A NEW CLASS OF METRICS ON THE COTANGENT BUNDLE

Abderrahim ZAGANE ${ }^{1}$

Abstract

In this paper, we introduce a new class of metrics on the cotangent bundle $T^{*} M$ over an m-dimensional Riemannian manifold (M, g) as a new natural metric with respect to g non-rigid on $T^{*} M$. First, we investigate the LeviCivita connection, curvature and we characterize some geodesic properties for the new class of metrics on the cotangent bundle $T^{*} M$.

2000 Mathematics Subject Classification: 53C20, 53C22, 53A45, 53B20.
Key words: Horizontal lift, vertical lift, cotangent bundles, new class of metrics, geodesic.

1 Introduction

In the field, one of the first works which deal with the cotangent bundles of a manifold as a Riemannian manifold is that of Patterson, E.M. and Walker, A.G. [7], who constructed from an affine symmetric connection on a manifold a Riemannian metric on the cotangent bundle, which they call the Riemann extension of the connection. A generalization of this metric had been given by Sekizawa, M.[12] in his classification of natural transformations of affine connections on manifolds to metrics on their cotangent bundles, obtaining the class of natural Riemann extensions which is a 2-parameter family of metrics, and which had been intensively studied by many authors. On the other hand, inspired by the concept of g-natural metrics on tangent bundles of Riemannian manifolds, F. Ağca considered another class of metrics on cotangent bundles of Riemannian manifolds, that he callad g-natural metrics [1]. Also, there are studies by other authors, Salimov, A.A. and Ağca, F. [9, 10], Yano, K. and Ishihara, S.[13], Ocak, F. and Kazimova, S. [5], Gezer, A. and Altunbas, M.[3] etc...

The main idea in this note consists in the modification of the Sasaki metric. First, we introduce a new class of metrics, noted g^{f} on the cotangent bundle $T^{*} M$

[^0]over an m-dimensional Riemannian manifold (M, g), where f is a strictly positive smooth function on M. Then, we establish the Levi-Civita connection (Theorem 1) and the curvature tensor (Theorem 2) of the metric g^{f}. We also gives some results on the geodesics on the cotangent bundle (Theorem 3 and Theorem 4). After that, we construct some examples of geodesics on the cotangent bundle with the metric g^{f}.

Let $\left(M^{m}, g\right)$ be an m-dimensional Riemannian manifold, $T^{*} M$ be its cotangent bundle and $\pi: T^{*} M \rightarrow M$ the natural projection. A local chart $\left(U, x^{i}\right)_{i=\overline{1, m}}$ on M induces a local chart $\left(\pi^{-1}(U), x^{i}, x^{\bar{i}}=p_{i}\right)_{i=\overline{1, m}, \bar{i}=m+i}$ on $T^{*} M$, where p_{i} is the component of covector p in each cotangent space $T_{x}^{*} M, x \in U$ with respect to the natural coframe $d x^{i}$. Let $C^{\infty}(M)$ (resp. $C^{\infty}\left(T^{*} M\right)$) be the ring of real-valued C^{∞} functions on $M\left(\right.$ resp. $\left.T^{*} M\right)$ and $\Im_{s}^{r}(M)$ (resp. $\Im_{s}^{r}\left(T^{*} M\right)$) be the module over $C^{\infty}(M)\left(\right.$ resp. $\left.C^{\infty}\left(T^{*} M\right)\right)$ of C^{∞} tensor fields of type (r, s).

Denote by $\Gamma_{i j}^{k}$ the Christoffel symbols of g and by ∇ the Levi-Civita connection of g.

Let $X=X^{i} \frac{\partial}{\partial x^{i}}$ and $\omega=\omega_{i} d x^{i}$ be local expressions in $U \subset M$ of a vector and covector (1-form) field $X \in \Im_{0}^{1}(M)$ and $\omega \in \Im_{1}^{0}(M)$, respectively. Then the complete and horizontal lifts $X^{C}, X^{H} \in \Im_{0}^{1}\left(T^{*} M\right)$ of $X \in \Im_{0}^{1}(M)$ and the vertical lift $\omega^{V} \in \Im_{0}^{1}\left(T^{*} M\right)$ of $\omega \in \Im_{1}^{0}(M)$ are defined, respectively by

$$
\begin{gather*}
X^{C}=X^{i} \frac{\partial}{\partial x^{i}}-p_{h} \frac{\partial X^{h}}{\partial x^{i}} \frac{\partial}{\partial x^{\bar{i}}} \tag{1}\\
X^{H}=X^{i} \frac{\partial}{\partial x^{i}}+p_{h} \Gamma_{i j}^{h} X^{j} \frac{\partial}{\partial x^{\bar{i}}}, \tag{2}\\
\omega^{V}=\omega_{i} \frac{\partial}{\partial x^{i}}, \tag{3}
\end{gather*}
$$

with respect to the natural frame $\left\{\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{\bar{i}}}\right\}$, where $\Gamma_{i j}^{h}$ are components of the Levi-Civita connection ∇ on (M, g) (see [13] for more details).

From (2) and (3) we see that $\left(\frac{\partial}{\partial x^{i}}\right)^{H}$ and $\left(d x^{i}\right)^{V}$ have respectively local expressions of the form

$$
\begin{gather*}
\tilde{e}_{(i)}=\left(\frac{\partial}{\partial x^{i}}\right)^{H}=\frac{\partial}{\partial x^{i}}+p_{a} \Gamma_{h i}^{a} \frac{\partial}{\partial x^{\bar{h}}}, \tag{4}\\
\tilde{e}_{(\bar{i})}=\left(d x^{i}\right)^{V}=\frac{\partial}{\partial x^{\bar{i}}} . \tag{5}
\end{gather*}
$$

The set $\left\{\tilde{e}_{(\alpha)}\right\}=\left\{\tilde{e}_{(i)}, \tilde{e}_{(\bar{i})}\right\}$ is called the frame adapted to Levi-Civita connection ∇ on (M, g). The indices $\alpha, \beta, \ldots=\overline{1,2 m}$ indicate the indices with respect to the adapted frame.

