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ON THE EIGENGRAPH FOR p-BIHARMONIC EQUATIONS
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Abstract

Using a variational technique and inequality of Hardy-Rellich, we prove
the existence of infinitely many eigencurve sequences of the p-biharmonic op-
erator involving a Rellich potentials. A variational formulation of the first
curve (eigengraph) is given.

2000 Mathematics Subject Classification: 58E05; 35J35; 35J60; 47J10.

Key words: p-biharmonic operator, variational methods, Ljusternik-Schnirelman
theory, Rellich potential.

1 Introduction

Nonlinear eigenvalue problems involving Rellich potential have been studied
by many authors; see e.g. [2, 4, 6]. The study of eigencurve problems is a subject
of several works, see [1, 5] and the references therein.
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We investigate in the present paper the following nonlinear eigenvalue problem

∆(|∆u|p−2∆u) = λw(x)
|u|p−2u

δ(x)2p
+ µ
|u|p−2u

δ(x)2p
in Ω,

u ∈W 2,p
0 (Ω),

(1)

where ∆2
pu := ∆(|∆u|p−2∆u) denotes the fourth order differential operator p-

biharmonic, Ω is a bounded domain in RN (N ≥ 3) with smooth boundary ∂Ω,
δ(x) := miny∈∂Ω |x − y| denotes the distance between a given x ∈ Ω and the
boundary ∂Ω, 1 < p < N

2 , w is an indefinite weight in L∞(Ω) with (the Lebesgue
measure)

mes ({x ∈ Ω : w(x) 6= 0}) 6= 0. (2)

λ is a real parameter such that 0 ≤ λ < H
‖w‖∞ , where

H :=
[N(p− 1)(N − 2p)

p2

]p
,

is the best constant in the following classical Hardy’s inequality (see[8]):∫
Ω
|∆u|pdx ≥ H

∫
Ω

|u|p

δ(x)2p
dx, ∀u ∈W 2,p

0 (Ω). (3)

While µ stands for a function depending on λ generating the corresponding eigen-
graphs. More precisely, we mean by eigengraphs whose sets in R2 defined by
{(λ, µ(λ) such that λ ∈ R}.

In [6], authors have considered the case: µ = 0 and w(x) = 1. For which
problem (1) has a sequence of positive eigenvalues. The smallest eigenvalue λ1 of
(∆2

p,W
2,p
0 (Ω)) is positive and admits the following variational characterization:

λ1 = inf

{
‖∆v‖pp, v ∈W

2,p
0 (Ω)

∣∣∣∣∣
∫

Ω

|v|p

δ(x)2p
dx = 1

}
, (4)

where ‖∆v‖p =
(∫

Ω | ∆v |
p dx

) 1
p denotes the norm of W 2,p

0 (Ω).
In this paper our result is partly motivated by these nice papers. More pre-

cisely, the Ljusternik-Schnirelmann principle on C1-manifolds [9] provides a whole
sequence of eigencurves (µk(λ))k≥1, such that µk(λ)↗ +∞.

The paper is organized as follows: In Section 2, we recall and we prove some
preliminary results which will be used later. In Section 3, we establish the exis-
tence of at least one non-decreasing sequence of nonnegative eigencurve to problem
(1).

2 Preliminaries and useful results

Let X be a real reflexive Banach space and X∗ its topological dual with re-
spect to the pairing 〈·, ·〉. The strong convergence in X (and in X∗) is denoted
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by → and the weak convergence by ⇀.

We solve problem (1) in the space X := W 2,p
0 (Ω) equipped with the norm

‖∆v‖p :=

(∫
Ω
| ∆v |p dx

) 1
p

.

Let us notice that W 2,p
0 (Ω) endowed with this norm is a uniformly convex Banach

space for 1 < p < +∞. The norm ‖∆(·)‖p is uniformly equivalent on W 2,p
0 (Ω) to

the usual norm of W 2,p
0 (Ω) [7].

