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Abstract

In the present paper, we define Lorentzian para-Kenmotsu manifolds
and study Ricci-pseudosymmetric, Ricci-generalized pseudosymmetric and
symmetric conditions to characterize Lorentzian para-Kenmotsu manifolds.
Next, we study Lorentzian para-Kenmotsu manifolds satisfying the curva-
ture condition S · R = 0. Moreover, we study Ricci solitons on Lorentzian
para-Kenmotsu manifolds. Finally, we give an example of a 5-dimensional
Lorentzian para-Kenmotsu manifold to verify some results of the paper.
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1 Introduction

A Riemannian manifold is called semisymmetric if R(X,Y ) · R = 0 [14]. R.
Deszcz [8] generalized the concept of semisymmetry and introduced pseudosym-
metric manifolds. Let (M, g) be an n-dimensional (n ≥ 3) differentiable manifold
of class C∞. We denote by ∇, R, S, Q and r the Levi-Civita connection, the
curvature tensor, the Ricci tensor, the Ricci operator and the scalar curvature
of (M, g), respectively. We define endomorphism X ∧A Y for an arbitrary vector
field Z and (0, k) tensor T , k ≥ 1 by

(X ∧A Y )Z = A(Y,Z)X −A(X,Z)Y, (1)

and

((X ∧A Y ) · T )(X1, X2, ......Xk) = −T ((X ∧A Y )X1, X2.....Xk) (2)
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−T (X1, (X ∧A Y )X2.....Xk)− .......− T (X1, X2.....(X ∧A Y )Xk),

respectively, where X,Y, Z ∈ χ(M); χ(M) being the Lie algebra of vector fields on
M and A is the symmetric (0, 2)-tensor. For a (0, k)-tensor field T , the (0, k + 2)
tensor fields R · T and Q(A, T ) are defined by [3, 8]

(R(X,Y ) · T )(X1, X2, ......Xk) = −T (R(X,Y )X1, X2.....Xk) (3)

−T (X1, R(X,Y )X2.....Xk)− .......− T (X1, X2.....R(X,Y )Xk),

and

Q(A, T )(X1, X2, ......Xk;X,Y ) = −T ((X ∧A Y )X1, X2.....Xk) (4)

−T (X1, (X ∧A Y )X2.....Xk)− .......− T (X1, X2.....(X ∧A Y )Xk),

respectively.
By setting T = R or T = S, A = g or A = S in the above formulas, we get the
tensors R ·R, R · S, Q(g, S) and Q(S,R).
A Riemannian manifold M is said to be Ricci-generalized pseudosymmetric if the
tensors R ·R and Q(S,R) are linearly dependent at every point of M , i.e.,

R ·R = LRQ(S,R). (5)

This is equivalent to

(R(X,Y ) ·R)(U, V,W ) = LR[((X ∧S Y ) ·R)(U, V,W )] (6)

holding on the set UR = {x ∈M : Q(S,R) 6= 0 at x}, where LR is some function
on UR [8]. Particularly, if LR = 0, then M is a semisymmetric manifold. The
manifold is said to be locally symmetric if ∇R = 0. Clearly, locally symmetric
spaces are semisymmetric.
If the tensors R · S and Q(g, S) are linearly dependent at every point of M , i.e.,

R · S = LSQ(g, S), (7)

then M is called Ricci-pseudosymmetric. This is equivalent to

(R(X,Y ) · S)(U, V ) = LS [((X ∧g Y ) · S)(U, V )] (8)

holding on the set US = {x ∈M : S− r
ng 6= 0 at x}, with some function LS on US

[12]. Particularly, if LS = 0, then M is a Ricci-semisymmetric manifold. We note
that US ⊂ UR and on 3-dimensional Riemannian manifolds we have US = UR.
Every Ricci-generalized pseudosymmetric manifold is Ricci-pseudosymmetric but
the converse is not true.

