta v d x=\int_{\Omega}(\lambda w(x)+\mu) \frac{|u|^{p-2} u}{\delta(x)^{2 p}} v d x \tag{6}
\end{equation*}
$$

If $u \in W_{0}^{2, p}(\Omega) \backslash\{0\}$, then u shall be called an eigenfunction of (1) associated with the eigenpair (λ, μ).

Set

$$
\begin{equation*}
\mathcal{V}=\left\{u \in W_{0}^{2, p}(\Omega) \left\lvert\, \int_{\Omega} \frac{|u|^{p}}{\delta(x)^{2 p}} d x=1\right.\right\} . \tag{7}
\end{equation*}
$$

We say that a principal eigenfunction of (1), any eigenfunction $u \in \mathcal{V}, u \geq 0$ a.e. on $\bar{\Omega}$ associated to pair $\left(\lambda, \mu_{1}(\lambda)\right)$. The graph of the function $\lambda \rightarrow \mu_{1}(\lambda)$ from $\left[0, \frac{C_{H}}{\|w\|_{\infty}}\left[\right.\right.$ into \mathbb{R}, where $\mu_{1}(\lambda)$ defined by (5), is called the principal eigengraph of problem(1).

Definition 2. A Gâteaux differentiable functional I satisfies the Palais-Smale condition (in short (P.S)-condition) if any sequence $\left\{u_{n}\right\}$ in $W_{0}^{2, p}(\Omega)$ such that
$(P S)_{1}\left\{I\left(u_{n}\right)\right\}$ is bounded;
$(P S)_{2} \lim _{n \rightarrow+\infty}\left\|I^{\prime}\left(u_{n}\right)\right\|_{X^{*}}=0 ;$
has a convergent subsequence.

The energy functional corresponding to problem (1) is defined on $W_{0}^{2, p}(\Omega)$ as

$$
H(.)=\Phi(.)+\varphi(.)-\mu \Psi(.)
$$

where

$$
\begin{gathered}
\Phi(u)=\frac{1}{p} \int_{\Omega}|\Delta u|^{p} d x, \\
\varphi(u)=-\frac{\lambda}{p} \int_{\Omega} w(x) \frac{|u|^{p}}{\delta(x)^{2 p}} d x, \\
\Psi(u)=\frac{1}{p} \int_{\Omega} \frac{|u|^{p}}{\delta(x)^{2 p}} d x,
\end{gathered}
$$

and

$$
\Phi_{\lambda}(.)=\Phi(.)+\varphi(.)
$$

Lemma 1. We have the following hold true:
(i) Φ_{λ}, Ψ and φ are even, and of class C^{1} on $W_{0}^{2, p}(\Omega)$.
(ii) \mathcal{V} is a closed C^{1}-manifold.

Proof. (i). It is clear that Φ_{λ}, Ψ and φ are even and of class C^{1} on $W_{0}^{2, p}(\Omega)$. (ii). $\mathcal{V}=\Psi^{-1}\left\{\frac{1}{p}\right\}$. Therefore \mathcal{V} is closed. The derivative operator Ψ^{\prime} satisfies $\Psi^{\prime}(u) \neq 0 \forall u \in \mathcal{V}$, because

$$
\left\langle\Psi^{\prime}(u), u\right\rangle=\int_{\Omega} \frac{|u|^{p}}{\delta(x)^{2 p}} d x=1 \neq 0, \text { if } u \in \mathcal{V} .
$$

That mean $\Psi^{\prime}(u)$ is onto for all $u \in \mathcal{V}$. Hence φ is a submersion. Then \mathcal{V} is a C^{1}-manifold.
Remark 1. The functional $J: W_{0}^{2, p}(\Omega) \rightarrow W^{-2, p^{\prime}}(\Omega)$, defined by

$$
J(u)=\left\{\begin{array}{l}
\|\Delta u\|_{p}^{2-p} \Delta_{p}^{2} u \quad \text { if } u \neq 0 \\
0 \quad \text { if } u=0
\end{array}\right.
$$

is the duality mapping of $\left(W_{0}^{2, p}(\Omega),\|\Delta .\|_{p}\right)$ associated with the Gauge function $\eta(t)=|t|^{p-2} t$.