By the compact embedding W 2,p
0 (Ω) ↪→ Lp(Ω), there exists a positive constant

K such that

‖u‖Lp(Ω) ≤ K‖∆u‖p ∀u ∈W
2,p
0 (Ω),

where K is the best constant of the embedding.

We will introduce the following formulation involving a mini-max argument
over sets of genus greater than k. We set

µ1(λ) = inf

{
‖∆u‖pp − λ

∫
Ωw(x) |u|

p

δ(x)2p dx∫
Ω
|u|p
δ(x)2pdx

∣∣∣∣∣u ∈W 2,p
0 (Ω) \ {0}

}
. (5)

Definition 1. u ∈W 2,p
0 (Ω) is a weak solution of (1), if for all v ∈W 2,p

0 (Ω),∫
Ω
|∆u|p−2∆u∆v dx =

∫
Ω

(
λw(x) + µ

)
|u|p−2u

δ(x)2p
v dx . (6)

If u ∈W 2,p
0 (Ω)\{0}, then u shall be called an eigenfunction of (1) associated with

the eigenpair (λ, µ).

Set

V =

{
u ∈W 2,p

0 (Ω)

∣∣∣∣ ∫
Ω

|u|p

δ(x)2p
dx = 1

}
. (7)

We say that a principal eigenfunction of (1), any eigenfunction u ∈ V, u ≥ 0 a.e.
on Ω associated to pair (λ, µ1(λ)). The graph of the function λ → µ1(λ) from
[0, CH
‖w‖∞ [ into R, where µ1(λ) defined by (5), is called the principal eigengraph of

problem(1).

Definition 2. A Gâteaux differentiable functional I satisfies the Palais-Smale
condition (in short (P.S)-condition) if any sequence {un} in W 2,p

0 (Ω) such that

(PS)1 {I(un)} is bounded;

(PS)2 limn→+∞ ‖I ′(un)‖X∗ = 0;

has a convergent subsequence.
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The energy functional corresponding to problem (1) is defined on W 2,p
0 (Ω) as

H(.) = Φ(.) + ϕ(.)− µΨ(.),

where

Φ(u) =
1

p

∫
Ω
|∆u|pdx,

ϕ(u) = −λ
p

∫
Ω
w(x)

|u|p

δ(x)2p
dx,

Ψ(u) =
1

p

∫
Ω

|u|p

δ(x)2p
dx,

and

Φλ(.) = Φ(.) + ϕ(.).

Lemma 1. We have the following hold true:

(i) Φλ, Ψ and ϕ are even, and of class C1 on W 2,p
0 (Ω).

(ii) V is a closed C1-manifold.

Proof. (i). It is clear that Φλ, Ψ and ϕ are even and of class C1 on W 2,p
0 (Ω).

(ii). V = Ψ−1{1
p}. Therefore V is closed. The derivative operator Ψ′ satisfies

Ψ′(u) 6= 0 ∀u ∈ V, because

〈Ψ′(u), u〉 =

∫
Ω

|u|p

δ(x)2p
dx = 1 6= 0, if u ∈ V.

That mean Ψ′(u) is onto for all u ∈ V. Hence ϕ is a submersion. Then V is a
C1-manifold.

Remark 1. The functional J : W 2,p
0 (Ω)→W−2,p′(Ω), defined by

J(u) =

{
‖∆u‖2−pp ∆2

pu if u 6= 0

0 if u = 0

is the duality mapping of (W 2,p
0 (Ω), ‖∆.‖p) associated with the Gauge function

η(t) = |t|p−2t.

Lemma 2. For any λ ∈ [0, H
‖w‖∞ [, we have

I. ϕ′ and Ψ′ are completely continuous, namely, un ⇀ u in W 2,p
0 (Ω) implies

ϕ′(un)→ ϕ′(u) (Ψ′(un)→ Ψ′(u)) in W−2,p′(Ω).

