ON WARPED PRODUCT SEMI INVARIANT SUBMANIFOLDS OF NEARLY (ε, δ)-TRANS SASAKIAN MANIFOLD

Shamsur RAHMAN ${ }^{*, 1}$, Amit Kumar RAI ${ }^{2}$, Aboo Ho RAIRA ${ }^{3}$ and Khan Mohd SADIQ ${ }^{4}$

Abstract

In this paper, we have concentrated on the inquest of warped product semi-invariant submanifolds of a nearly (ε, δ)-trans-Sasakian manifold. Firstly, some properties of this structure are acquired. Further, we established the warped product of the type $E_{\perp} \times{ }_{y} E_{P}$ is a usual Riemannian product of E_{\perp} and E_{P}, where E_{\perp} and E_{P} are anti-invariant and invariant submanifolds of a nearly (ε, δ)-trans-Sasakian manifold \bar{M}, respectively. Also, we explored the warped product of the type $E_{P} \times{ }_{y} E_{\perp}$ and acquired a depiction for such type of warped product.

2000 Mathematics Subject Classification: 53D12, 53C05.
Key words: Warped product, semi-invariant submanifolds, nearly (ε, δ) -trans-Sasakian manifold.

1 Introduction

Bishop and Neill [10] in 1969 premeditated the concept of warped product manifolds. After that several papers appeared which dealt with various geometric aspects of warped product submanifolds $[1,4,5,9,10]$. Chen initiated the notion of warped product CR submanifolds and established there exists no warped product CR-submanifolds of the form $M=E_{\perp} \times_{y} E_{P}$ such that E_{\perp} is a real submanifold and E_{P} is a holomorphic submanifold of a Kaehler manifold \bar{M} so he

[^0]248 Shamsur Rahman, Amit Kumar Rai, Aboo Ho Raira and Khan Mohd Sadiq
termed it as warped product CR submanifolds in the form $M=E_{P} \times{ }_{y} E_{\perp}$ where E_{P} and E_{\perp} are holomorphic and totally real submanifolds of a Kaehler manifold $\bar{M}[6,7]$. In [13], some kinds of warped products were studied. Bejancu and Duggal [2] also used the idea of (ε)-Sasakian manifolds. Xufeng and Xiaoli premeditated that these manifolds are real hypersurfaces of indefinite Kahlerian manifolds [14]. Kumar et al. in [11] also premeditated the curvature conditions of these manifolds and Tripathi et al. in [13] investigated (ε)-almost para contact manifolds. De and Sarkar in [8] also initiated (ε)-Kenmotsu manifolds and premeditated conformally flat, Weyl semisymmetric, ϕ-recurrent (ε)-Kenmotsu manifolds. In [12], the authors initiated and premeditated CR submanifolds and CR structure of a CR-submanifold of nearly (ε, δ) - trans-Sasakian structures and, thus, those of Sasakian manifolds. In $[2,14,16]$, some properties of semi-invariant submanifolds were studied.
The aim of the paper is to inquest the concept of warped product semi-invariant submanifolds of a nearly (ε, δ)-trans-Sasakian manifold. We have shown that the warped product in the form $M=E_{\perp} \times_{y} E_{P}$ is simply Riemannian product of E_{\perp} and E_{P} where E_{\perp} is an anti-invariant submanifold and E_{P} is an invariant submanifold of a nearly (ε, δ)-trans-Sasakian manifold \bar{M}. Thus we deliberate the warped product submanifold of the type $M=E_{P} \times{ }_{y} E_{\perp}$ by transposing the two factors E_{\perp} and E_{P} that will simply be called warped product semi-invariant submanifold. Thus, we deduce the integrability of the involved distributions in the warped product and acquire a depiction result.

2 Preliminaries

If \bar{M} is an n-dimensional almost contact metric manifold with structure tensors (f, ξ, η, g) where f is a $(1,1)$ type tensor field, ξ is a vector field, η is dual of ξ and g is also Riemannian metric tensor on \bar{M}, then

$$
\begin{equation*}
f^{2} U=-U+\eta(U) \xi, \quad \eta(\xi)=1, \quad f \xi=0, \quad \eta(f U)=0, \quad g(\xi, \xi)=\varepsilon \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta(U)=\varepsilon g(U, \xi), \quad g(f U, f V)=g(U, V)-\varepsilon \eta(U) \eta(V) \tag{2}
\end{equation*}
$$

where $\varepsilon=g(\xi, \xi)= \pm 1$, for any vector fields U, V on \bar{M}, then \bar{M} is called (ε)almost contact metric manifold. An (ε)-almost contact metric manifold is called (ε, δ)-trans-Sasakian manifold if

$$
\begin{gather*}
\left(\bar{\nabla}_{U} f\right) V=\alpha\{g(U, V) \xi-\varepsilon \eta(V) U\}+\beta\{g(f U, V) \xi-\delta \eta(V) f U\} \tag{3}\\
\bar{\nabla}_{U} \xi=-\varepsilon \alpha f U-\beta \delta f^{2} U \tag{4}
\end{gather*}
$$

holds for some smooth functions α and β on \bar{M} and $\varepsilon= \pm 1, \delta= \pm 1$. Further, an (ε)-almost contact metric manifold is called a nearly (ε, δ)-trans-Sasakian manifold if

$$
\left(\bar{\nabla}_{U} f\right) V+\left(\bar{\nabla}_{V} f\right) U=\alpha\{2 g(U, V) \xi-\varepsilon \eta(V) U-\varepsilon \eta(U) V\}
$$

$$
\begin{equation*}
-\beta \delta\{\eta(V) f U+\eta(U) f V\} \tag{5}
\end{equation*}
$$