Furthermore, tensors R ·R and R · S on (M, g) are defined by

(R(X,Y ) ·R)(U, V )W = R(X,Y )R(U, V )W −R(R(X,Y )U, V )W (9)

−R(U,R(X,Y )V )W −R(U, V )R(X,Y )W,
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and

(R(X,Y ) · S)(U, V ) = −S(R(X,Y )U, V )− S(U,R(X,Y )V ), (10)

respectively.

Recently, pseudosymmetric and Ricci-pseudosymmetric conditions have been
studied by many authors in several ways to a different extent such as K. K. Baishya
and P. R. Chowdhury [2], U. C. De and D. Tarafdar [7], N. Malekzadeh et al. [11]
and many others.

A Ricci soliton (g, V, λ) on a Riemannian manifold (M, g) is a generalization
of an Einstein metric such that [9]

(£V g + 2S + 2λg)(X,Y ) = 0, (11)

where S is the Ricci tensor, £V is the Lie derivative operator along the vector field
V on M and λ is a real number. The Ricci soliton is said to be shrinking, steady
and expanding according to λ being negative, zero and positive, respectively. For
more details we refer to the readers [4− 6].

Motivated by the above studies, in this paper we characterize Lorentzian para-
Kenmotsu manifolds satisfying certain curvature conditions: R · S = LSQ(g, S),
R · R = LRQ(S,R), S · R = 0, symmetric Lorentzian para-Kenmotsu manifolds
and Lorentzian para-Kenmotsu manifolds admitting Ricci solitions. The paper
is organized as follows: In Section 2, we give a brief introduction of Lorentzian
para-Kenmotsu manifolds. Sections 3, 4 and 5 are devoted to the study of Ricci-
pseudosymmetric, Ricci-generalized pseudosymmetric and symmetric Lorentzian
para-Kenmotsu manifolds, respectively. In Section 6, we discuss Lorentzian para-
Kenmotsu manifolds satisfying the curvature condition S ·R = 0. In Section 7, we
show that if a Lorentzian para-Kenmotsu manifold admits a Ricci solition, then
the manifold is an η-Einstein manifold and the Ricci solition is always shrinking.

2 Preliminaries

An n-dimensional differentiable manifold M with a structure (φ, ξ, η, g) is said
to be a Lorentzian almost paracontact metric manifold, if it admits a (1, 1)-tensor
field φ, a contravariant vector field ξ, a 1-form η and a Lorentzian metric g satis-
fying [1]

η(ξ) = −1, (12)

φ2X = X + η(X)ξ, (13)

φξ = 0, η(φX) = 0, (14)

g(φX, φY ) = g(X,Y ) + η(X)η(Y ), (15)

g(X, ξ) = η(X), (16)

Φ(X,Y ) = Φ(Y,X) = g(X,φY ) (17)
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for any vector fields X,Y on M .
If ξ is a killing vector field, the (para) contact structure is called a K-(para)
contact. In such a case, we have

∇Xξ = φX. (18)

A Lorentzian almost paracontact manifold M is called a Lorentzian para-Sasakian
manifold if

(∇Xφ)Y = g(X,Y )ξ + η(Y )X + 2η(X)η(Y )ξ (19)

for any vector fields X,Y on M.

Now, we define a new manifold called Lorentzian para-Kenmostu manifold:

Definition 1. A Lorentzian almost paracontact manifold M is called Lorentzian
para-Kenmostu manifold if [10]

(∇Xφ)Y = −g(φX, Y )ξ − η(Y )φX (20)

for any vector fields X,Y on M.

In a Lorentzian para-Kenmostu manifold, we have

∇Xξ = −X − η(X)ξ, (21)

(∇Xη)Y = −g(X,Y )− η(X)η(Y ), (22)

where ∇ is the Levi-Civita connection with respect to the Lorentzian metric g.
Furthermore, on a Lorentzian para-Kenmotsu manifold M , the following relations
hold [10]:

g(R(X,Y )Z, ξ) = η(R(X,Y )Z) = g(Y,Z)η(X)− g(X,Z)η(Y ), (23)

R(ξ,X)Y = −R(X, ξ)Y = g(X,Y )ξ − η(Y )X, (24)

R(X,Y )ξ = η(Y )X − η(X)Y, (25)