II. Φλ is bounded from below on V.
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Proof. Note that ‖.‖∗ is the dual norm of W−2,p′(Ω) associated with ‖∆(·)‖p.

I. First let us prove that ϕ′ is well defined. Let u, v ∈W 2,p
0 (Ω). We have

〈ϕ′(u), v〉 = −λ
∫

Ω
w(x)

|u|p−2

δ(x)2p
uv dx.

Then∣∣∣∣〈ϕ′(u), v〉
∣∣∣∣ ≤ λ‖w‖∞(∫

{x∈Ω/δ(x)>1}

|u|p−1

δ(x)2p
|v| dx+

∫
{x∈Ω/δ(x)≤1}

|u|p−1

δ(x)2p
|v| dx

)
,

thus ∣∣∣∣〈ϕ′(u), v〉
∣∣∣∣

≤ λ‖w‖∞
(∫
{x∈Ω/δ(x)>1}

|u|p−1|v| dx+

∫
{x∈Ω/δ(x)≤1}

1

δ(x)2

|u|p−1

δ(x)2(p−1)
|v| dx

)
.

By Hölder’s inequality, it follows that∣∣∣∣〈ϕ′(u), v〉
∣∣∣∣

≤ λ‖w‖∞

(∫
{x∈Ω/δ(x)>1}

|u|(p−1)p′ dx

) 1
P ′
(∫
{x∈Ω/δ(x)>1}

|v|p dx

) 1
p

+λ‖w‖∞

(∫
{x∈Ω/δ(x)≤1}

|u|(p−1)p′

δ(x)2(p−1)p′
dx

) 1
p′
(∫
{x∈Ω/δ(x)≤1}

|v|p

δ(x)2p
) dx

) 1
p

,

thanks to Rellich inequality (3), we have∣∣∣∣〈ϕ′(u), v〉
∣∣∣∣

≤ λ‖w‖∞‖u‖p−1
Lp(Ω)‖v‖Lp(Ω) +

λ‖w‖∞
H

(∫
Ω
|∆u|(p−1)p′ dx

) 1
p′
(∫

Ω
|∆v|p dx

) 1
p

,

then ∣∣∣∣〈ϕ′(u), v〉
∣∣∣∣ ≤ λ‖w‖∞‖u‖p−1

Lp(Ω)‖v‖Lp(Ω) +
λ‖w‖∞
H

‖∆u‖p−1
p ‖∆v‖p,

where p and p′ are conjugate by the equality pp′ = p+ p′. Therefore∣∣∣∣〈ϕ′(u), v〉
∣∣∣∣ ≤ λ‖w‖∞K2‖∆u‖p−1

p ‖∆v‖p +
λ‖w‖∞
H

‖∆u‖p−1
p ‖∆v‖p.

Hence

‖ϕ′(u)‖∗ ≤ λ‖w‖∞
(
K2 +

1

H

)
‖∆u‖p−1

p .



158 A. El Khalil, M. Laghzal, M.D. Morchid Alaoui and A. Touzani

For the complete continuity of ϕ′, we argue as follows. Let (un)n ⊂W 2,p
0 (Ω) be

a bounded sequence and un ⇀ u in W 2,p
0 (Ω). Due to the fact that the embedding

W 2,p
0 (Ω) ↪→ Lp(Ω) is compact, un converges strongly to u in Lp(Ω). Consequently,

there exists a positive function g ∈ Lp(Ω) such that

| un |≤ g a.e. in Ω.

Since gp−1 ∈ Lp′(Ω), it follows from the Dominated Convergence Theorem that

w(x) | un |p−2 un → w(x) | u |p−2 u in Lp
′
(Ω),

w(x)
| un |p−2 un
δ(x)2p

→ w(x)
| u |p−2 u

δ(x)2p
in Lp

′
(Ω).

That is,

ϕ′(un)→ ϕ′(u) in Lp
′
(Ω).