Using (2), (3) we have.

$$
\begin{align*}
X^{H} & =X^{i} \tilde{e}_{(i)}, \quad X^{H}=\binom{X^{i}}{0}, \tag{6}\\
\omega^{V} & =\omega_{i} \tilde{e}_{(\bar{i})}, \quad \omega^{V}=\binom{0}{\omega_{i}}, \tag{7}
\end{align*}
$$

with respect to the adapted frame $\left\{\tilde{e}_{(\alpha)}\right\}_{\alpha=\overline{1,2 m}}$, (see [13] for more details).
Lemma 1. [13] Let (M, g) be a Riemannian manifold, ∇ be the Levi-Civita connection and R be the Riemannian curvature tensor. Then the Lie bracket of the cotangent bundle $T^{*} M$ of M satisfies the following
(1) $\left[\omega^{V}, \theta^{V}\right]=0$,
(2) $\left[X^{H}, \theta^{V}\right]=\left(\nabla_{X} \theta\right)^{V}$,
(3) $\left[X^{H}, Y^{H}\right]=[X, Y]^{H}+(p R(X, Y))^{V}$,
for all vector fields $X, Y \in \Im_{0}^{1}(M)$ and $\omega, \theta \in \Im_{1}^{0}(M)$.
Let (M, g) be a Riemannian manifold, we define the map

$$
\begin{aligned}
\sharp: \Im_{1}^{0}(M) & \rightarrow \Im_{0}^{1}(M) \\
\omega & \mapsto \omega
\end{aligned}
$$

for all $X \in \Im_{0}^{1}(M), g(\sharp \omega, X)=\omega(X)$, the map \sharp is $C^{\infty}(M)$-isomorphism.
Locally for all $\omega=\omega_{i} d x^{i} \in \Im_{1}^{0}(M)$, we have $\sharp \omega=g^{i j} \omega_{i} \frac{\partial}{\partial x^{j}}$, where $\left(g^{i j}\right)$ is the inverse matrix of the matrix $\left(g_{i j}\right)$.

For each $x \in M$ the scalar product $g^{-1}=\left(g^{i j}\right)$ is defined on the cotangent space $T_{x}^{*} M$ by $g^{-1}(\omega, \theta)=g(\sharp \omega, \sharp \theta)=g^{i j} \omega_{i} \theta_{j}$.
If ∇ is the Levi-Civita connection of (M, g) we have

$$
\begin{gather*}
\nabla_{X}(\sharp \omega)=\sharp\left(\nabla_{X} \omega\right), \tag{8}\\
X g^{-1}(\omega, \theta)=g^{-1}\left(\nabla_{X} \omega, \theta\right)+g^{-1}\left(\omega, \nabla_{X} \theta\right), \tag{9}
\end{gather*}
$$

for all $X \in \Im_{0}^{1}(M)$ and $\omega, \theta \in \Im_{1}^{0}(M)$.
In the following, we noted $\sharp \omega$ by $\tilde{\omega}$ for all $\omega \in \Im_{1}^{0}(M)$.

2 New class of metrics g^{f}

Definition 1. Let (M, g) be a Riemannian manifold and $f: M \rightarrow] 0,+\infty[$ be a strictly positive smooth function on M. On the cotangent bundle $T^{*} M$, we define a new class of metrics noted g^{f} by

$$
\begin{align*}
g^{f}\left(X^{H}, Y^{H}\right) & =g(X, Y)^{V}=g(X, Y) \circ \pi, \tag{10}\\
g^{f}\left(X^{H}, \theta^{V}\right) & =0, \tag{11}\\
g^{f}\left(\omega^{V}, \theta^{V}\right) & =f g^{-1}(\omega, p) g^{-1}(\theta, p), \tag{12}
\end{align*}
$$

where $X, Y \in \Im_{0}^{1}(M), \omega, \theta \in \Im_{1}^{0}(M)$.
Since any tensor field of type $(0, s)$ on $T^{*} M$ where $s \geq 1$ is completely determined with the vector fields of type X^{H} and ω^{V} where $X \in \Im_{0}^{1}(M)$ and $\omega \in \Im_{1}^{0}(M)$ (see [13]). In the particular case the metric g^{f} is tensor field of type $(0,2)$ on $T^{*} M$. It follows that g^{f} is completely determined by its formulas (10), (11) and (12).

By means of (1) and (2), the complete lift X^{C} of $X \in \Im_{0}^{1}(M)$ is given by

$$
\begin{equation*}
X^{C}=X^{H}-(p(\nabla X))^{V} \tag{13}
\end{equation*}
$$

where $p(\nabla X)=p_{h}\left(\nabla_{i} X^{h}\right) d x^{i}=p_{h}\left(\frac{\partial X^{h}}{\partial x^{i}}+\Gamma_{i j}^{h} X^{j}\right) d x^{i}$.
Taking account of (10), (11), (12) and (13), we obtain

$$
\begin{equation*}
g^{f}\left(X^{C}, Y^{C}\right)=g(X, Y)^{V}+f g^{-1}(p(\nabla X), p) g^{-1}(p(\nabla Y), p) \tag{14}
\end{equation*}
$$

Since the tensor field $g^{f} \in \Im_{2}^{0}\left(T^{*} M\right)$ is completely determined also by its action on vector fields of type X^{C} and Y^{C} (see [13]), we say that formula (14) is an alternative characterization of g^{f}.
Remark 1. From formulas (10), (11), (12) we see that

$$
\begin{aligned}
g_{i j}^{f} & =g^{f}\left(\tilde{e}_{(i)}, \tilde{e}_{(j)}\right)=g\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)^{V}=g_{i j} \\
g_{i \bar{j}}^{f} & =g^{f}\left(\tilde{e}_{(i)}, \tilde{e}_{(\bar{j})}\right)=0 \\
g_{\bar{i} \bar{j}}^{f} & =f g^{i h} g^{j k} p_{h} p_{k}
\end{aligned}
$$

Then the metric g^{f} has components with respect to the adapted frame $\left\{\tilde{e}_{(\alpha)}\right\}_{\alpha=\overline{1,2 m}}$

$$
g^{f}=\left(\begin{array}{cc}
g_{i j} & 0 \tag{15}\\
0 & f g^{i h} g^{j k} p_{h} p_{k}
\end{array}\right)
$$

Lemma 2.