R(ξ,X)ξ = X + η(X)ξ, (26)

S(X, ξ) = (n− 1)η(X), S(ξ, ξ) = −(n− 1), (27)

Qξ = (n− 1)ξ, (28)

S(φX, φY ) = S(X,Y ) + (n− 1)η(X)η(Y ) (29)

for any vector fields X,Y, Z ∈ χ(M).
Let {e1, e2, e3......., en = ξ} be a frame of orthonormal basis of the tangent space
at any point of the manifold. Then the Ricci tensor S and the scalar curvature r
of the manifold are defined by

S(X,Y ) =
n∑
i=1

εig(R(ei, X)Y, ei),
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r =

n∑
i=1

εiS(ei, ei),

respectively. Also, we have

g(X,Y ) =
n∑
i=1

εig(X, ei)g(Y, ei),

where X,Y ∈ χ(M) and εi = g(ei, ei) = +1 or − 1.

Definition 2. A Lorentzian para-Kenmotsu manifold M is said to be an η-
Einstein manifold if its Ricci tensor S is of the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ), (30)

where a and b are scalar functions on M . In particular, if b = 0, then the manifold
is said to be an Einstein manifold.

Let {e1, e2, e3......., en−1, en = ξ} be a frame of orthonormal basis of the tangent
space at any point of the manifold. If we put X = Y = ei in (30) and sum up
with respect to i(1 ≤ i ≤ n), then we have

r = an− b. (31)

On the other hand, putting X = Y = ξ in (30) and using (12), (13) and (27), we
also have

−(n− 1) = −a+ b. (32)

Hence it follows from (31) and (32) that

a =
r

n− 1
− 1, b =

r

n− 1
− n.

So the Ricci tensor S of an η-Einstein Lorentzian para-Kenmotsu manifold is given
by

S(X,Y ) = (
r

n− 1
− 1)g(X,Y ) + (

r

n− 1
− n)η(X)η(Y ). (33)

It is known that every 3-dimensional Kenmotsu manifold is an η-Einstein manifold
and its Ricci tensor is given by [13]

S(X,Y ) = (
r

2
+ 1)g(X,Y )− (3 +

r

2
)η(X)η(Y ),

where r is the scalar curvature of the manifold.
Now we can easily prove the following:

Proposition 1. Let M be a 3-dimensional Lorentzian para-Kenmotsu manifold.
Then, we have

R(X,Y )Z = (
r

2
− 2)[g(Y,Z)X − g(X,Z)Y ] + (

r

2
− 3)[η(Y )X − η(X)Y ]η(Z) (34)

+(
r

2
− 3)[g(Y,Z)η(X)− g(X,Z)η(Y )]ξ,

S(X,Y ) = (
r

2
− 1)g(X,Y ) + (

r

2
− 3)η(X)η(Y ) (35)

for any vector fields X,Y, Z ∈ χ(M).
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3 Ricci pseudo-symmetric Lorentzian para-Kenmotsu
manifolds

Let M be a Ricci-pseudosymmetric Lorentzian para-Kenmotsu manifold, that
is, the manifold satisfying the condition R · S = LSQ(g, S). Then from (7) we
have

(R(X,Y ) · S)(U, V ) = LSQ(g, S)(X,Y ;U, V ) (36)

for any vector fields X,Y, U, V ∈ χ(M). It is equivalent to

(R(X,Y ) · S)(U, V ) = LS [((X ∧g Y ) · S)(U, V )]. (37)

By virtue of (2) and (10), (37) becomes

−S(R(X,Y )U, V )− S(U,R(X,Y )V )

= LS [−S((X ∧g Y )U, V )− S(U, (X ∧g Y )V )]

which by using (1) takes the form

−S(R(X,Y )U, V )− S(U,R(X,Y )V ) (38)

= LS [−g(Y, U)S(X,V ) + g(X,U)S(Y, V )

−g(Y, V )S(U,X) + g(X,V )S(U, Y )].