The covariant derivative of the tensor filed f is defined as

$$
\begin{equation*}
\left(\bar{\nabla}_{U} \phi\right) V=\bar{\nabla}_{U} f V-f \bar{\nabla}_{U} V \tag{6}
\end{equation*}
$$

for all $U, V \epsilon P \bar{M}$.
If M is a submanifold immersed in \bar{M} and deliberate the induced metric on M also denoted by g, then the Gauss and Weingarten formulas for a warped product semi-invariant submanifolds of a nearly (ε, δ)-trans-Sasakian manifold are given by

$$
\begin{align*}
& \bar{\nabla}_{U} V=\nabla_{U} V+h(U, V) \tag{7}\\
& \bar{\nabla}_{U} N=-A_{N} U+\nabla_{U}^{\perp} N \tag{8}
\end{align*}
$$

for any U, V in $P M$ and N in $P^{\perp} M$, where $P M$ is the Lie algebras of vector fields in M and $P^{\perp} M$ is the set of all vector fields normal to $M . \nabla^{\perp}$ is the connection on the normal bundle, h is the second fundamental form and A_{N} is the Weingarten map associated with N as,

$$
\begin{equation*}
g\left(A_{N} U, V\right)=g(h(U, V), N) \tag{9}
\end{equation*}
$$

For any $U \epsilon P M$, we write

$$
\begin{equation*}
f U=P U+S U \tag{10}
\end{equation*}
$$

where $P U$ is the tangential component and $S U$ is the normal component of $f U$. Similarly for any $N \epsilon P^{\perp} M$, we write

$$
\begin{equation*}
f N=B N+K N \tag{11}
\end{equation*}
$$

where $B N$ is the tangential component and $K N$ is the normal component of $f N$. The covariant derivatives of the tensor fields P and S are defined as

$$
\begin{align*}
& \left(\nabla_{U} P\right) V=\nabla_{U} P V-P \nabla_{U} V \tag{12}\\
& \left(\nabla_{U} S\right) V=\nabla_{U}^{\perp} S V-S \nabla_{U} V \tag{13}
\end{align*}
$$

for all $U, V \epsilon P M$. If M is a Riemannian manifold isometrically immersed in an almost contact metric manifold M, then for every $u \epsilon M$ there exist a maximal invariant subspace denoted by D_{u} of the tangent space $T_{u} M$ of M. If the dimension of D_{u} is the same for all values of $u \epsilon M$, then D_{u} gives an invariant distribution D on M.
A submanifold M of an almost contact metric manifold \bar{M} with $\xi \in P M$ is called a semi-invariant submanifold of \bar{M} if there exists two differentiable distributions D and D^{\perp} on M such that
(i) $P M=D \oplus D^{\perp} \oplus\langle\xi\rangle$,
(ii) $f\left(D_{u}\right) \subseteq D_{u}$
(iii) $f\left(D_{u}^{\perp}\right) \subset T_{u}^{\perp} M$.
for any $u \epsilon M$, where $P_{u}^{\perp} M$ denotes the orthogonal space of $P_{u} M$ in $P_{u} \bar{M}$. A
semi-invariant submanifold is called anti-invariant if $D_{u}=\{0\}$ and invariant if $D_{u}^{\perp}=\{0\}$, respectively, for any $u \epsilon M$. It is called the proper semi-invariant submanifold if neither $D_{u}=\{0\}$ nor $D_{u}^{\perp}=\{0\}$, for every $u \epsilon M$.
If M is a semi-invariant submanifold of an almost contact metric manifold \bar{M}, then, $S\left(P_{u} M\right)$ is a subspace of $P_{u}^{\perp} M$. Then for every $u \epsilon M$, there exists an invariant subspace x_{u} of $P_{u} \bar{M}$ such that

$$
\begin{equation*}
P_{u}^{\perp} M=S\left(P_{u} M\right) \oplus x_{u} \tag{14}
\end{equation*}
$$

A semi-invariant submanifold M of an almost contact metric manifold \bar{M} is called Riemannian product if the invariant distribution D and anti-invariant distribution D^{\perp} are totally geodesic distributions in M.
If $\left(E, g_{E}\right)$ and $\left(F, g_{F}\right)$ are two Riemannian manifolds and y is a positive differentiable function on E, then the warped product of E and F is the Riemannian manifold $E \times{ }_{y} F=(E \times F, g)$, where

$$
\begin{equation*}
g=g_{E}+y^{2} g_{F} \tag{15}
\end{equation*}
$$

A warped product manifold $E \times{ }_{y} F$ is called trivial if the warping function y is constant. We recall.