Lemma 2. For any $\lambda \in\left[0, \frac{H}{\|w\|_{\infty}}[\right.$, we have
I. φ^{\prime} and Ψ^{\prime} are completely continuous, namely, $u_{n} \rightharpoonup u$ in $W_{0}^{2, p}(\Omega)$ implies

$$
\varphi^{\prime}\left(u_{n}\right) \rightarrow \varphi^{\prime}(u) \quad\left(\Psi^{\prime}\left(u_{n}\right) \rightarrow \Psi^{\prime}(u)\right) \quad \text { in } \quad W^{-2, p^{\prime}}(\Omega)
$$

II. Φ_{λ} is bounded from below on \mathcal{V}.

Proof. Note that $\|\cdot\|_{*}$ is the dual norm of $W^{-2, p^{\prime}}(\Omega)$ associated with $\|\Delta(\cdot)\|_{p}$.
I. First let us prove that φ^{\prime} is well defined. Let $u, v \in W_{0}^{2, p}(\Omega)$. We have

$$
\left\langle\varphi^{\prime}(u), v\right\rangle=-\lambda \int_{\Omega} w(x) \frac{|u|^{p-2}}{\delta(x)^{2 p}} u v d x .
$$

Then

$$
\left|\left\langle\varphi^{\prime}(u), v\right\rangle\right| \leq \lambda\|w\|_{\infty}\left(\int_{\{x \in \Omega / \delta(x)>1\}} \frac{|u|^{p-1}}{\delta(x)^{2 p}}|v| d x+\int_{\{x \in \Omega / \delta(x) \leq 1\}} \frac{|u|^{p-1}}{\delta(x)^{2 p}}|v| d x\right)
$$

thus

$$
\begin{aligned}
& \left|\left\langle\varphi^{\prime}(u), v\right\rangle\right| \\
\leq & \lambda\|w\|_{\infty}\left(\int_{\{x \in \Omega / \delta(x)>1\}}|u|^{p-1}|v| d x+\int_{\{x \in \Omega / \delta(x) \leq 1\}} \frac{1}{\delta(x)^{2}} \frac{|u|^{p-1}}{\delta(x)^{2(p-1)}}|v| d x\right) .
\end{aligned}
$$

By Hölder's inequality, it follows that

$$
\begin{aligned}
& \left|\left\langle\varphi^{\prime}(u), v\right\rangle\right| \\
\leq & \lambda\|w\|_{\infty}\left(\int_{\{x \in \Omega / \delta(x)>1\}}|u|^{(p-1) p^{\prime}} d x\right)^{\frac{1}{P}}\left(\int_{\{x \in \Omega / \delta(x)>1\}}|v|^{p} d x\right)^{\frac{1}{p}} \\
& \left.+\lambda\|w\|_{\infty}\left(\int_{\{x \in \Omega / \delta(x) \leq 1\}} \frac{|u|^{(p-1) p^{\prime}}}{\delta(x)^{2(p-1) p^{\prime}}} d x\right)^{\frac{1}{p^{\prime}}}\left(\int_{\{x \in \Omega / \delta(x) \leq 1\}} \frac{|v|^{p}}{\delta(x)^{2 p}}\right) d x\right)^{\frac{1}{p}},
\end{aligned}
$$

thanks to Rellich inequality (3), we have

$$
\begin{aligned}
& \left|\left\langle\varphi^{\prime}(u), v\right\rangle\right| \\
\leq & \lambda\|w\|_{\infty}\|u\|_{L^{p}(\Omega)}^{p-1}\|v\|_{L^{p}(\Omega)}+\frac{\lambda\|w\|_{\infty}}{H}\left(\int_{\Omega}|\Delta u|^{(p-1) p^{\prime}} d x\right)^{\frac{1}{p^{\prime}}}\left(\int_{\Omega}|\Delta v|^{p} d x\right)^{\frac{1}{p}},
\end{aligned}
$$

then

$$
\left|\left\langle\varphi^{\prime}(u), v\right\rangle\right| \leq \lambda\|w\|_{\infty}\|u\|_{L^{p}(\Omega)}^{p-1}\|v\|_{L^{p}(\Omega)}+\frac{\lambda\|w\|_{\infty}}{H}\|\Delta u\|_{p}^{p-1}\|\Delta v\|_{p}
$$