Putting X = U = ξ in (38) then using (16), (26) and (27), we get

(1− LS)[S(Y, V )− (n− 1)g(Y, V )] = 0. (39)

Thus, we have either (i) LS = 1, or (ii) S(Y, V ) = (n− 1)g(Y, V ) from which we
get r = n(n− 1). Hence we have the following:

Proposition 2. Every n-dimensional Ricci-pseudosymmetric Lorentzian para-
Kenmotsu manifold is of the form R · S = Q(g, S), provided the manifold is an
Einstein manifold of the form S(Y, V ) = (n− 1)g(Y, V ) with the scalar curvature
n(n− 1).

Conversely, if the manifold is an Einstein manifold of the form S(Y, V ) = (n −
1)g(Y, V ), then it is clear that R · S = LSQ(g, S). This leads to the following
theorem:

Theorem 1. An n-dimensional Lorentzian para-Kenmotsu manifold is Ricci-
pseudosymmetric if and only if the manifold is an Einstein manifold of the form
S(Y, V ) = (n− 1)g(Y, V ) with the scalar curvature n(n− 1), provided LS 6= 1.



On Lorentzian para-Kenmotsu manifolds 191

4 Ricci-generalized pseudosymmetric Lorentzian para-
Kenmotsu manifolds

Let M be an n-dimensional Ricci-generalized pseudosymmetric Lorentzian
para-Kenmotsu manifold. Then from (5), we have

R ·R = LRQ(S,R). (40)

It is equivalent to

(R(X,Y ) ·R)(U, V )W = LR[((X ∧S Y ) ·R)(U, V )W ] (41)

for any X,Y, U, V,W ∈ χ(M). By using (2) and (8) in (41), we have

R(X,Y )R(U, V )W −R(R(X,Y )U, V )W (42)

−R(U,R(X,Y )V )W −R(U, V )R(X,Y )W

= LR[(X ∧S Y )R(U, V )W −R((X ∧S Y )U, V )W

−R(U, (X ∧S Y )V )W −R(U, V )(X ∧S Y )W ].

By virtue of (1), (42) takes the form

R(X,Y )R(U, V )W −R(R(X,Y )U, V )W (43)

−R(U,R(X,Y )V )W −R(U, V )R(X,Y )W

= LR[S(Y,R(U, V )W )X − S(X,R(U, V )W )Y

−S(Y, U)R(X,V )W + S(X,U)R(Y, V )W

−S(Y, V )R(U,X)W + S(X,V )R(U, Y )W

−S(Y,W )R(U, V )X + S(X,W )R(U, V )Y ].

Putting X = U = ξ in (43) and making use of (24), (25) and (27), we get

g(V,W )Y −R(Y, V )W − g(Y,W )V

= LR[(n− 1)g(V,W )Y − η(W )S(Y, V )ξ

−(n− 1)R(Y, V )W + (n− 1)g(Y,W )η(V )ξ

−S(Y,W )V − S(Y,W )η(V )ξ + (n− 1)g(V, Y )η(W )ξ]

which by taking the inner product with Z becomes

g(V,W )g(Y,Z)− g(R(Y, V )W,Z)− g(Y,W )g(V,Z) (44)

= LR[(n− 1)g(V,W )g(Y, Z)− S(Y, V )η(W )η(Z)

−(n− 1)g(R(Y, V )W,Z) + (n− 1)g(Y,W )η(V )η(Z)

−S(Y,W )g(V,Z)−S(Y,W )η(V )η(Z)+(n−1)g(V, Y )η(W )η(Z)].
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Let {e1, e2, e3......., en−1, ξ} be a frame of orthonormal basis of the tangent space
at any point of the manifold. If we put V = W = ei in (44) and sum up with
respect to i(1 ≤ i ≤ n), then we have

n∑
i=1

εi[g(ei, ei)g(Y,Z)− g(R(Y, ei)ei, Z)− g(Y, ei)g(ei, Z)

= LR

n∑
i=1

εi[(n− 1)g(ei, ei)g(Y, Z)− S(Y, ei)η(ei)η(Z)

−(n− 1)g(R(Y, ei)ei, Z) + (n− 1)g(Y, ei)η(ei)η(Z)