Let (M, g) be a Riemannian manifold and $\rho: \mathbb{R} \rightarrow \mathbb{R}$ a smooth function.
For all $X, Y \in \Im_{0}^{1}(M)$ and $\omega, \theta \in \Im_{1}^{0}(M)$, we have:

1. $X^{H}\left(\rho\left(r^{2}\right)\right)_{(x, p)}=0$,
2. $\omega^{V}\left(\rho\left(r^{2}\right)\right)_{(x, p)}=2 \rho^{\prime}\left(r^{2}\right) g^{-1}(\omega, p)_{x}$,
3. $X^{H}\left(g^{-1}(\theta, p)\right)_{(x, p)}=g^{-1}\left(\nabla_{X} \theta, p\right)_{x}$,
4. $\omega^{V}\left(g^{-1}(\theta, p)\right)_{(x, p)}=g^{-1}(\omega, \theta)_{x}$.
where $r^{2}=g^{-1}(p, p)$ and $(x, p) \in T^{*} M$.
Proof. Let $(x, p) \in T^{*} M$, If \mathcal{P} be a local covector field constant on each fiber $T_{x}^{*} M$, such that $\mathcal{P}_{x}=p \in T_{x}^{*} M$, we have:

$$
\text { 1. } \begin{aligned}
X^{H}\left(\rho\left(r^{2}\right)\right)_{(x, p)} & =\left[X^{i} \frac{\partial}{\partial x^{i}}\left(\rho\left(r^{2}\right)\right)+p_{h} \Gamma_{i j}^{h} X^{j} \frac{\partial}{\partial p_{i}}\left(\rho\left(r^{2}\right)\right)\right]_{(x, p)} \\
& =\left[X^{i} \rho^{\prime}\left(r^{2}\right) \frac{\partial}{\partial x^{i}}\left(r^{2}\right)+\rho^{\prime}\left(r^{2}\right) p_{h} \Gamma_{i j}^{h} X^{j} \frac{\partial}{\partial p_{i}}\left(r^{2}\right)\right]_{(x, p)} \\
& =\rho^{\prime}\left(r^{2}\right)\left[X^{i} \frac{\partial}{\partial x^{i}}\left(g^{s t} p_{s} p_{t}\right)+p_{h} \Gamma_{i j}^{h} X^{j} \frac{\partial}{\partial p_{i}}\left(g^{s t} p_{s} p_{t}\right)\right]_{(x, p)} \\
& =\rho^{\prime}\left(r^{2}\right)\left[X g^{-1}(\mathcal{P}, \mathcal{P})+2 g^{t i} p_{t} p_{h} \Gamma_{i j}^{h} X^{j}\right]_{x} \\
& =\rho^{\prime}\left(r^{2}\right)\left[X g^{-1}(\mathcal{P}, \mathcal{P})-2 g^{-1}\left(\mathcal{P}, \nabla_{X} \mathcal{P}\right)\right]_{x} \\
& =0,
\end{aligned}
$$

where $\nabla_{X} \mathcal{P}=-p_{h} \Gamma_{i j}^{h} X^{j} d x_{i}$

$$
\begin{aligned}
\text { 2. } \omega^{V}\left(\rho\left(r^{2}\right)\right)_{(x, p)} & =\left[\omega_{i} \rho^{\prime}\left(r^{2}\right) \frac{\partial}{\partial p_{i}}\left(g^{s t} p_{s} p_{t}\right)\right]_{(x, p)} \\
& =2 \rho^{\prime}\left(r^{2}\right) \omega_{i} g^{i t} p_{t} \\
& =2 \rho^{\prime}\left(r^{2}\right) g^{-1}(\omega, p)_{x} . \\
3 . X^{H}\left(g^{-1}(\theta, p)\right)_{(x, p)} & =\left[X^{i} \frac{\partial}{\partial x^{i}}\left(g^{s t} \theta_{s} p_{t}\right)+p_{h} \Gamma_{i j}^{h} X^{j} \frac{\partial}{\partial p_{i}}\left(g^{s t} \theta_{s} p_{t}\right)\right]_{p} \\
& =X g^{-1}(\theta, \mathcal{P})_{x}-\left(p_{h} \Gamma_{i j}^{h} X^{j} g^{s i} \theta_{s}\right)_{x} \\
& =X g^{-1}(\theta, \mathcal{P})_{x}-g^{-1}\left(\theta, \nabla_{X} \mathcal{P}\right)_{x} \\
& =g^{-1}\left(\nabla_{X} \theta, \mathcal{P}\right)_{x} . \\
\text { 4. } \omega^{V}\left(g^{-1}(\theta, p)\right)_{(x, p)} & =\left[\omega_{i} \frac{\partial}{\partial p_{i}}\left(g^{s t} \theta_{s} p_{t}\right)\right]_{(x, p)} \\
& =\omega_{i} g^{s i} \theta_{s} \\
& =g^{-1}(\omega, \theta)_{x} .
\end{aligned}
$$

Lemma 3. Let (M, g) be a Riemannian manifold and $\left(T^{*} M, g^{f}\right)$ its cotangent bundle equipped with the metric g^{f}, for all $X \in \Im_{0}^{1}(M)$ and $\omega, \theta \in \Im_{1}^{0}(M)$, we
have

$$
\begin{aligned}
\text { (1) } X^{H} g^{f}\left(\theta^{V}, \eta^{V}\right)= & \frac{1}{f} X(f) g^{f}\left(\theta^{V}, \eta^{V}\right)+g^{f}\left(\left(\nabla_{X} \theta\right)^{V}, \eta^{V}\right) \\
& +g^{f}\left(\theta^{V},\left(\nabla_{X} \eta\right)^{V}\right) \\
\text { (2) } \omega^{V} g^{f}\left(\theta^{V}, \eta^{V}\right)= & f g^{-1}(\omega, \theta) g^{-1}(\eta, p)+f g^{-1}(\omega, \eta) g^{-1}(\theta, p) .
\end{aligned}
$$