where p and p^{\prime} are conjugate by the equality $p p^{\prime}=p+p^{\prime}$. Therefore

$$
\left|\left\langle\varphi^{\prime}(u), v\right\rangle\right| \leq \lambda\|w\|_{\infty} K^{2}\|\Delta u\|_{p}^{p-1}\|\Delta v\|_{p}+\frac{\lambda\|w\|_{\infty}}{H}\|\Delta u\|_{p}^{p-1}\|\Delta v\|_{p} .
$$

Hence

$$
\left\|\varphi^{\prime}(u)\right\|_{*} \leq \lambda\|w\|_{\infty}\left(K^{2}+\frac{1}{H}\right)\|\Delta u\|_{p}^{p-1}
$$

For the complete continuity of φ^{\prime}, we argue as follows. Let $\left(u_{n}\right)_{n} \subset W_{0}^{2, p}(\Omega)$ be a bounded sequence and $u_{n} \rightharpoonup u$ in $W_{0}^{2, p}(\Omega)$. Due to the fact that the embedding $W_{0}^{2, p}(\Omega) \hookrightarrow L^{p}(\Omega)$ is compact, u_{n} converges strongly to u in $L^{p}(\Omega)$. Consequently, there exists a positive function $g \in L^{p}(\Omega)$ such that

$$
\left|u_{n}\right| \leq g \quad \text { a.e. in } \Omega .
$$

Since $g^{p-1} \in L^{p^{\prime}}(\Omega)$, it follows from the Dominated Convergence Theorem that

$$
\begin{aligned}
& w(x)\left|u_{n}\right|^{p-2} u_{n} \rightarrow w(x)|u|^{p-2} u \quad \text { in } \quad L^{p^{\prime}}(\Omega), \\
& w(x) \frac{\left|u_{n}\right|^{p-2} u_{n}}{\delta(x)^{2} p} \rightarrow w(x) \frac{|u|^{p-2} u}{\delta(x)^{2} p} \quad \text { in } \quad L^{p^{\prime}}(\Omega) .
\end{aligned}
$$

That is,

$$
\varphi^{\prime}\left(u_{n}\right) \rightarrow \varphi^{\prime}(u) \quad \text { in } \quad L^{p^{\prime}}(\Omega)
$$

Recall that the embedding

$$
L^{p^{\prime}}(\Omega) \hookrightarrow W^{-2, p^{\prime}}(\Omega)
$$

is compact. Thus,

$$
\varphi^{\prime}\left(u_{n}\right) \rightarrow \varphi^{\prime}(u) \quad \text { in } \quad W^{-2, p^{\prime}}(\Omega)
$$

This proves the complete continuity of φ^{\prime}. We follow the same steps to prove that Ψ^{\prime} is completely continuous.
II. We have

$$
\Phi_{\lambda}(u)=\frac{1}{p} \int_{\Omega}|\Delta u|^{p} d x-\frac{\lambda}{p} \int_{\Omega} w(x) \frac{|u|^{p}}{\delta(x)^{2 p}} d x
$$

then

$$
\begin{equation*}
\Phi_{\lambda}(u) \geq \frac{1}{p}\|\Delta u\|_{p}^{p}-\frac{\lambda\|w\|_{\infty}}{p} \int_{\Omega} \frac{|u|^{p}}{\delta(x)^{2 p}} d x \tag{8}
\end{equation*}
$$

by Rellich inequality (3), it follows that

$$
\Phi_{\lambda}(u) \geq \frac{1}{p}\left(H-\lambda\|w\|_{\infty}\right) \int_{\Omega} \frac{|u|^{p}}{\delta(x)^{2 p}} d x
$$

since $0 \leq \lambda<\frac{H}{\|w\|_{\infty}}$ and $u \in \mathcal{V}$, we obtain

$$
\Phi_{\lambda}(u) \geq \frac{1}{p}\left(H-\lambda\|w\|_{\infty}\right)>-\infty .
$$

This completes the proof of the lemma.
Proposition 1. The functional Φ_{λ} satisfies the Palais-Smale condition (PS) on ν.