−S(Y, ei)g(ei, Z)−S(Y, ei)η(ei)η(Z)+(n−1)g(ei, Y )η(ei)η(Z)]

from which it follows that

S(Y, Z)− (n− 1)g(Y,Z) = nLR[S(Y,Z)− (n− 1)g(Y, Z)]. (45)

Thus, we have either (i) LR = 1
n or (ii) S(Y,Z) = (n− 1)g(Y,Z) from which we

get r = n(n− 1). Hence we have the following:

Proposition 3. Every n-dimensional Ricci-generalized pseudosymmetric Lorentzian
para-Kenmotsu manifold is of the form R · R = 1

nQ(g, S), provided the manifold
is an Einstein manifold of the form S(Y, Z) = (n − 1)g(Y, Z) with the scalar
curvature n(n− 1).

Theorem 2. An n-dimensional Ricci-generalized pseudosymmetric Lorentzian
para-Kenmotsu manifold is an Einstein manifold of the form S(Y, Z) = (n −
1)g(Y,Z) with the scalar curvature n(n− 1), provided that LR 6= 1

n .

5 Symmetric Lorentzian para-Kenmotsu manifolds

Definition 3. A Lorentzian para-Kenmotsu manifold M is said to be symmetric
if

(∇XR)(Y, Z)W = 0 (46)

for all vector fields X,Y, Z and W on M , where R is the curvature tensor with
respect to connection ∇.

Let M be a symmetric Lorentzian para-Kenmotsu manifold, then
(∇XR)(Y,Z)W = 0. By a suitable contraction of equation (46), we have

(∇XS)(Z,W ) = ∇XS(Z,W )− S(∇XZ,W )− S(Z,∇XW ) = 0.

Taking W = ξ in the last equation, we have

∇XS(Z, ξ)− S(∇XZ, ξ)− S(Z,∇Xξ) = 0. (47)
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By using (21) and (27), (47) takes the form

(n− 1)(∇Xη)Z + S(X,Z) + (n− 1)η(X)η(Z) = 0. (48)

In view of (22), (48) gives

S(X,Z) = (n− 1)g(X,Z). (49)

By contracting (49) over X and Z, it follows that

r = n(n− 1). (50)

Thus we have the following:

Theorem 3. Let M be an n-dimensional symmetric Lorentzian para-Kenmotsu
manifold. Then the manifold is an Einstein manifold of the form S(X,Z) =
(n− 1)g(X,Z) with the scalar curvatutre n(n− 1).

6 Lorentzian para-Kenmotsu manifolds satisfying the
curvature condition S ·R = 0

Let M be a Lorentzian para-Kenmotsu manifold satisfying the curvature con-
dition (S(X,Y ) ·R)(U, V )W = 0. This implies that

(X∧SY )R(U, V )W +R((X∧SY )U, V )W (51)

+R(U, (X∧SY )V )W +R(U, V )(X∧SY )W = 0

for any vector fields X,Y, U, V,W ∈ χ(M). By virtue of (1), (51) takes the form

S(Y,R(U, V )W )X − S(X,R(U, V )W )Y + S(Y, U)R(X,V )W (52)

−S(X,U)R(Y, V )W + S(Y, V )R(U,X)W − S(X,V )R(U, Y )W

+S(Y,W )R(U, V )X − S(X,W )R(U, V )Y = 0.

Taking U = W = ξ in (52) then using (24) and (25), we have

2S(Y, V )X − 2S(X,V )Y + 2(n− 1)η(Y )η(V )X

−2(n− 1)η(X)η(V )Y + η(X)S(Y, V )ξ − η(Y )S(X,V )ξ

+(n− 1)g(V,X)η(Y )ξ − (n− 1)g(V, Y )η(X)ξ = 0

which by taking the inner product with ξ and using (12) and (16) reduces to

S(Y, V )η(X)− S(X,V )η(Y ) + (n− 1)g(Y, V )η(X)− (n− 1)g(X,V )η(Y ). (53)

Now putting X = ξ in (53) and using (12) and (27) to get

S(Y, V ) = −(n− 1)g(V, Y )− 2(n− 1)η(Y )η(V ). (54)

Thus we have the following:

Theorem 4. If an n-dimensional Lorentzian para-Kenmotsu manifold satisfying
the curvature condition S ·R = 0, then the manifold is an η-Einstein manifold of
the form (54).