Lemma 1. If $M=E \times{ }_{y} F$ is a warped product manifold with the warping function y, then
(i) $\nabla_{U} V \epsilon \Gamma(P E)$, for each $U, V \epsilon P E$,
(ii) $\nabla_{U} W=\nabla_{W} U=(U \ln y) W$, for each $U \epsilon P E$ and $W \epsilon P F$,
(iii) $\left.\nabla_{W} X=\nabla_{W}^{F} X-g(W, X) / y\right)$ grady,
where ∇ and ∇^{F} denote the Levi-Civita connections on M and F respectively.
In the above lemma grady is the gradient of function y defined by $g(\operatorname{grad} y, X)=$ $X y$, for each $X \epsilon P M$. From Lemma 1, the warped product manifold $M=E \times{ }_{y} F$ are in the form
(i) E is totally geodesic in M;
(ii) F is totally geodesic in M;

Now, we denote by $\rho_{U} V$ and $Q_{U} V$ the tangential and normal parts of $\left(\bar{\nabla}_{U} f\right) V$, that is,

$$
\begin{equation*}
\left(\bar{\nabla}_{U} f\right) V=\rho_{U} V+Q_{U} V \tag{16}
\end{equation*}
$$

for all $U, V \epsilon P M$. Making use of (7), (8), and (10) (2.13), the above equation yields,

$$
\begin{gather*}
\rho_{U} V=\left(\nabla_{U} P\right) V-A_{S V} U-B h(U, V) \tag{17}\\
Q_{U} V=\left(\bar{\nabla}_{U} S\right) V+h(U, P V)-K h(U, V) \tag{18}
\end{gather*}
$$

It is quite simple to check the following properties of ρ and Q, which we write here for later use:

$$
p_{1}(i) \quad \rho_{U+V} X=\rho_{U} X+\rho_{V} X \quad \text { (ii) } \quad Q_{U+V} X=Q_{U} X+Q_{V} X
$$

On warped product semi invariant submanifolds \qquad

$$
\begin{gathered}
p_{2}(i) \quad \rho_{U}(V+X)=\rho_{U} V+\rho_{U} X \quad \text { (ii) } \quad Q_{U}(V+X)=Q_{U} V+Q_{U} X \\
p_{3}(i) \quad g\left(\rho_{U} V, X\right)=-g\left(V, \rho_{U} X\right)
\end{gathered}
$$

for all $U, V, X \epsilon P M$. On a submanifold M of a nearly (ε, δ)-trans-Sasakian manifold \bar{M}, we deduce from (6) and (16) that

$$
\begin{gather*}
\text { (i) } \rho_{U} V+\rho_{V} U=\alpha\{2 g(U, V) \xi-\varepsilon \eta(V) U-\varepsilon \eta(U) V\} \tag{19}\\
-\beta \delta\{\eta(V) P U+\eta(U) P V\} \\
\text { (ii) } \quad Q_{U} V+Q_{V} U=-\beta \delta\{\eta(V) S U+\eta(V) S U\}
\end{gather*}
$$

for any $U, V \epsilon P M$.

3 Warped product semi-invariant submanifolds of nearly (ε, δ)-trans-Sasakian manifold

In this section we establish the warped product $M=E \times{ }_{y} F$ is trivial when ξ is tangent to F, where E and F are the Riemannian submanifolds of a nearly (ε, δ)-trans-Sasakian manifold \bar{M}. Thus, we deliberate the warped product $M=E \times{ }_{y} F$, when ξ is tangent to the submanifold E. We have the following non-existence theorem.

Theorem 1. If $M=E \times{ }_{y} F$ is a warped product semi invariant submanifold of a nearly (ε, δ)-trans-Sasakian manifold M such that E and F are the Riemannian submanifolds of \bar{M} then M is a usual Riemannian product if the structure vector field ξ is tangent to F.

Proof. Consider any $U \epsilon P E$ and ξ tangent to F, then we have

$$
\begin{equation*}
\bar{\nabla}_{U} \xi=\nabla_{U} \xi+h(U, \xi) \tag{20}
\end{equation*}
$$

From (4) and Lemma 1 (ii), we have

$$
\begin{equation*}
-\varepsilon \alpha f U+\beta \delta U-\beta \delta \eta(U) \xi=(U \ln y) \xi+h(U, \xi) \tag{21}
\end{equation*}
$$

The tangential component of (21), we conclude that

$$
(U \ln y) \xi=-\varepsilon \alpha P U+\beta \delta U-\beta \delta \eta(U) \xi,
$$

for all $U \epsilon P E$, that is, y is constant function on E. Thus, M is the Riemannian product.

Now, we will explore the other case of warped product $M=E \times{ }_{y} F$ when $\xi \epsilon P E$, where E and F are the Riemannian submanifolds of \bar{M}. For any $U \epsilon P F$, we have

$$
\begin{equation*}
\bar{\nabla}_{U} \xi=\nabla_{U} \xi+h(U, \xi) \tag{22}
\end{equation*}
$$

From (4) and Lemma 1 (ii), we get

$$
\begin{equation*}
\text { (i) } \quad \xi \ln y=-\varepsilon \alpha P-\beta \delta P^{2}, \quad \text { (ii) } \quad h(U, \xi)=\varepsilon \alpha S U-\beta \delta S^{2} U \tag{23}
\end{equation*}
$$

Here there are two subcases such as :

$$
\begin{aligned}
& \text { (i) } \quad M=E_{\perp} \times{ }_{y} E_{P} \\
& \text { (ii) } \\
& M=E_{P} \times{ }_{y} E_{\perp}
\end{aligned}
$$

where E_{P} and E_{\perp} are invariant and anti-invariant submanifolds of M, respectively. In the following theorem we prove that the warped product semi-invariant submanifold of the type (i) is CR-product.