Proof. Let $\left(u_{n}\right)_{n}$ be a sequence of Palais-Smale of Φ_{λ} in $W_{0}^{2, p}(\Omega)$. For $\left\{u_{n}\right\} \subset \mathcal{V}$, thus there exists $M>0$ such that

$$
\begin{equation*}
\left|\Phi_{\lambda}\left(u_{n}\right)\right| \leq M \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\Phi_{\lambda} \mid \mathcal{V}\right)^{\prime}\left(u_{n}\right) \rightarrow 0 . \tag{10}
\end{equation*}
$$

Thanks to (8), and (9), that means that $\left\|\Delta u_{n}\right\|_{p}$ is bounded in \mathbb{R}.
Thus, without loss of generality, we can assume that u_{n} converges weakly in $W_{0}^{2, p}(\Omega)$ to some function $u \in W_{0}^{2, p}(\Omega)$ and $\left\|\Delta u_{n}\right\|_{p} \rightarrow \ell$. For the rest we distinguish two cases:
\diamond If $\ell=0$, then $\left\{u_{n}\right\}_{n}$ converges strongly to 0 in $W_{0}^{2, p}(\Omega)$.
\diamond If $\ell \neq 0$, equation (10) implies that

$$
\begin{equation*}
\alpha_{n}=\Phi_{\lambda}^{\prime}\left(u_{n}\right)-\beta_{n} \Psi^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow+\infty, \tag{11}
\end{equation*}
$$

where

$$
\beta_{n}=\frac{\left\langle\Phi_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle}{\left\langle\Psi^{\prime}\left(u_{n}\right), u_{n}\right\rangle},
$$

then let us prove that

$$
\limsup _{n \rightarrow \infty}\left\langle\Delta_{p}^{2} u_{n}, u_{n}-u\right\rangle \leq 0 .
$$

Indeed, notice that

$$
\left\langle\Delta_{p}^{2} u_{n}, u_{n}-u\right\rangle=\left\|\Delta u_{n}\right\|_{p}^{p}-\left\langle\Delta_{p}^{2} u_{n}, u\right\rangle
$$

Applying α_{n} of (11) to u, we deduce that

$$
\theta_{n}:=\left\langle\Delta_{p}^{2} u_{n}, u\right\rangle+\left\langle\varphi^{\prime}\left(u_{n}\right), u\right\rangle-\beta_{n}\left\langle\Psi^{\prime}\left(u_{n}\right), u\right\rangle \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

Therefore

$$
\left\langle\Delta_{p}^{2} u_{n}, u_{n}-u\right\rangle=\left\|\Delta u_{n}\right\|_{p}^{p}+\left\langle\varphi^{\prime}\left(u_{n}\right), u\right\rangle-\theta_{n}-\left(\frac{\left\langle\Phi_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle}{\left\langle\Psi^{\prime}\left(u_{n}\right), u_{n}\right\rangle}\right)\left\langle\Psi^{\prime}\left(u_{n}\right), u\right\rangle .
$$

That is,

$$
\begin{aligned}
\left\langle\Delta_{p}^{2} u_{n}, u_{n}-u\right\rangle & =\frac{\left\|\Delta u_{n}\right\|_{p}^{p}}{\left\langle\Psi^{\prime}\left(u_{n}\right), u_{n}\right\rangle}\left(\left\langle\Psi^{\prime}\left(u_{n}\right), u_{n}\right\rangle-\left\langle\Psi^{\prime}\left(u_{n}\right), u\right\rangle\right)-\theta_{n}+\left\langle\varphi^{\prime}\left(u_{n}\right), u\right\rangle \\
& -\left(\frac{\left\langle\varphi^{\prime}\left(u_{n}\right), u_{n}\right\rangle}{\left\langle\Psi^{\prime}\left(u_{n}\right), u_{n}\right\rangle}\right) \cdot\left\langle\Psi^{\prime}\left(u_{n}\right), u\right\rangle .
\end{aligned}
$$