Remark. If we take r = −2 in a 3-dimensional Lorentzian para-Kenmotsu man-
ifold, then (35) verifies (54).
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7 Ricci solitons

Suppose that a Lorentzian para-Kenmotsu manifold admits a Ricci soliton
(g, ξ, λ). Then we have

(£ξg + 2S + 2λg)(X,Y ) = 0 (55)

which implies that

g(∇Xξ, Y ) + g(X,∇Y ξ) + 2S(X,Y ) + 2λg(X,Y ) = 0. (56)

Using (21) in (56), we get

S(X,Y ) + (λ− 1)g(X,Y )− η(X)η(Y ) = 0 (57)

which by taking Y = ξ yields

S(X, ξ) = −λη(X) =⇒ λ = −(n− 1). (58)

Putting this value of λ in (57), we get

S(X,Y ) = ng(X,Y ) + η(X)η(Y ). (59)

Thus in view of (58) and (59), we have the following:

Theorem 5. If an n-dimensional Lorentzian para-Kenmotsu manifold admits a
Ricci soliton, then the manifold is an η-Einstein manifold of the form (59) and
the Ricci soliton is always shrinking.

Now, let (g, V, λ) be a Ricci soliton on a Lorentzian para-Kenmotsu manifold
such that V is pointwise collinear with ξ, i.e., V = bξ, where b is a function. Then
(11) holds and thus, we have

bg(∇Xξ, Y ) + (Xb)η(Y ) + bg(X,∇Y ξ)

+(Y b)η(X) + 2S(X,Y ) + 2λg(X,Y ) = 0

which in view of (21) takes the form

−2bg(X,Y )− 2bη(X)η(Y ) + (Xb)η(Y ) (60)

+(Y b)η(X) + 2S(X,Y ) + 2λg(X,Y ) = 0.

Putting Y = ξ in (60) then using (12), (16) and (27), we have

−(Xb) + (ξb)η(X) + 2(n− 1)η(X) + 2λη(X) = 0. (61)

Again taking X = ξ in (61) and using (12), we get

(ξb) + (n− 1) + λ = 0. (62)



On Lorentzian para-Kenmotsu manifolds 195

Combining the equations (61) and (62) it follows that

db = [λ+ (n− 1)]η. (63)

Now applying d on (63), we have

[λ+ (n− 1)]dη = 0 =⇒ λ = −(n− 1), dη 6= 0. (64)

Thus from (63) and (64), we find db = 0, i.e., b is constant. Hence (60) takes the
form

S(X,Y ) = (b− λ)g(X,Y ) + bη(X)η(Y ). (65)

Thus in view of (64) and (65), we have the following theorem:

Theorem 6. If (g, V, λ) is a Ricci soliton on a Lorentzian para-Kenmotsu man-
ifold such that V is pointwise collinear with ξ, then V is a constant multiple of ξ
and the manifold is an η-Einstein manifold of the form (65) and the Ricci soliton
is always shrinking.

Example. We consider the 5-dimensional manifold M = {(x1, x2, y1, y2, z) ∈
∈ R5 : z > 0}, where (x1, x2, y1, y2, z) are the standard coordinates in R5. Let e1,
e2, e3, e4 and e5 be the vector fields on M defined by

e1 = z
∂

∂x1
, e2 = z

∂

∂x2
, e3 = z

∂

∂y1
, e4 = z

∂

∂y2
, e5 = z

∂

∂z
= ξ,

which are linearly independent at each point p of M . Let g be the Lorentzian
metric defined by

g(ei, ei) = 1, for 1 ≤ i ≤ 4 and g(e5, e5) = −1,

g(ei, ej) = 0, for i 6= j, 1 ≤ i, j ≤ 5.