Proof. The proof of Lemma 3 follows directly from Lemma 2.

$$
\text { (1) } \begin{aligned}
X^{H} g^{f}\left(\theta^{V}, \eta^{V}\right)= & X^{H}\left[f g^{-1}(\theta, p) g^{-1}(\eta, p)\right] \\
= & X(f) g^{-1}(\theta, p) g^{-1}(\eta, p)+f g^{-1}\left(\nabla_{X} \theta, p\right) g^{-1}(\eta, p) \\
& +f g^{-1}(\theta, p) g^{-1}\left(\nabla_{X} \eta, p\right) \\
= & \frac{1}{f} X(f) g^{f}\left(\theta^{V}, \eta^{V}\right)+g^{f}\left(\left(\nabla_{X} \theta\right)^{V}, \eta^{V}\right) \\
& +g^{f}\left(\theta^{V},\left(\nabla_{X} \eta\right)^{V}\right) . \\
(2) \omega^{V} g^{f}\left(\theta^{V}, \eta^{V}\right)= & \omega^{V}\left[f g^{-1}(\theta, p) g^{-1}(\eta, p)\right] \\
= & \omega(f) g^{-1}(\theta, p) g^{-1}(\eta, p)+f g^{-1}(\omega, \theta) g^{-1}(\eta, p) \\
& +f g^{-1}(\theta, p) g^{-1}(\omega, \eta) \\
= & f g^{-1}(\omega, \theta) g^{-1}(\eta, p)+f g^{-1}(\omega, \eta) g^{-1}(\theta, p) .
\end{aligned}
$$

3 The Levi-Civita connection of g^{f}

We shall calculate the Levi-Civita connection ∇^{f} of the cotangent bundle $T^{*} M$ equipped with the metric g^{f}. This connection is characterized by the Koszul formula:

$$
\begin{align*}
2 g^{f}\left(\nabla_{\widetilde{U}}^{f} \widetilde{V}, \widetilde{W}\right)= & \widetilde{U} g^{f}(\widetilde{V}, \widetilde{W})+\widetilde{V} g^{f}(\widetilde{W}, \widetilde{U})-\widetilde{W} g^{f}(\widetilde{U}, \widetilde{V}) \\
& +g^{f}(\widetilde{W},[\widetilde{U}, \widetilde{V}])+g^{f}(\widetilde{V},[\widetilde{W}, \widetilde{U}])-g^{f}(\widetilde{U},[\widetilde{V}, \widetilde{W}]) \tag{16}
\end{align*}
$$

for all $\widetilde{U}, \widetilde{V}, \widetilde{W} \in \Im_{0}^{1}\left(T^{*} M\right)$.

Lemma 4. Let (M, g) be a Riemannian manifold and $T^{*} M$ its cotangent bundle
equipped with the metric g^{f}, then we have:

1) $g^{f}\left(\nabla_{X^{H}}^{f} Y^{H}, Z^{H}\right)=g^{f}\left(\left(\nabla_{X} Y\right)^{H}, Z^{H}\right)$,
2) $g^{f}\left(\nabla_{X^{H}}^{f} Y^{H}, \eta^{V}\right)=0$,
3) $g^{f}\left(\nabla_{X^{H}}^{f} \theta^{V}, Z^{H}\right)=0$,
4) $g^{f}\left(\nabla_{X^{H}}^{f} \theta^{V}, \eta^{V}\right)=g^{f}\left(\left(\nabla_{X} \theta\right)^{V}, \eta^{V}\right)+\frac{1}{2 f} X(f) g^{f}\left(\theta^{V}, \eta^{V}\right)$,
5) $g^{f}\left(\nabla_{\omega^{V}}^{f} Y^{H}, Z^{H}\right)=0$,
6) $g^{f}\left(\nabla_{\omega^{V}}^{f} Y^{H}, \eta^{V}\right)=\frac{1}{2 f} Y(f) g^{f}\left(\omega^{V}, \eta^{V}\right)$,
7) $g^{f}\left(\nabla_{\omega}^{f}{ }^{f} \theta^{V}, Z^{H}\right)=\frac{-1}{2} g^{-1}(\omega, p) g^{-1}(\theta, p) g^{f}\left((\operatorname{grad} f)^{H}, Z^{H}\right)$,
8) $g^{f}\left(\nabla_{\omega^{V}}^{f} \theta^{V}, \eta^{V}\right)=\frac{1}{r^{2}} g^{-1}(\omega, \theta) g^{f}\left(\mathcal{P}^{V}, \eta^{V}\right)$.
for all $X, Y, Z \in \Im_{0}^{1}(M)$ and $\omega, \theta, \eta \in \Im_{1}^{0}(M)$, where $r^{2}=g^{-1}(p, p), \mathcal{P} \in \Im_{1}^{0}(M)$ such that $\mathcal{P}_{x}=p \in T_{x}^{*} M .\left(\mathcal{P}^{V}\right.$ the canonical vertical or Liouville vector field on $T^{*} M$).

Proof.
The proof of Lemma 4 follows directly from Kozul formula (16), Lemma 1, Definition 1 and Lemma 3.