On the other hand, from Lemma 2, φ^{\prime} is completely continuous. Thus

$$
\varphi^{\prime}\left(u_{n}\right) \rightarrow \varphi^{\prime}(u), \quad\left\langle\varphi^{\prime}\left(u_{n}\right), u_{n}\right\rangle \rightarrow\left\langle\varphi^{\prime}(u), u\right\rangle \quad \text { and } \quad\left\langle\varphi^{\prime}\left(u_{n}\right), u\right\rangle \rightarrow\left\langle\varphi^{\prime}(u), u\right\rangle .
$$

From Lemma 2, Ψ^{\prime} is also completely continuous. So

$$
\Psi^{\prime}\left(u_{n}\right) \rightarrow \Psi^{\prime}(u), \quad \text { and } \quad\left\langle\Psi^{\prime}\left(u_{n}\right), u_{n}\right\rangle \rightarrow\left\langle\Psi^{\prime}(u), u\right\rangle
$$

Then

$$
\left|\left\langle\Psi^{\prime}\left(u_{n}\right), u_{n}\right\rangle-\left\langle\Psi^{\prime}\left(u_{n}\right), u\right\rangle\right| \leq\left|\left\langle\Psi^{\prime}\left(u_{n}\right), u_{n}\right\rangle-\left\langle\Psi^{\prime}(u), u\right\rangle\right|+\left|\left\langle\Psi^{\prime}\left(u_{n}\right), u\right\rangle-\left\langle\Psi^{\prime}(u), u\right\rangle\right| .
$$

It follows that

$$
\left|\left\langle\Psi^{\prime}\left(u_{n}\right), u_{n}\right\rangle-\left\langle\Psi^{\prime}\left(u_{n}\right), u\right\rangle\right| \leq\left|\left\langle\Psi^{\prime}\left(u_{n}\right), u_{n}\right\rangle-\left\langle\Psi^{\prime}(u), u\right\rangle\right|+\left\|\Psi^{\prime}\left(u_{n}\right)-\Psi^{\prime}(u)\right\|_{*}\|u\|
$$

This implies that

$$
\begin{equation*}
\left\langle\Psi^{\prime}\left(u_{n}\right), u_{n}\right\rangle-\left\langle\Psi^{\prime}\left(u_{n}\right), u\right\rangle \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty . \tag{12}
\end{equation*}
$$

Combining with the above equalities, we obtain

$$
\limsup _{n \rightarrow+\infty}\left\langle\Delta_{p}^{2} u_{n}, u_{n}-u\right\rangle \leq \frac{\ell^{p}}{\left\langle\Psi^{\prime}(u), u\right\rangle} \limsup _{n \rightarrow \infty}\left(\left\langle\Psi^{\prime}\left(u_{n}\right), u_{n}\right\rangle-\left\langle\Psi^{\prime}\left(u_{n}\right), u\right\rangle\right) .
$$

We deduce

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle\Delta_{p}^{2} u_{n}, u_{n}-u\right\rangle \leq 0 \tag{13}
\end{equation*}
$$

On the other hand, we can write $\Delta_{p}^{2} u_{n}=\left\|\Delta u_{n}\right\|_{p}^{p-2} J\left(u_{n}\right)$, since $\left\|\Delta u_{n}\right\|_{p} \neq 0$ for n large enough. Therefore

$$
\limsup _{n \rightarrow \infty}\left\langle\Delta_{p}^{2} u_{n}, u_{n}-u\right\rangle=\ell^{p-2} \limsup _{n \rightarrow \infty}\left\langle J u_{n}, u_{n}-u\right\rangle
$$

According to (13), we conclude that

$$
\limsup _{n \rightarrow \infty}\left\langle J u_{n}, u_{n}-u\right\rangle \leq 0
$$

in view of Remark $1, J$ is the duality mapping, Thus satisfies the condition S^{+} given in [10]. Therefore, $u_{n} \rightarrow u$ strongly in $W_{0}^{2, p}(\Omega)$. This completes the proof of the proposition.

3 Existence of a sequence of eigencurves

In this section, we show that problem (1) has at least one increasing sequence of positive eigencurves by using the results of Ljusternik-Schnirelman.