Recall that the embedding

Lp
′
(Ω) ↪→W−2,p′(Ω)

is compact. Thus,

ϕ′(un)→ ϕ′(u) in W−2,p′(Ω).

This proves the complete continuity of ϕ′. We follow the same steps to prove that
Ψ′ is completely continuous.
II. We have

Φλ(u) =
1

p

∫
Ω
|∆u|pdx− λ

p

∫
Ω
w(x)

|u|p

δ(x)2p
dx,

then

Φλ(u) ≥ 1

p
‖∆u‖pp −

λ‖w‖∞
p

∫
Ω

|u|p

δ(x)2p
dx, (8)

by Rellich inequality (3), it follows that

Φλ(u) ≥ 1

p

(
H − λ‖w‖∞

)∫
Ω

|u|p

δ(x)2p
dx,

since 0 ≤ λ < H
‖w‖∞ and u ∈ V, we obtain

Φλ(u) ≥ 1

p

(
H − λ‖w‖∞

)
> −∞.

This completes the proof of the lemma.

Proposition 1. The functional Φλ satisfies the Palais-Smale condition (PS) on
V.
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Proof. Let (un)n be a sequence of Palais-Smale of Φλ in W 2,p
0 (Ω). For {un} ⊂ V,

thus there exists M > 0 such that

|Φλ(un)| ≤M, (9)

and
(Φλ|V)′(un)→ 0. (10)

Thanks to (8), and (9), that means that ‖∆un‖p is bounded in IR.
Thus, without loss of generality, we can assume that un converges weakly in
W 2,p

0 (Ω) to some function u ∈ W 2,p
0 (Ω) and ‖∆un‖p → `. For the rest we distin-

guish two cases:
� If ` = 0, then {un}n converges strongly to 0 in W 2,p

0 (Ω).
� If ` 6= 0, equation (10) implies that

αn = Φ′λ(un)− βnΨ′(un)→ 0 as n→ +∞, (11)

where

βn =
〈Φ′λ(un), un〉
〈Ψ′(un), un〉

,

then let us prove that

lim sup
n→∞

〈∆2
pun, un − u〉 ≤ 0.

Indeed, notice that

〈∆2
pun, un − u〉 = ‖∆un‖pp − 〈∆2

pun, u〉.

Applying αn of (11) to u, we deduce that

θn := 〈∆2
pun, u〉+ 〈ϕ′(un), u〉 − βn〈Ψ′(un), u〉 → 0 as n→∞.

Therefore

〈∆2
pun, un − u〉 = ‖∆un‖pp + 〈ϕ′(un), u〉 − θn −

(〈Φ′λ(un), un〉
〈Ψ′(un), un〉

)
〈Ψ′(un), u〉.

That is,

〈∆2
pun, un − u〉 =

‖∆un‖pp
〈Ψ′(un), un〉

(
〈Ψ′(un), un〉 − 〈Ψ′(un), u〉

)
− θn + 〈ϕ′(un), u〉

−
( 〈ϕ′(un), un〉
〈Ψ′(un), un〉

)
· 〈Ψ′(un), u〉.

On the other hand, from Lemma 2, ϕ′ is completely continuous. Thus

ϕ′(un)→ ϕ′(u), 〈ϕ′(un), un〉 → 〈ϕ′(u), u〉 and 〈ϕ′(un), u〉 → 〈ϕ′(u), u〉.

From Lemma 2, Ψ′ is also completely continuous. So

Ψ′(un)→ Ψ′(u), and 〈Ψ′(un), un〉 → 〈Ψ′(u), u〉.
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Then∣∣∣∣〈Ψ′(un), un〉−〈Ψ′(un), u〉
∣∣∣∣ ≤ ∣∣∣∣〈Ψ′(un), un〉−〈Ψ′(u), u〉

∣∣∣∣+∣∣∣∣〈Ψ′(un), u〉−〈Ψ′(u), u〉
∣∣∣∣.