1) The statement is obtained as follows.

$$
\begin{aligned}
2 g^{f}\left(\nabla_{X^{H}}^{f} Y^{H}, Z^{H}\right)= & X^{H} g^{f}\left(Y^{H}, Z^{H}\right)+Y^{H} g^{f}\left(Z^{H}, X^{H}\right)-Z^{H} g^{f}\left(X^{H}, Y^{H}\right) \\
& +g^{f}\left(Z^{H},\left[X^{H}, Y^{H}\right]\right)+g^{f}\left(Y^{H},\left[Z^{H}, X^{H}\right]\right) \\
& -g^{f}\left(X^{H},\left[Y^{H}, Z^{H}\right]\right) \\
= & X g(Y, Z)+Y g(Z, X)-Z g(X, Y)+g^{f}\left(Z^{H},[X, Y]^{H}\right) \\
& +g^{f}\left(Y^{H},[Z, X]^{H}\right)-g^{f}\left(X^{H},[Y, Z]^{H}\right) \\
= & X g(Y, Z)+Y g(Z, X)-Z g(X, Y)+g(Z,[X, Y]) \\
& +g(Y,[Z, X])-g(X,[Y, Z]) \\
= & 2 g\left(\nabla_{X} Y, Z\right) \\
= & 2 g^{f}\left(\left(\nabla_{X} Y\right)^{H}, Z^{H}\right) .
\end{aligned}
$$

2) Direct calculations give

$$
\begin{aligned}
2 g^{f}\left(\nabla_{X^{H}}^{f} Y^{H}, \eta^{V}\right)= & X^{H} g^{f}\left(Y^{H}, \eta^{V}\right)+Y^{H} g^{f}\left(\eta^{V}, X^{H}\right)-\eta^{V} g^{f}\left(X^{H}, Y^{H}\right) \\
& +g^{f}\left(\eta^{V},\left[X^{H}, Y^{H}\right]\right)+g^{f}\left(Y^{H},\left[\eta^{V}, X^{H}\right]\right) \\
& -g^{f}\left(X^{H},\left[Y^{H}, \eta^{V}\right]\right) \\
= & g^{f}\left(\eta^{V},\left[X^{H}, Y^{H}\right]\right) \\
= & g^{f}\left((p R(X, Y))^{V}, \eta^{V}\right) \\
= & f g^{-1}(p R(X, Y), p) g^{-1}(\eta, p) \\
= & 0 .
\end{aligned}
$$

Where

$$
\begin{aligned}
g^{-1}(p R(X, Y), p) & =g^{k l}(p R(X, Y))_{k} p_{l}=(p R(X, Y))_{k} \tilde{p}^{k}, \\
& =p_{s} R_{i j k}^{s} X^{i} Y^{j} \tilde{p}^{k}=g_{s t} \tilde{p}^{t} R_{i j k}^{s} X^{i} Y^{j} \tilde{p}^{k} \\
& =R_{i j k t} X^{i} Y^{j} \tilde{p}^{t} \tilde{p}^{k}=g(R(X, Y) \tilde{p}, \tilde{p}) \\
& =0 .
\end{aligned}
$$

3) Calculations similar to those in 2) give

$$
\begin{aligned}
2 g^{f}\left(\nabla_{X^{H}}^{f} \theta^{V}, Z^{H}\right)= & X^{H} g^{f}\left(\theta^{V}, Z^{H}\right)+\theta^{V} g^{f}\left(Z^{H}, X^{H}\right)-Z^{H} g^{f}\left(X^{H}, \theta^{V}\right) \\
& +g^{f}\left(Z^{H},\left[X^{H}, \theta^{V}\right]\right)+g^{f}\left(\theta^{V},\left[Z^{H}, X^{H}\right]\right) \\
& -g^{f}\left(X^{H},\left[\theta^{V}, Z^{H}\right]\right) \\
= & g^{f}\left(\theta^{V},\left[Z^{H}, X^{H}\right]\right) \\
= & g^{f}\left((p R(Z, X))^{V}, \theta^{V}\right) \\
= & f g^{-1}(p R(Z, X), p) g^{-1}(\theta, p) \\
= & 0
\end{aligned}
$$

4) The statement is obtained as follows.

$$
\begin{aligned}
2 g^{f}\left(\nabla_{X^{H}}^{f} \theta^{V}, \eta^{V}\right)= & X^{H} g^{f}\left(\theta^{V}, \eta^{V}\right)+\theta^{V} g^{f}\left(\eta^{V}, X^{H}\right)-\eta^{V} g^{f}\left(X^{H}, \theta^{V}\right) \\
& +g^{f}\left(\eta^{V},\left[X^{H}, \theta^{V}\right]\right)+g^{f}\left(\theta^{V},\left[\eta^{V}, X^{H}\right]\right) \\
& -g^{f}\left(X^{H},\left[\theta^{V}, \eta^{V}\right]\right) \\
= & X^{H} g^{f}\left(\theta^{V}, \eta^{V}\right)+g^{f}\left(\eta^{V},\left[X^{H}, \theta^{V}\right]\right)+g^{f}\left(\theta^{V},\left[\eta^{V}, X^{H}\right]\right)
\end{aligned}
$$

Using the first formula of Lemma 3 we have

$$
\begin{aligned}
2 g^{f}\left(\nabla_{X^{H}}^{f} \theta^{V}, \eta^{V}\right)= & \frac{1}{f} X(f) g^{f}\left(\theta^{V}, \eta^{V}\right)+g^{f}\left(\left(\nabla_{X} \theta\right)^{V}, \eta^{V}\right)+g^{f}\left(\theta^{V},\left(\nabla_{X} \eta\right)^{V}\right) \\
& +g^{f}\left(\eta^{V},\left(\nabla_{X} \theta\right)^{V}\right)-g^{f}\left(\theta^{V},\left(\nabla_{X} \eta\right)^{V}\right) \\
= & 2 g^{f}\left(\left(\nabla_{X} \theta\right)^{V}, \eta^{V}\right)+\frac{1}{f} X(f) g^{f}\left(\theta^{V}, \eta^{V}\right)
\end{aligned}
$$

5) Calculations similar to those in 3) give the result.
6) Calculations similar to those in 4) give the result.
7) Direct calculations give

$$
\begin{aligned}
2 g^{f}\left(\nabla_{\omega^{V}}^{f} \theta^{V}, Z^{H}\right)= & \omega^{V} g^{f}\left(\theta^{V}, Z^{H}\right)+\theta^{V} g^{f}\left(Z^{H}, \omega^{V}\right)-Z^{H} g^{f}\left(\omega^{V}, \theta^{V}\right) \\
& +g^{f}\left(Z^{H},\left[\omega^{V}, \theta^{V}\right]\right)+g^{f}\left(\theta^{V},\left[Z^{H}, \omega^{V}\right]\right) \\
& -g^{f}\left(\omega^{V},\left[\theta^{V}, Z^{H}\right]\right) \\
= & -Z^{H} g^{f}\left(\omega^{V}, \theta^{V}\right)+g^{f}\left(\theta^{V},\left[Z^{H}, \omega^{V}\right]\right)-g^{f}\left(\omega^{V},\left[\theta^{V}, Z^{H}\right]\right) .
\end{aligned}
$$