Let

$$
\Sigma_{j}=\{K \subset \mathcal{V}: K \text { is symmetric, compact and } \gamma(K) \geq j\}
$$

where $\gamma(K)=j$ is the Krasnoselskii genus of set K, i.e., the smallest integer j, such that there exists an odd continuous map from K to $\mathbb{R}^{j} \backslash\{0\}$.

Our first main result is to prove the following result:

Theorem 1. For any $\lambda \in\left[0, \frac{H}{\|w\|_{\infty}}\left[\right.\right.$ and for any integer $j \in \mathbb{N}^{*}$,

$$
\mu_{j}(\lambda):=\inf _{K \in \Sigma_{j}} \max _{u \in K} p \Phi_{\lambda}(u)
$$

is a critical value of Φ_{λ} restricted on \mathcal{V}. More precisely, there exists $u_{j} \in \mathcal{V}$, $\mu_{j}(\lambda) \in \mathbb{R}$ such that

$$
\mu_{j}(\lambda)=p \Phi_{\lambda}\left(u_{j}\right)=\sup _{u \in K} p \Phi_{\lambda}(u)
$$

and u_{j} is an eigenfunctin of problem (1) associated to the eigenvalue $\left(\lambda, \mu_{j}\right)$. Moreover,

$$
\mu_{j}(\lambda) \rightarrow \infty, \text { as } j \rightarrow \infty
$$

We start with two auxiliary results.
Lemma 3. for any $j \in \mathbb{N}^{*}, \Sigma_{j} \neq \emptyset$.
Proof. Since $W_{0}^{2, p}(\Omega)$ is separable, there exists $\left(e_{i}\right)_{i \geq 1}$ linearly dense in $W_{0}^{2, p}(\Omega)$ such that $\operatorname{supp} e_{i} \cap \operatorname{supp} e_{n}=\emptyset$ if $i \neq n$. We may assume that $e_{i} \in \mathcal{M}$ (if not, we take $\left.e_{i}^{\prime} \equiv \frac{e_{i}}{\left[p \Psi\left(e_{i}\right)\right]^{\frac{1}{p}}}\right)$.

Let now $j \in \mathbb{N}^{*}$ and denote

$$
F_{j}=\operatorname{span}\left\{e_{1}, e_{2}, \ldots, e_{j}\right\}
$$

Clearly, F_{j} is a vector subspace with $\operatorname{dim} F_{j}=j$. If $v \in F_{j}$, then there exist $\alpha_{1}, \ldots, \alpha_{j}$ in \mathbb{R}, such that $v=\sum_{i=1}^{j} \alpha_{i} e_{i}$. Thus

$$
\Psi(v)=\sum_{i=1}^{j}\left|\alpha_{i}\right|^{p} \Psi\left(e_{i}\right)=\frac{1}{p} \sum_{i=1}^{j}\left|\alpha_{i}\right|^{p} .
$$

It follows that the map

$$
v \mapsto(p \Psi(v))^{\frac{1}{p}}=\|v\|
$$

defines a norm on F_{j}. Consequently, there is a constant $c>0$ such that

$$
c\|\Delta v\|_{p} \leq\|v\| \leq \frac{1}{c}\|\Delta v\|_{p}
$$

This implies that the set

$$
\mathcal{V}_{j}=F_{j} \cap\left\{v \in W_{0}^{2, p}(\Omega): \Psi(v) \leq \frac{1}{p}\right\}
$$

is bounded because $\mathcal{V}_{j} \subset B\left(0, \frac{1}{c}\right)$, where

$$
B\left(0, \frac{1}{c}\right)=\left\{u \in W_{0}^{2, p}(\Omega) \text { such that }\|\Delta u\|_{p} \leq \frac{1}{c}\right\}
$$

Thus, \mathcal{V}_{j} is a symmetric bounded neighborhood of $0 \in F_{j}$. Moreover, $F_{j} \cap \mathcal{V}$ is a compact set. By the property of genus, we get $\gamma\left(F_{j} \cap \mathcal{V}\right)=j$ and then we obtain finally that $\Sigma_{j} \neq \emptyset$.