It follows that∣∣∣∣〈Ψ′(un), un〉 − 〈Ψ′(un), u〉
∣∣∣∣ ≤ ∣∣∣∣〈Ψ′(un), un〉 − 〈Ψ′(u), u〉

∣∣∣∣+ ‖Ψ′(un)−Ψ′(u)‖∗‖u‖.

This implies that

〈Ψ′(un), un〉 − 〈Ψ′(un), u〉 → 0 as n→∞. (12)

Combining with the above equalities, we obtain

lim sup
n→+∞

〈∆2
pun, un − u〉 ≤

`p

〈Ψ′(u), u〉
lim sup
n→∞

(
〈Ψ′(un), un〉 − 〈Ψ′(un), u〉

)
.

We deduce

lim sup
n→∞

〈∆2
pun, un − u〉 ≤ 0. (13)

On the other hand, we can write ∆2
pun = ‖∆un‖p−2

p J(un), since ‖∆un‖p 6= 0 for
n large enough. Therefore

lim sup
n→∞

〈∆2
pun, un − u〉 = `p−2 lim sup

n→∞
〈Jun, un − u〉.

According to (13), we conclude that

lim sup
n→∞

〈Jun, un − u〉 ≤ 0,

in view of Remark 1, J is the duality mapping, Thus satisfies the condition S+

given in [10]. Therefore, un → u strongly in W 2,p
0 (Ω). This completes the proof

of the proposition.

3 Existence of a sequence of eigencurves

In this section, we show that problem (1) has at least one increasing sequence
of positive eigencurves by using the results of Ljusternik-Schnirelman.

Let

Σj =

{
K ⊂ V : K is symmetric, compact and γ(K) ≥ j

}
,

where γ(K) = j is the Krasnoselskii genus of set K, i.e., the smallest integer j,
such that there exists an odd continuous map from K to Rj \ {0}.

Our first main result is to prove the following result:
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Theorem 1. For any λ ∈ [0, H
‖w‖∞ [ and for any integer j ∈ N∗,

µj(λ) := inf
K∈Σj

max
u∈K

pΦλ(u)

is a critical value of Φλ restricted on V. More precisely, there exists uj ∈ V,
µj(λ) ∈ R such that

µj(λ) = pΦλ(uj) = sup
u∈K

pΦλ(u),

and uj is an eigenfunctin of problem (1) associated to the eigenvalue (λ, µj).
Moreover,

µj(λ)→∞, as j →∞.

We start with two auxiliary results.

Lemma 3. for any j ∈ N∗, Σj 6= ∅.

Proof. Since W 2,p
0 (Ω) is separable, there exists (ei)i≥1 linearly dense in W 2,p

0 (Ω)
such that supp ei ∩ supp en = ∅ if i 6= n. We may assume that ei ∈M (if not, we
take e′i ≡

ei

[pΨ(ei)]
1
p

).

Let now j ∈ N∗ and denote

Fj = span{e1, e2, . . . , ej}.

Clearly, Fj is a vector subspace with dim Fj = j. If v ∈ Fj , then there exist

α1, . . . , αj in R, such that v =
∑j

i=1 αiei. Thus

Ψ(v) =

j∑
i=1

|αi|pΨ(ei) =
1

p

j∑
i=1

|αi|p.

It follows that the map

v 7→ (pΨ(v))
1
p = ||v||

defines a norm on Fj . Consequently, there is a constant c > 0 such that

c ‖∆v‖p ≤ ||v|| ≤
1

c
‖∆v‖p.

This implies that the set

Vj = Fj ∩
{
v ∈W 2,p

0 (Ω) : Ψ(v) ≤ 1

p

}
is bounded because Vj ⊂ B(0, 1

c ), where

B

(
0,

1

c

)
=

{
u ∈W 2,p

0 (Ω) such that ‖∆u‖p ≤
1

c

}
.