Let η be the 1-form defined by η(X) = g(X, e5) = g(X, ξ) for all X ∈ χ(M), and
let φ be the (1, 1)-tensor field defined by

φe1 = −e2, φe2 = −e1, φe3 = −e4, φe4 = −e3, φe5 = 0.

By applying linearity of φ and g, we have

η(ξ) = g(ξ, ξ) = −1, φ2X = X + η(X)ξ and g(φX, φY ) = g(X,Y ) + η(X)η(Y )

for all X,Y ∈ χ(M). Thus for e5 = ξ, the structure (φ, ξ, η, g) defines a Lorentzian
almost paracontact metric structure on M . Then we have

[ei, ej ] = 0, if i 6= j, and 1 ≤ i, j ≤ 4,

[ei, e5] = −ei, for 1 ≤ i ≤ 4.

The Levi-Civita connection ∇ of the Lorentzian metric g is given by

2g(∇XY,Z)

= Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )− g(X, [Y, Z]) + g(Y, [Z,X]) + g(Z, [X,Y ]),
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which is known as Koszul’s formula. Using Koszul’s formula, we find

∇e1e1 = −e5, ∇e1e2 = 0, ∇e1e3 = 0, ∇e1e4 = 0, ∇e1e5 = −e1,

∇e2e1 = 0, ∇e2e2 = −e5, ∇e2e3 = 0, ∇e2e4 = 0, ∇e2e5 = −e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = −e5, ∇e3e4 = 0, ∇e3e5 = −e3,

∇e4e1 = 0, ∇e4e2 = 0, ∇e4e3 = 0, ∇e4e4 = −e5, ∇e4e5 = −e4,

∇e5e1 = 0, ∇e5e2 = 0, ∇e5e3 = 0, ∇e5e4 = 0, ∇e5e5 = 0.

Now let

X =
5∑
i=1

Xiei = X1e1 +X2e2 +X3e3 +X4e4 +X5e5,

Y =
5∑
j=1

Y jej = Y 1e1 + Y 2e2 + Y 3e3 + Y 4e4 + Y 5e5,

Z =

5∑
k=1

Zkek = Z1e1 + Z2e2 + Z3e3 + Z4e4 + Z5e5

for all X,Y, Z ∈ χ(M). Also, one can easily verify that

∇Xξ = −X − η(X)ξ and (∇Xφ)Y = −g(φX, Y )ξ − η(Y )φX.

Therefore, the manifold is a Lorentzian para-Kenmotsu manifold.
From the above results, we can easily obtain the non-vanishing components of the
curvature tensor as follows:

R(e1, e2)e1 = −e2, R(e1, e2)e2 = e1, R(e1, e3)e1 = −e3, R(e1, e3)e3 = e1,

R(e1, e4)e1 = −e4, R(e1, e4)e4 = e1, R(e1, e5)e1 = −e5, R(e1, e5)e5 = −e1,

R(e2, e3)e2 = −e3, R(e2, e3)e3 = e2, R(e2, e4)e2 = −e4, R(e2, e4)e4 = e2,

R(e2, e5)e2 = −e5, R(e2, e5)e5 = −e2, R(e3, e4)e3 = −e4, R(e3, e4)e4 = e3,

R(e3, e5)e3 = −e5, R(e3, e5)e5 = −e3, R(e4, e5)e4 = −e5, R(e4, e5)e5 = −e4
from which it is clear that

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y. (66)

Thus, the manifold is of constant curvature. Also, we calculate the Ricci tensors
as follows:

S(e1, e1) = S(e2, e2) = S(e3, e3) = S(e4, e4) = 4, S(e5, e5) = −4.

Hence we find

r = S(e1, e1) + S(e2, e2) + S(e3, e3) + S(e4, e4)− S(e5, e5) = 20.
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By contracting (66), it follows that

S(Y,Z) = 4g(Y,Z), r = 20, (67)

which are same as the values of Ricci tensor and scalar curvature obtained in
sections 3, 4 and 5. Now taking Z = ξ in (67), we get

S(Y, ξ) = 4η(Y ). (68)

Thus from (58) and (68) we obtain λ = −4, i.e., the Ricci soliton is shrinking
which verifies Section 7.
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