Theorem 2. If $M=E_{\perp} \times{ }_{y} E_{P}$ is a warped product semi invariant submanifold of a nearly (ε, δ)-trans-Sasakian manifold M such that E_{\perp} is a anti-invariant and E_{P} is a invariant submanifolds of \bar{M}, then M is a usual Riemannian product.

Proof. When $\xi \in P E_{P}$, then by Theorem 1, M is a Riemannian product. Thus, we consider $\xi \epsilon P E_{\perp}$. Consider $U \epsilon P E_{P}$ and $W \epsilon P E_{\perp}$, then we have

$$
\begin{gather*}
g(h(U, f U), S W)=g(h(U, f U), f W)=g\left(\bar{\nabla}_{U} f U, f W\right) \\
g(h(U, f U), S W)=g\left(f \bar{\nabla}_{U} U, f W\right)+g\left(\left(\bar{\nabla}_{U} f\right) U, f W\right) \tag{24}
\end{gather*}
$$

From the structure equation of nearly (ε, δ)-trans-Sasakian manifold, the second term of right hand side vanishes identically. Thus from (2), we derive

$$
\begin{gather*}
g(h(U, f U), S W)=-g\left(U, \bar{\nabla}_{U} W\right)+\varepsilon \eta(W) g\left(U, \bar{\nabla}_{U} \xi\right) \\
-\alpha \varepsilon \eta(U) g(U, f W)-\beta \delta \eta(U) g(f U, f W) \tag{25}
\end{gather*}
$$

Using then from (7), Lemma 1 (ii), and (4), we obtain

$$
\begin{equation*}
g(h(U, \phi U), S W)=(\beta \delta \varepsilon \eta(W)-W \ln y)\|U\|^{2}-\beta \delta \varepsilon \eta(U) g(U, W) \tag{26}
\end{equation*}
$$

Replacing U by $f U$ in (26) and by use of the fact that $\xi \in P E_{\perp}$, we obtain

$$
\begin{equation*}
g(h(U, f U), S W)=(\beta \delta \varepsilon \eta(W)-W \ln y)\|U\|^{2} \tag{27}
\end{equation*}
$$

It follows from (26) and (27) that $W \ln y=0$, for all $W \epsilon P E_{\perp}$. Also, from (23) we have $\xi \ln y=-\varepsilon \alpha P-\beta \delta P^{2}$.
From the above theorem we have seen that the warped product of the type $M=$ $E_{\perp} \times{ }_{y} E_{P}$ is a usual Riemannian product of an anti-invariant submanifold E_{\perp} and an invariant submanifold E_{P} of a nearly (ε, δ)-trans-Sasakian manifold \bar{M}. Since both E_{\perp} and E_{P} are totally geodesic in M, then M is CR-product. Now, we study the warped product semi-invariant submanifold $M=E_{\perp} \times_{y} E_{P}$ of a nearly (ε, δ)-trans-Sasakian manifold \bar{M}.

Theorem 3. If $M=E_{P} \times_{y} E_{\perp}$ is a warped product semi-invariant submanifold of a nearly (ε, δ)-trans-Sasakian manifold \bar{M}, then the invariant distribution D and the anti-invariant distribution D^{\perp} are always integrable.

Proof. Consider $U, V \epsilon D$, then we have

$$
\begin{equation*}
S[U, V]=S \nabla_{U} V-S \nabla_{V} U \tag{28}
\end{equation*}
$$

From (13), we have

$$
\begin{equation*}
S[U, V]=\left(\bar{\nabla}_{U} S\right) V-\left(\bar{\nabla}_{V} S\right) U \tag{29}
\end{equation*}
$$

Using (18), we get

$$
\begin{equation*}
S[U, V]=Q_{U} V-h(U, P V)+K h(U, V)-Q_{V} U+h(V, P U)-K h(U, V) \tag{30}
\end{equation*}
$$

Then from (19) (ii), we derive

$$
\begin{equation*}
S[U, V]=2 Q_{U} V+h(V, P U)-h(U, P V)+\beta \delta\{\eta(V) S U+\eta(U) S V\} \tag{31}
\end{equation*}
$$

Now, analyse $U, V \epsilon D$, then we have

$$
\begin{equation*}
h(U, P V)+\nabla_{U} P V=\bar{\nabla}_{U} P V=\bar{\nabla}_{U} f V \tag{32}
\end{equation*}
$$

By means of the covariant derivative property of $\bar{\nabla} f$, we acquire

$$
\begin{equation*}
h(U, P V)+\nabla_{U} P V=\left(\bar{\nabla}_{U} f\right) V+f \bar{\nabla}_{U} V \tag{33}
\end{equation*}
$$

From (7) and (16), we have

$$
\begin{equation*}
h(U, P V)+\nabla_{U} P V=\rho_{U} V+Q_{U} V+f\left(\nabla_{U} V+h(U, V)\right) \tag{34}
\end{equation*}
$$