Using the second formula of Lemma 3 we have

$$
\begin{aligned}
2 g^{f}\left(\nabla_{\omega^{V}}^{f} \theta^{V}, Z^{H}\right)= & \frac{-1}{f} Z(f) g^{f}\left(\omega^{V}, \theta^{V}\right)-g^{f}\left(\left(\nabla_{Z} \omega\right)^{V}, \theta^{V}\right) \\
& -g^{f}\left(\omega^{V},\left(\nabla_{Z} \theta\right)^{V}\right)+g^{f}\left(\theta^{V},\left(\nabla_{Z} \omega\right)^{V}\right) \\
& +g^{f}\left(\omega^{V},\left(\nabla_{Z} \theta\right)^{V}\right) \\
= & \frac{-1}{f} Z(f) g^{f}\left(\omega^{V}, \theta^{V}\right) \\
= & -Z(f) g^{-1}(\omega, p) g^{-1}(\theta, p) \\
= & -g^{-1}(\omega, p) g^{-1}(\theta, p) g^{f}\left((\operatorname{grad} f)^{H}, Z^{H}\right) .
\end{aligned}
$$

Where $g^{f}\left((\operatorname{grad} f)^{H}, Z^{H}\right)=g(\operatorname{grad} f, Z)=Z(f)$.
8) Direct calculations give

$$
\begin{aligned}
2 g^{f}\left(\nabla_{\omega^{V}}^{f} \theta^{V}, \eta^{V}\right)= & \omega^{V} g^{f}\left(\theta^{V}, \eta^{V}\right)+\theta^{V} g^{f}\left(\eta^{V}, \omega^{V}\right)-\eta^{V} g^{f}\left(\omega^{V}, \theta^{V}\right) \\
& +g^{f}\left(\eta^{V},\left[\omega^{V}, \theta^{V}\right]\right)+g^{f}\left(\theta^{V},\left[\eta^{V}, \omega^{V}\right]\right) \\
& -g^{f}\left(\omega^{V},\left[\theta^{V}, \eta^{V}\right]\right) \\
= & \omega^{V} g^{f}\left(\theta^{V}, \eta^{V}\right)+\theta^{V} g^{f}\left(\eta^{V}, \omega^{V}\right)-\eta^{V} g^{f}\left(\omega^{V}, \theta^{V}\right) \\
= & f g^{-1}(\omega, \theta) g^{-1}(\eta, p)+f g^{-1}(\omega, \eta) g^{-1}(\theta, p) \\
& +f g^{-1}(\theta, \eta) g^{-1}(\omega, p)+f g^{-1}(\theta, \omega) g^{-1}(\eta, p) \\
& -f g^{-1}(\eta, \omega) g^{-1}(\theta, p)-f g^{-1}(\eta, \theta) g^{-1}(\omega, p) \\
= & 2 f g^{-1}(\omega, \theta) g^{-1}(\eta, p) \\
= & \frac{2}{r^{2}} g^{-1}(\omega, \theta) g^{f}\left(\mathcal{P}^{V}, \eta^{V}\right)
\end{aligned}
$$

Where $g^{f}\left(\mathcal{P}^{V}, \eta^{V}\right)=f g^{-1}(p, p) g^{-1}(\eta, p)=f r^{2} g^{-1}(\eta, p)$.
As a direct consequence of Lemma 4, we get the following theorem .
Theorem 1. Let (M, g) be a Riemannian manifold and $T^{*} M$ its cotangent bundle equipped with the metric g^{f}. Then the corresponding Levi-Civita connection ∇^{f} satisfies the followings:
(1) $\nabla_{X^{H}}^{f} Y^{H}=\left(\nabla_{X} Y\right)^{H}$,
(2) $\nabla_{X^{H}}^{f} \theta^{V}=\left(\nabla_{X} \theta\right)^{V}+\frac{1}{2 f} X(f) \theta^{V}$,
(3) $\nabla_{\omega^{V}}^{f} Y^{H}=\frac{1}{2 f} Y(f) \omega^{V}$,
(4) $\nabla_{\omega^{V}}^{f} \theta^{V}=\frac{-1}{2} g^{-1}(\omega, p) g^{-1}(\theta, p)(\operatorname{grad} f)^{H}+\frac{1}{r^{2}} g^{-1}(\omega, \theta) \mathcal{P}^{V}$,
for all $X, Y \in \Im_{0}^{1}(M)$ and $\omega, \theta \in \Im_{1}^{0}(M)$, where \mathcal{P}^{V} is the canonical vertical vector field on $T^{*} M$ and R denotes the curvature tensor of (M, g).

Lemma 5. Let (M, g) be a Riemannian manifold and $T^{*} M$ its cotangent bundle equipped with the metric g^{f}, then we have:

$$
\begin{aligned}
& \text { 1. }\left(\nabla_{X^{H}}^{f} \mathcal{P}^{V}\right)=\frac{1}{2 f} X(f) \mathcal{P}^{V}, \\
& \text { 2. }\left(\nabla_{\omega^{V}}^{f} \mathcal{P}^{V}\right)=\omega^{V}-\frac{r^{2}}{2} g^{-1}(\omega, p)(\operatorname{grad} f)^{H}+\frac{1}{r^{2}} g(\omega, p) \mathcal{P}^{V},
\end{aligned}
$$

for all vector fields $X \in \Im_{0}^{1}(M)$ and $\omega \in \Im_{1}^{0}(M)$, where \mathcal{P}^{V} is the canonical vertical vector field on $T^{*} M$.