Lemma 4.

$$
\mu_{j}(\lambda) \rightarrow \infty \quad \text { as } \quad j \rightarrow \infty
$$

Proof. Let $\left(e_{j}, e_{n}^{*}\right)_{j, n}$ be a bi-orthogonal system such that $e_{j} \in W_{0}^{2, p}(\Omega)$ and $e_{n}^{*} \in$ $W^{-2, p^{\prime}}(\Omega)$, the $\left(e_{j}\right)_{j}$ are linearly dense in $W_{0}^{2, p}(\Omega)$ and the $\left(e_{n}^{*}\right)_{n}$ are total for the dual $W^{-2, p^{\prime}}(\Omega)$. For $j \in \mathbb{N}^{*}$, set

$$
F_{j}=\operatorname{span}\left\{e_{1}, \ldots, e_{j}\right\} \quad \text { and } \quad F_{j}^{\perp}=\operatorname{span}\left\{e_{j+1}, e_{j+2}, \ldots\right\}
$$

By the property of genus, we have for any $A \in \Sigma_{j}, A \cap F_{j-1}^{\perp} \neq \emptyset$. Thus

$$
t_{j}=\inf _{A \in \Sigma_{j}} \sup _{u \in A \cap F_{j-1}^{\perp}} p \Phi_{\lambda}(u) \rightarrow \infty \quad \text { as } \quad j \rightarrow \infty .
$$

Indeed, if not, for large j there exists $u_{j} \in F_{j-1}^{\perp}$ with $\int_{\Omega} \frac{\mid u_{j}{ }^{p}}{\delta(x)^{2 p}} d x=1$ such that $t_{j} \leq p \Phi_{\lambda}\left(u_{j}\right) \leq M$, for some $M>0$ independent of j. Thus from (8)

$$
\left\|\Delta u_{j}\right\|_{p} \leq\left(p M+\lambda\|m\|_{\infty}\right)^{\frac{1}{p}}
$$

This implies that $\left(u_{j}\right)_{j}$ is bounded in $W_{0}^{2, p}(\Omega)$. For a subsequence of $\left\{u_{j}\right\}$ if necessary, we can assume that $\left\{u_{j}\right\}$ converges weakly in $W_{0}^{2, p}(\Omega)$ and strongly in $L^{p}(\Omega)$.
By our choice of F_{j-1}^{\perp}, we have $u_{j} \rightharpoonup 0$ in $W_{0}^{2, p}(\Omega)$ because $\left\langle e_{n}^{*}, e_{j}\right\rangle=0$, for any $j>n$. This contradicts the fact that $1=\int_{\Omega} \frac{\left|u_{j}\right|^{p}}{\delta(x)^{2 p}} d x \rightarrow 0$ for all j. Since $\mu_{j}(\lambda) \geq t_{k}$ the claim is proved.

Proof of Theorem 1. Applying lemma 3, lemma 4 and Ljusternik-schnireleman theory to the problem (1), we have for each $j \in \mathbb{N}^{*}, \mu_{j}(\lambda)$ is a critical value of Φ_{λ} on C^{1}-manifold \mathcal{V}, such that

$$
\mu_{j}(\lambda) \rightarrow \infty, \text { as } j \rightarrow \infty
$$

Corollary 1. The following statements hold true
(i) $\mu_{1}(\lambda)=\inf \left\{\left.\frac{\|\Delta u\|_{p}^{p}-\lambda \int_{\Omega} w(x) \frac{\mid u p^{p}}{\delta(x)^{2 p}} d x}{\int_{\Omega} \frac{|u| p}{\delta(x)^{2 p}} d x} \right\rvert\, u \in W_{0}^{2, p}(\Omega) \backslash\{0\}\right\}$.
(ii) $0<\mu_{1}(\lambda) \leq \mu_{2}(\lambda) \leq \cdots \leq \mu_{n}(\lambda) \rightarrow+\infty$.