Since E_{P} is totally geodesic in M see Lemma 1 (i), then from (10) and (11), we get

$$
\begin{equation*}
h(U, P V)+\nabla_{U} P V=\rho_{U} V+Q_{U} V+P \nabla_{U} V+B h(U, V)+K h(U, V) \tag{35}
\end{equation*}
$$

Equating normal parts, we get

$$
\begin{equation*}
h(U, P V)=Q_{U} V+K h(U, V) \tag{36}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
h(V, P U)=Q_{V} U+K h(U, V) \tag{37}
\end{equation*}
$$

Using (36) and (38), we get

$$
\begin{equation*}
h(V, P U)-h(U, P V)=Q_{U} V-Q_{V} U \tag{38}
\end{equation*}
$$

In view of (19) (ii), we have

$$
\begin{equation*}
h(V, P U)-h(U, P V)=-2 Q_{U} V-\beta \delta\{\eta(V) S U+\eta(U) S V\} \tag{39}
\end{equation*}
$$

254 Shamsur Rahman, Amit Kumar Rai, Aboo Ho Raira and Khan Mohd Sadiq

Then, it shows from (31) and (39) that $S[U, V]=0$, for all $U, V \epsilon D$. This establishes the integrability of D. Now, for the integrability of D^{\perp}, we deliberate any $U \epsilon D$ and $W, X \epsilon D^{\perp}$, and we have

$$
\begin{align*}
& g([W, X], U)=g\left(\bar{\nabla}_{W} X-\bar{\nabla}_{X} W, U\right) \\
& \quad=-g\left(\nabla_{W} U, X\right)+g\left(\nabla_{X} U, W\right) \tag{40}
\end{align*}
$$

From Lemma 1 (ii), we acquire

$$
\begin{equation*}
g([W, X], U)=-(U \ln y) g(W, X)+(U \ln y) g(W, X)=0 \tag{41}
\end{equation*}
$$

Then from (41), we conclude that $[W, X] \epsilon D^{\perp}$, for each $W, X \in D^{\perp}$.
Lemma 2. If a nearly (ε, δ)-trans-Sasakian manifold \bar{M} admits a warped product semi invariant submanifold $M=E_{P} \times_{y} E_{\perp}$, then

$$
\begin{gathered}
(i) g\left(\rho_{U} V, W\right)=g(h(U, V), S W)=0 \\
(i i) g\left(\rho_{U} W, X\right)=g(h(U, W), S X)-g\left(A_{S W} U, X\right) \\
=-(f U \ln y) g(W, X)-g(h(U, W), S X)+2 \alpha g(U, W) \eta(X)-\alpha \varepsilon g(U, X) \eta(W) \\
-\alpha \varepsilon g(W, X) \eta(U)-\beta \delta g(f U, X) \eta(W)-\beta \delta g(f W, X) \eta(U) \\
(i i i) g(h(f U, W), S Z)=(U l n y)\|W\|^{2}+2 \alpha g(f U, W) \eta(W)+\alpha \varepsilon \eta(W) g(f U, W) \\
-\beta \delta \eta(W) g(U, W)+\beta \delta \eta(U) \eta(W) \eta(W)
\end{gathered}
$$

for all $U, V \epsilon P E_{P}$ and $W, X \epsilon P E_{\perp}$.

Proof. Assume that $M=E_{P} \times{ }_{y} E_{\perp}$, is warped product submanifold of a nearly (ε, δ)-trans-Sasakian manifold \bar{M} such that E_{P} is totally geodesic in M. Then using (12) and (17) we get

$$
\begin{equation*}
g\left(\rho_{U} V, W\right)=g(B h(U, V), W)=g(h(U, V), S W) \tag{42}
\end{equation*}
$$

for any $U, V \epsilon P E_{P}$. The left-hand side of (42) is skew symmetric in U and V whereas the right hand side is and symmetric in U and V, which gives (i). Next by using (12) and (17), we have

$$
\begin{equation*}
\rho_{U} W=-P \nabla_{U} W-A_{S W} U-B h(U, W) \tag{43}
\end{equation*}
$$

for any $U \epsilon P E_{P}$ and $W \epsilon P E_{\perp}$. In view of Lemma 1 (ii), the first term of right-hand side is zero. Thus, taking the product with $X \in P E_{\perp}$, we obtain

$$
\begin{equation*}
g\left(\rho_{U} W, X\right)=-g\left(A_{S W} U, X\right)-g(B h(U, W), X) \tag{44}
\end{equation*}
$$

Using (2) and (9), we get

$$
\begin{equation*}
g\left(\rho_{U} W, X\right)=-g(h(U, X), S W)+g(h(U, W), S X) \tag{45}
\end{equation*}
$$

which gives the first equality of (ii). Again, from (12) and (17), we have

$$
\begin{equation*}
\rho_{W} U=\nabla_{W} P U-T \nabla_{W} U-B h(U, W) \tag{46}
\end{equation*}
$$

Then from Lemma 1(ii), we deduce

$$
\begin{equation*}
\rho_{W} U=(P U \ln y) W-B h(U, W) \tag{47}
\end{equation*}
$$

Taking inner product with $X \epsilon P E_{\perp}$ and using (2), we acquire

$$
\begin{equation*}
g\left(\rho_{W} U, X\right)=(f U \ln y) g(W, X)+g(h(U, W), S X) \tag{48}
\end{equation*}
$$