Proof. By Theorem 1 we have:

$$
\text { 1. } \begin{aligned}
\nabla_{X^{H}}^{f} \mathcal{P}^{V} & =\nabla_{X^{H}}^{f} p_{k}\left(d x^{k}\right)^{V} \\
& =X^{H}\left(p_{k}\right)\left(d x^{k}\right)^{V}+p_{k} \nabla_{X^{H}}^{f}\left(d x^{k}\right)^{V} \\
& =p_{h} \Gamma_{k j}^{h} X^{j}\left(d x^{k}\right)^{V}+p_{k}\left(\nabla_{X} d x^{k}\right)^{V}+\frac{p_{k}}{2 f} X(f)\left(d x^{k}\right)^{V} \\
& =-\left(\nabla_{X} \mathcal{P}\right)^{V}+\left(\nabla_{X} \mathcal{P}\right)^{V}+\frac{1}{2 f} X(f) \mathcal{P}^{V} \\
& =\frac{1}{2 f} X(f) \mathcal{P}^{V} .
\end{aligned}
$$

where $\nabla_{X} \mathcal{P}=-p_{h} \Gamma_{k j}^{h} X^{j} d x_{k}$.
The second formula is obtained by a similar calculation.

4 Curvatures of g^{f}

We shall calculate the Riemannian curvature tensor R^{f} of the cotangent bundle $T^{*} M$ equipped with the metric g^{f}. This curvature tensor is characterized by the formula:

$$
\begin{equation*}
R^{f}(\widetilde{U}, \widetilde{V}) \widetilde{W}=\nabla_{\widetilde{U}}^{f} \nabla_{\widetilde{V}}^{f} \widetilde{W}-\nabla_{\widetilde{V}}^{f} \nabla_{\widetilde{U}}^{f} \widetilde{W}-\nabla_{[\widetilde{U}, \widetilde{V}]}^{f} \widetilde{W} \tag{17}
\end{equation*}
$$

for all $\widetilde{U}, \widetilde{V}, \widetilde{W} \in \Im_{0}^{1}\left(T^{*} M\right)$.

Theorem 2. Let (M, g) be a Riemannian manifold and $T^{*} M$ its cotangent bundle
equipped with the metric g^{f}, then we have the following formulas

$$
\begin{align*}
R^{f}\left(X^{H}, Y^{H}\right) Z^{H}= & (R(X, Y) Z)^{H}-\frac{1}{2 f} Z(f)(p R(X, Y))^{V}, \tag{18}\\
R^{f}\left(X^{H}, \theta^{V}\right) \eta^{V}= & \frac{-1}{2} g^{-1}(\theta, p) g^{-1}(\eta, p)\left(\nabla_{X} g r a d f\right)^{H} \\
& +\frac{1}{4 f} X(f) g^{-1}(\theta, p) g^{-1}(\eta, p)(\operatorname{grad} f)^{H}, \tag{19}\\
R^{f}\left(\omega^{V}, \theta^{V}\right) Z^{H}= & 0, \tag{20}\\
R^{f}\left(X^{H}, \theta^{V}\right) Z^{H}= & \left(\frac{1}{2 f} g\left(Z, \nabla_{X} g r a d f\right)-\frac{1}{4 f^{2}} X(f) Z(f)\right) \theta^{V} \tag{21}\\
R^{f}\left(X^{H}, Y^{H}\right) \eta^{V}= & 0, \tag{22}\\
R^{f}\left(\omega^{V}, \theta^{V}\right) \eta^{V}= & \frac{1}{r^{2}}\left[g^{-1}(\theta, \eta) \omega^{V}-g^{-1}(\omega, \eta) \theta^{V}\right] \\
& -\frac{1}{4 f}\|g r a d f\|^{2} g^{-1}(\eta, p)\left[g^{-1}(\theta, p) \omega^{V}-g^{-1}(\omega, p) \theta^{V}\right] \tag{23}
\end{align*}
$$

for all $X, Y, Z \in \Im_{0}^{1}(M)$ and $\omega, \theta, \omega \in \Im_{1}^{0}(M)$, where \mathcal{P}^{V} is the canonical vertical vector field on $T^{*} M$ and R denotes the Riemannian curvature tensor of (M, g).

Proof.
Let $X, Y, Z \in \Im_{0}^{1}(M), \omega, \theta, \eta \in \Im_{1}^{0}(M)$ and \mathcal{P}^{V} the canonical vertical vector field on $T^{*} M$. By applying Definition 1, Lemma 2, Lemma 3, Theorem 1 and Lemma 5 we have:

$$
\text { 1) } R^{f}\left(X^{H}, Y^{H}\right) Z^{H}=\nabla_{X^{H}}^{f} \nabla_{Y^{H}}^{f} Z^{H}-\nabla_{Y^{H}}^{f} \nabla_{X^{H}}^{f} Z^{H}-\nabla_{\left[X^{H}, Y^{H}\right]}^{f} Z^{H}
$$

Direct calculations give

$$
\nabla_{X^{H}}^{f} \nabla_{Y^{H}}^{f} Z^{H}=\left(\nabla_{X} \nabla_{Y} Z\right)^{H}
$$

and

$$
\nabla_{Y^{H}}^{f} \nabla_{X^{H}}^{f} Z^{H}=\left(\nabla_{Y} \nabla_{X} Z\right)^{H}
$$

and

$$
\begin{aligned}
\nabla_{\left[X^{H}, Y^{H}\right]}^{f} Z^{H} & =\nabla_{[X, Y]^{H}}^{f} Z^{H}+\nabla_{(p R(X, Y))^{V}}^{f} Z^{H} \\
& =\left(\nabla_{[X, Y]} Z\right)^{H}+\frac{1}{2 f} Z(f)(p R(X, Y) Z)^{V}
\end{aligned}
$$

Hence, we have:

$$
R^{f}\left(X^{H}, Y^{H}\right) Z^{H}=(R(X, Y) Z)^{H}-\frac{1}{2 f} Z(f)(p R(X, Y))^{V}
$$

for all , $X, Y, Z \in \Im_{0}^{1}(M)$.
2) $R^{f}\left(X^{H}, \theta^{V}\right) \eta^{V}=\nabla_{X^{H}}^{f} \nabla_{\theta^{V}}^{f} \eta^{V}-\nabla_{\theta^{V}}^{f} \nabla_{X^{H}}^{f} \eta^{V}-\nabla_{\left[X^{H}, \theta^{V}\right]}^{f} \eta^{V}$