Thus, Vj is a symmetric bounded neighborhood of 0 ∈ Fj . Moreover, Fj ∩ V is a
compact set. By the property of genus, we get γ(Fj ∩ V) = j and then we obtain
finally that Σj 6= ∅.
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Lemma 4.

µj(λ)→∞ as j →∞.

.

Proof. Let (ej , e
∗
n)j,n be a bi-orthogonal system such that ej ∈W 2,p

0 (Ω) and e∗n ∈
W−2,p′(Ω), the (ej)j are linearly dense in W 2,p

0 (Ω) and the (e∗n)n are total for the
dual W−2,p′(Ω). For j ∈ N∗, set

Fj = span{e1, . . . , ej} and F⊥j = span{ej+1, ej+2, . . . }.

By the property of genus, we have for any A ∈ Σj , A ∩ F⊥j−1 6= ∅. Thus

tj = inf
A∈Σj

sup
u∈A∩F⊥j−1

pΦλ(u)→∞ as j →∞.

Indeed, if not, for large j there exists uj ∈ F⊥j−1 with
∫

Ω
|uj |p
δ(x)2p dx = 1 such that

tj ≤ pΦλ(uj) ≤M, for some M > 0 independent of j. Thus from (8)

‖∆uj‖p ≤

(
pM + λ‖m‖∞

) 1
p

.

This implies that (uj)j is bounded in W 2,p
0 (Ω). For a subsequence of {uj} if

necessary, we can assume that {uj} converges weakly in W 2,p
0 (Ω) and strongly in

Lp(Ω).
By our choice of F⊥j−1, we have uj ⇀ 0 in W 2,p

0 (Ω) because 〈e∗n, ej〉 = 0, for

any j > n. This contradicts the fact that 1 =
∫

Ω
|uj |p
δ(x)2p dx → 0 for all j. Since

µj(λ) ≥ tk the claim is proved.

Proof of Theorem 1. Applying lemma 3, lemma 4 and Ljusternik-schnireleman
theory to the problem (1), we have for each j ∈ N∗, µj(λ) is a critical value of Φλ

on C1-manifold V, such that

µj(λ)→∞, as j →∞.

Corollary 1. The following statements hold true

(i) µ1(λ) = inf

{
‖∆u‖pp−λ

∫
Ω w(x)

|u|p

δ(x)2p
dx∫

Ω
|u|p
δ(x)2p

dx

∣∣∣∣u ∈W 2,p
0 (Ω) \ {0}

}
.

(ii) 0 < µ1(λ) ≤ µ2(λ) ≤ · · · ≤ µn(λ)→ +∞.

Proof. (i) For u ∈ V, set K1 = {u,−u}. It is clear that γ(K1) = 1, Φλ is even and

pΦλ(u) = max
K1

pΦλ ≥ inf
K∈Γ1

max
u∈K

pΦλ(u).
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Thus

inf
u∈V

pΦλ(u) ≥ inf
K∈Σ1

max
u∈K

pΦλ(u) = µ1(λ).

On the other hand, for all K ∈ Γ1 and u ∈ K, we have

sup
u∈K

pΦλ ≥ pΦλ(u) ≥ inf
u∈V

pΦλ(u).

It follows that

inf
K∈Σ1

max
K

pΦλ = µ1(λ) ≥ inf
u∈V

pΦλ(u).

Then

µ1(λ) = inf

{
‖∆u‖pp − λ

∫
Ωw(x) |u|

p

δ(x)2p dx∫
Ω
|u|p
δ(x)2p dx

∣∣∣∣u ∈W 2,p
0 (Ω) \ {0}

}
.

(ii) For all i ≥ j, we have Σi ⊂ Σj and in view of the definition of λi, i ∈ N∗, we
get µi(λ) ≥ µj(λ). As regards µn(λ)→∞, it has been proved in Theorem 1.
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