Using (19) (i), we get

$$
\begin{array}{r}
g\left(\rho_{W} U, X\right)=-(\phi U \ln y) g(W, X)-g(h(U, W), S X)+2 \alpha g(U, W) \eta(X) \\
-\alpha \varepsilon g(U, X) \eta(W)-\alpha \varepsilon g(W, X) \eta(U)-\beta \delta g(f U, X) \eta(W)-\beta \delta g(f W, X) \eta(U) \tag{49}
\end{array}
$$

which gives the second equality of (ii). Now, from (43) and (47), we have

$$
\begin{equation*}
\rho_{U} W+\rho_{W} U=-P \nabla_{U} W-A_{S W} U+(P U \ln y) W-2 B h(U, W) \tag{50}
\end{equation*}
$$

Using (19) and Lemma 1 (i), we get left-hand side and the first term of right-hand side are zero. Thus the above equation takes the form

$$
\begin{align*}
& (P U \ln y) W=\alpha\{2 g(U, W) \xi-\varepsilon \eta(W) U-\varepsilon \eta(U) W\} \\
& -\beta \delta\{\eta(W) P U+\eta(U) P W\}+A_{S W} U+2 B h(U, W) \tag{51}
\end{align*}
$$

Taking the product with W and using (2) and (9), we get

$$
\begin{align*}
(\phi U \ln y)\|W\|^{2}= & -g(h(U, W), S W)+(2-\varepsilon) \alpha g(U, W) \eta(W)-\alpha \varepsilon \eta(U)\|W\|^{2} \\
& -\beta \delta \eta(W) g(f U, W)-\beta \delta \eta(U) g(f W, W) \tag{52}
\end{align*}
$$

Replacing U by $f U$ and using (1), we acqire

$$
\begin{gather*}
\{-U+\eta(U) \xi\} l n y\|W\|^{2}=-g(h(f U, W), S W)+2 \alpha g(f U, W) \eta(W) \tag{53}\\
-\alpha \varepsilon \eta(W) g(f U, W)+\beta \delta \eta(W) g(U, W)-\beta \delta \eta(U) \eta(W) \eta(W)
\end{gather*}
$$

Then from (23) (i), the above equation reduces to

$$
\begin{aligned}
g(h(f U, W), S W) & =(U \ln y)\|W\|^{2}+2 \alpha g(f U, W) \eta(W)+\alpha \varepsilon \eta(W) g(f U, W) \\
& -\beta \delta \eta(W) g(U, W)+\beta \delta \eta(U) \eta(W) \eta(W)
\end{aligned}
$$

Theorem 4. If M is a proper semi-invariant submanifold M of a nearly (ε, δ) -trans-Sasakian manifold \bar{M}, then M is locally a semi-invariant warped product if and only if some function μ on M satisfying $Y(\mu)=0$ for each $Y \varepsilon D^{\perp}$, then

$$
\begin{gather*}
A_{f W} U=-(f U \ln y) W+2 \alpha g(U, W) \xi-\alpha(2+\varepsilon) \eta(U) \eta(W) \xi \\
+\alpha \varepsilon \eta(W) U+\beta \delta \eta(W) f U \tag{54}
\end{gather*}
$$

256 Shamsur Rahman, Amit Kumar Rai, Aboo Ho Raira and Khan Mohd Sadiq

Proof. Direct part shows from Lemma 2 (iii). For the converse, assume that M is a semi-invariant submanifold of a nearly (ε, δ)-trans-Sasakian manifold \bar{M} satisfying (54) then we have

$$
\begin{gather*}
h(U, V), f W)=g\left(A_{f W} U, V\right)=-(f U \mu) g(V, W)+2 \alpha \eta(V) g(U, W) \\
-\alpha(2+\varepsilon) \eta(U) \eta(V) \eta(W)+\alpha \varepsilon \eta(W) g(U, V)+\beta \delta \eta(W) g(f U, V) \tag{55}
\end{gather*}
$$

Now, from (7) and the property of covariant derivative of $\bar{\nabla}$, we have

$$
\begin{gather*}
h(U, V), f W)=g\left(\bar{\nabla}_{U} V, f W\right)=-g\left(f \bar{\nabla}_{U} V, W\right) \\
\quad=-g\left(\bar{\nabla}_{U} f V, W\right)+g\left(\left(\bar{\nabla}_{U} f\right) V, W\right) \tag{56}
\end{gather*}
$$

Using (7), (16), and (55), we get

$$
\begin{align*}
g\left(\nabla_{U} P V, W\right)= & g\left(\rho_{U} V, W\right)-2 \alpha \eta(V) g(U, W)+\alpha(2+\varepsilon) \eta(U) \eta(V) \eta(W) \\
& -\alpha \varepsilon \eta(W) g(U, V)-\beta \delta \eta(W) g(f U, V) \tag{57}
\end{align*}
$$

Using (12) and (17), we acquire

$$
\begin{align*}
& g\left(\nabla_{U} P V, W\right)=g\left(\nabla_{U} P V, W\right)-g\left(P \nabla_{U} V, W\right)-g(B h(U, V), W)-2 \alpha \eta(V) g(U, W) \\
& +\alpha(2+\varepsilon) \eta(U) \eta(V) \eta(W)-\alpha \varepsilon \eta(W) g(U, V)-\beta \delta \eta(W) g(f U, V) \tag{58}
\end{align*}
$$