Proof. (i) For $u \in \mathcal{V}$, set $K_{1}=\{u,-u\}$. It is clear that $\gamma\left(K_{1}\right)=1, \Phi_{\lambda}$ is even and

$$
p \Phi_{\lambda}(u)=\max _{K_{1}} p \Phi_{\lambda} \geq \inf _{K \in \Gamma_{1}} \max _{u \in K} p \Phi_{\lambda}(u) .
$$

Thus

$$
\inf _{u \in \mathcal{V}} p \Phi_{\lambda}(u) \geq \inf _{K \in \Sigma_{1}} \max _{u \in K} p \Phi_{\lambda}(u)=\mu_{1}(\lambda) .
$$

On the other hand, for all $K \in \Gamma_{1}$ and $u \in K$, we have

$$
\sup _{u \in K} p \Phi_{\lambda} \geq p \Phi_{\lambda}(u) \geq \inf _{u \in \mathcal{V}} p \Phi_{\lambda}(u) .
$$

It follows that

$$
\inf _{K \in \Sigma_{1}} \max _{K} p \Phi_{\lambda}=\mu_{1}(\lambda) \geq \inf _{u \in \mathcal{V}} p \Phi_{\lambda}(u) .
$$

Then

$$
\mu_{1}(\lambda)=\inf \left\{\left.\frac{\|\Delta u\|_{p}^{p}-\lambda \int_{\Omega} w(x) \frac{|u|^{p}}{\delta(x)^{2 p}} d x}{\int_{\Omega} \frac{|u|^{p}}{\delta(x)^{2 p}} d x} \right\rvert\, u \in W_{0}^{2, p}(\Omega) \backslash\{0\}\right\} .
$$

(ii) For all $i \geq j$, we have $\Sigma_{i} \subset \Sigma_{j}$ and in view of the definition of $\lambda_{i}, i \in \mathbb{N}^{*}$, we get $\mu_{i}(\lambda) \geq \mu_{j}(\lambda)$. As regards $\mu_{n}(\lambda) \rightarrow \infty$, it has been proved in Theorem 1 .

References

[1] Binding P. A. and Huang Y. X., The principal eigencurve for p-Laplacian, Diff. Int. Equations 8 (1995), no. 2, 405-415.
[2] Chunhua Wang W. and Chang-Lin X., Infinitely many solutions for quasilinear elliptic equations involving double critical terms and boundary geometry, Annales Academiae Scientiarum Fennicae Mathematica Volumen 41 (2016), 973-1004.
[3] Davies E. and Hinz A., Explicit constants for Raleigh inequalities in $L^{P}(\Omega)$, Math. Z. 227 (1998), 511-523.
[4] El khalil A., EL Moumni M., Morchid Alaoui M. D. and Touzani A., p(x)Biharmonic operator involving the $p(x)$-Hardy's inequality, Georgian Math. J. (2018), DOI: https://doi.org/10.1515/gmj-2018-0013.
[5] El khalil A., Kellati S. and Touzani A., On the principal frequency curve of the p-biharmonic operator, Arab Journal of Mathematical Sciences 17 (2011), 89-99.
[6] El Khalil A., Morchid Alaoui M. D. and Touzani A., On the spectrum of the p-biharmonic operator involving Hardy's inequality, Appl. Math. (Warsaw) 41 (2014), no. 2-3, 239-246.
[7] Gilbar D. and Trudinger N. S., Elliptic partial differential equations of second order, Second ed, , Springer, New York, Tokyo, 1983.
[8] Mitidieri E., A simple approach to Hardy's inequalities, Math. Notes, 67 (2000), 479-486.
[9] Szulkin A., Ljusternick-Schnirelmann theory on C^{1}-manifolds, Ann. Inst. Henri Poincaré Anal. Non. 5 (1988), 119-39.
[10] Trojanski S.L., On locally convex and diffirenciable norms in certain-separable Banach spaces, Studia Math. 37 (1971), 173-80.

[^0]: ${ }^{1}$ Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, 11623 Riyadh, KSA, e-mail: alakhalil@imamu.edu.sa
 ${ }^{2 *}$ Corresponding author, Laboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas Fez, Morocco, e-mail: mohamed.laghzal@usmba.ac.ma
 ${ }^{3}$ AMNEA Group, Department of Mathematics, Faculty of Sciences and Technologies, Moulay Ismail University of Meknes, BP 509, Boutalamine, 52000 Errachidia, Morocco, e-mail: morchid_driss@yahoo.fr
 ${ }^{4}$ Laboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas Fez, Morocco, e-mail: Abdelfattah.touzani@usmba.ac.ma