Then from (2), the above equation reduces to

$$
\begin{gather*}
g\left(T \nabla_{U} V, W\right)=g(h(U, V), f W)-2 \alpha \eta(V) g(U, W) \\
+\alpha(2+\varepsilon) \eta(U) \eta(V) \eta(W)-\alpha \varepsilon \eta(W) g(U, V)-\beta \delta \eta(W) g(f U, V) \tag{59}
\end{gather*}
$$

Hence using (9) and (54), we get

$$
\begin{equation*}
g\left(P \nabla_{U} V, W\right)=g\left(A_{f W} U, V\right) \tag{60}
\end{equation*}
$$

which indicates $\nabla_{U} V \epsilon D \oplus\{\xi\}$, that is, $D \oplus\{\xi\}$ is integrable and its leaves are totally geodesic in M. Now, for any $W, X \epsilon D^{\perp}$ and $U \epsilon D \oplus\{\xi\}$, we have

$$
\begin{gather*}
g\left(\nabla_{W} X, f U\right)=g\left(\bar{\nabla}_{W} X, f U\right)=-g\left(f \bar{\nabla}_{W} X, U\right) \\
=g\left(\left(\bar{\nabla}_{W} f\right) X, U\right)-g\left(\bar{\nabla}_{W} f X, U\right) \tag{61}
\end{gather*}
$$

Using (8) and (16), we acquire

$$
\begin{equation*}
g\left(\nabla_{W} X, f U\right)=g\left(\rho_{W} X, U\right)+g\left(A_{f X} W, U\right) \tag{62}
\end{equation*}
$$

Then from (9) and the property p_{3}, we arrive at

$$
\begin{equation*}
g\left(\nabla_{W} X, f U\right)=-g\left(X, \rho_{W} U\right)+g(h(W, U), f X) \tag{63}
\end{equation*}
$$

Again from (9) and (19) (i), we get

$$
g\left(\nabla_{W} X, f U\right)=g\left(\rho_{U} W, X\right)-2 \alpha g(U, W) \eta(X)+\alpha \varepsilon \eta(W) g(U, X)
$$

On warped product semi invariant submanifolds ..

$$
\begin{equation*}
+\alpha \varepsilon \eta(U) g(W, X)+\beta \delta \eta(W) g(P U, X)+\beta \delta \eta(U) g(P W, X)+g\left(A_{f X} U, W\right) \tag{64}
\end{equation*}
$$

On the other hand, from (12) and (17), we get

$$
\begin{equation*}
\rho_{U} W=-P \nabla_{U} W-A_{S W} U-B h(U, W) \tag{65}
\end{equation*}
$$

Taking the product with $X \epsilon D^{\perp}$ and using (54), we acquire

$$
\begin{align*}
& g\left(\rho_{U} W, X\right)=-g\left(P \nabla_{U} W, X\right)+(f U \mu) g(W, X)+\alpha(2+\varepsilon) \eta(U) \eta(W) \eta(X) \\
& -\beta \delta \eta(W) g(f U, X)-2 \alpha g(U, W) \eta(X)-\alpha \varepsilon \eta(W) g(U, X)+g\left(A_{f X} U, W\right) \tag{66}
\end{align*}
$$

The first term of right-hand side of the above equation is zero using the fact that $P X=0$, for any $X \epsilon D^{\perp}$. Again using (9), we get

$$
\begin{gather*}
g\left(\rho_{U} W, X\right)=(f U \mu) g(W, X)+\alpha(2+\varepsilon) \eta(U) \eta(W) \eta(X) \\
-2 \alpha g(U, W) \eta(X)-\alpha \varepsilon \eta(W) g(U, X)+g\left(A_{f X} U, W\right) \tag{67}
\end{gather*}
$$

Then from (54), we deduce

$$
\begin{equation*}
g\left(\rho_{U} W, X\right)=0 \tag{68}
\end{equation*}
$$

Using (54), (64), and (68), we get

$$
\begin{gather*}
g\left(\nabla_{W} X, f U\right)=3 \alpha \varepsilon \eta(U) g(W, X)+3 \beta \delta \eta(W) g(P U, X) \\
-\alpha(2+\varepsilon) \eta(U) \eta(X) \eta(W)-(f U \mu) g(X, W) \tag{69}
\end{gather*}
$$

If M^{\perp} is a leaf of D^{\perp}, and let h^{\perp} be the second fundamental form of the immersion of M^{\perp} into M, then for any $W, X \epsilon D^{\perp}$, we have

$$
\begin{equation*}
g\left(h^{\perp}(W, X), f U\right)=g\left(\nabla_{W} X, f U\right) \tag{70}
\end{equation*}
$$

Thus, from (69) and (70), we conclude that

$$
\begin{gather*}
g\left(h^{\perp}(W, X), f U\right)=3 \alpha \varepsilon \eta(U) g(W, X)+3 \beta \delta \eta(W) g(P U, X) \\
-\alpha(2+\varepsilon) \eta(U) \eta(X) \eta(W)-(f U \mu) g(X, W) \tag{71}
\end{gather*}
$$

The above relation shows that integral manifold M_{\perp} of D^{\perp} is totally umbilical in M. Since the anti-invariant distribution D^{\perp} of a semi-invariant submanifold M is always integrable Theorem 3 and $Y \mu=0$ for each $Y \epsilon D^{\perp}$, which indicates that the integral manifold of D^{\perp} is an extrinsic sphere in M; that is, it is totally umbilical and its mean curvature vector field is nonzero and parallel along M_{\perp}. Hence by virtue of results acquired in [9], M is locally a warped product $E_{P} \times_{y} E_{\perp}$, where E_{P} and E_{\perp} denote the integral manifolds of the distributions $D \oplus\langle\xi\rangle$ and D^{\perp}, respectively and y is the warping function.

258 Shamsur Rahman, Amit Kumar Rai, Aboo Ho Raira and Khan Mohd Sadiq

References

[1] Atçeken, M., Warped product semi-invariant submanifolds in almost paracontact Riemannian manifolds, Mathematical Problems in Engineering, 2009 (2009) Article ID 621625, 16 pages.
[2] Ahmad, M., Rahman, S. and Siddiqui, M. D., Semi-invariant submanifolds of a nearly Sasakian manifold endowed with a semi symmetric metric connection, Bulletin of the Allahabad Mathematical Society, 25 (2010), no. 1, 23-33.
[3] Bejancu, A. and Duggal, K. L., Real hypersurfaces of indefnite Kahler manifolds, Inter. Jor. Mathematics and Mathematical Science 16 (1993), no. 3, 545-556.
[4] Bishop R. L. and ONeill, B. Manifolds of negative curvature, Transactions of the American Mathematical Society, 145 (1969), 149.
[5] Blair, D. E. Almost contact manifolds with Killing structure tensors, Pacific Journal of Mathematics, 39 (1971), 285-292.
[6] Bonanzinga V. and Matsumoto, K., Warped product CR-submanifolds in locally conformal Kaehler manifolds, Periodica Mathematica Hungarica, 48 (2004), no. 1-2, 207-221.
[7] Chen, B.Y., Geometry of warped product CR-submanifolds in Kaehler manifolds, Monatshefte für Mathematik, 133 (2001), no. 3, 177-195.
[8] Chen, B.Y. Geometry of warped product CR-submanifolds in Kaehler manifolds. II , Monatshefte für Mathematik, 134 (2001), no. 2, 103-119.
[9] De, U. C. and Sarkar, A., On (ε) -Kenmotsu manifolds, Hadronic Journal, 32 (2009), 231-242.
[10] Hiepko, S., Eine innere Kennzeichnung der verzerrten produkte, Mathematische Annalen, 241 (1979), no. 3, 209-215.
[11] Khan, K.A., Khan, V.A. and Uddin, S., Warped product submanifolds of cosymplectic manifolds, Balkan Journal of Geometry and its Applications, 13 (2008), no. 1, 55-65.
[12] Kumar, R., Rani R. and Nagaich, R.K., On sectional curvature of e-Sasakian manifolds, Int. J. Math. Math. Sci. (2007) ID. 93562.
[13] Rahman, S., Contact CR-warped product submanifolds of nearly Lorentzian para-Sasakian manifold, Turkish Journal of Mathematics and Computer Science, 7 (2017), 40-47.

On warped product semi invariant submanifolds
[14] Rahman, S. and Ahmad, A., On semi-invariant submanifolds of a nearly trans-hyperbolic Sasakan manifold, Malaya Journal of Matematik 3 (2015), no. 3, 303-311.
[15] Rahman, S. and Jun, B.J., CR submanifolds of a nearly (ε, δ) trans-Sasakian Manifold, Proceedings of the Jangjeon Mathematical Society, 19 (2016), no. 4, 717-727.
[16] Rahman, S., Jun, B.J. and Ahmad A., On semi-invariant submanifolds of a nearly Lorentzian para-Sasakian manifold, Far East Journal of Mathematical Sciences, 96 (2015), no. 6, 709-724.
[17] Tripathi, M.M., Kılıç, E., Perktas, S.Y. and Keleş, S., Indefinite almost paracontact metric manifolds, Int. J. Math. Math. Sci., (2010), Article ID846195, DOI:10.1155/2010/846195.
[18] Xufeng, U. and Xiaoli, C., Two theorems on e-Sasakian manifolds, Int. J. Math. Math. Sci., 21 (1998), no. 2, 249-254.

260 Shamsur Rahman, Amit Kumar Rai, Aboo Ho Raira and Khan Mohd Sadiq

[^0]: 1* Corresponding author,Faculty of Mathematics, University Polytechnic Satellite Campus Darbhanga, University of Maulana Azad National Urdu University, India, e-mail: shamsur@rediffmail.com, shamsur@manuu.ac.in
 ${ }^{2}$ University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Delhi India, e-mail: rai.amit08au@gmail.com
 ${ }^{3}$ Department of Mathematics, Shibli National P.G. College, Azamgarh, India, e-mail: msadiqkhan.snc@gmail.com
 ${ }^{4}$ Department of Mathematics, Shibli National P.G. College, Azamgarh, India, e-mail: msadiqkhan.snc@gmail.com