From direct calculation we get:

$$
\begin{aligned}
\nabla_{X^{H}}^{f} \nabla_{\theta^{V}}^{f} \eta^{V}= & \nabla_{X^{H}}^{f}\left[\frac{-1}{2} g^{-1}(\theta, p) g^{-1}(\eta, p)(g r a d f)^{H}+\frac{1}{r^{2}} g^{-1}(\theta, \eta) \mathcal{P}^{V}\right] \\
= & -\frac{1}{2}\left[g^{-1}\left(\nabla_{X} \theta, p\right) g^{-1}(\eta, p)+g^{-1}(\theta, p) g^{-1}\left(\nabla_{X} \eta, p\right)\right](\operatorname{grad} f)^{H} \\
& -\frac{1}{2} g^{-1}(\theta, p) g(\eta, p)\left(\nabla_{X} g r a d f\right)^{H}+\frac{1}{2 f r^{2}} X(f) g^{-1}(\theta, \eta) \mathcal{P}^{V} \\
& +\frac{1}{r^{2}}\left[g^{-1}\left(\nabla_{X} \theta, \eta\right)+g^{-1}\left(\theta, \nabla_{X} \eta\right)\right] \mathcal{P}^{V} .
\end{aligned}
$$

where $X^{H} g^{-1}(\theta, \eta)=g^{-1}\left(\nabla_{X} \theta, \eta\right)+g^{-1}\left(\theta, \nabla_{X} \eta\right)$.
and

$$
\begin{aligned}
\nabla_{\theta^{V}}^{f} \nabla_{X^{H}}^{f} \eta^{V}= & \nabla_{\theta^{V}}^{f}\left[\left(\nabla_{X} \eta\right)^{V}+\frac{1}{2 f} X(f) \eta^{V}\right] \\
= & -\frac{1}{2} g^{-1}(\theta, p) g^{-1}\left(\nabla_{X} \eta, p\right)(\operatorname{grad} f)^{H}+\frac{1}{r^{2}} g^{-1}\left(\theta, \nabla_{X} \eta\right) \mathcal{P}^{V} \\
& -\frac{1}{4 f} X(f) g^{-1}(\theta, p) g^{-1}(\eta, p)(g r a d f)^{H}+\frac{1}{2 f r^{2}} X(f) g^{-1}(\theta, \eta) \mathcal{P}^{V}
\end{aligned}
$$

and

$$
\nabla_{\left[X^{H}, \theta^{V}\right]}^{f} \eta^{V}=-\frac{1}{2} g^{-1}\left(\nabla_{X} \theta, p\right) g^{-1}(\eta, p)(\operatorname{grad} f)^{H}+\frac{1}{r^{2}} g^{-1}\left(\nabla_{X} \theta, \eta\right) \mathcal{P}^{V}
$$

which gives,

$$
\begin{aligned}
R^{f}\left(X^{H}, \theta^{V}\right) \eta^{V}= & \frac{-1}{2} g^{-1}(\theta, p) g^{-1}(\eta, p)\left(\nabla_{X} \operatorname{grad} f\right)^{H} \\
& +\frac{1}{4 f} X(f) g^{-1}(\theta, p) g^{-1}(\eta, p)(\operatorname{grad} f)^{H}
\end{aligned}
$$

for all $X \in \Im_{0}^{1}(M)$ and $\theta, \eta \in \Im_{1}^{0}(M)$.
3) Applying formula (19) and $1^{\text {st }}$ Bianchi identity.

$$
R^{f}\left(\omega^{V}, \theta^{V}\right) Z^{H}=R^{f}\left(Z^{H}, \theta^{V}\right) \omega^{V}-R^{f}\left(Z^{H}, \omega^{V}\right) \theta^{V}
$$

we get

$$
\begin{aligned}
R^{f}\left(Z^{H}, \theta^{V}\right) \omega^{V}= & \frac{-1}{2} g^{-1}(\theta, p) g^{-1}(\omega, p)\left(\nabla_{Z} \operatorname{grad} f\right)^{H} \\
& +\frac{1}{4 f} Z(f) g^{-1}(\theta, p) g^{-1}(\omega, p)(\operatorname{grad} f)^{H}
\end{aligned}
$$

and

$$
\begin{aligned}
R^{f}\left(Z^{H}, \omega^{V}\right) \theta^{V}= & \frac{-1}{2} g^{-1}(\omega, p) g^{-1}(\theta, p)\left(\nabla_{Z} g r a d f\right)^{H} \\
& +\frac{1}{4 f} Z(f) g^{-1}(\omega, p) g^{-1}(\theta, p)(\operatorname{grad} f)^{H}
\end{aligned}
$$

which gives,

$$
R^{f}\left(\omega^{V}, \theta^{V}\right) Z^{H}=0
$$

for all $Z \in \Im_{0}^{1}(M)$ and $\omega, \theta \in \Im_{1}^{0}(M)$.
The other formulas are obtained by a similar calculation.

5 Geodesics of g^{f}

Let (M, g) be a Riemannian manifold and $\gamma: I \rightarrow M$ be a curve on $M(I \subset \mathbb{R})$. We define on $T^{*} M$ the curve $C: I \rightarrow T^{*} M$ by $C(t)=(\gamma(t), \vartheta(t))$, for all $t \in I$ where $\vartheta(t) \in T_{\gamma(t)}^{*} M$ i.e $\vartheta(t)$ is a covector field along $\gamma(t)$.

Definition 2. Let (M, g) be a Riemannian manifold, $C(t)=(\gamma(t), \vartheta(t))$ be a curve on $T^{*} M$ and ∇ denote the Levi-Civita connection of (M, g). If $\nabla \dot{\gamma}^{\vartheta}=0$ the curve $C(t)$ is said to be a horizontal lift of the cure $\gamma(t)$, where $\dot{\gamma}$ the tangent field along $\gamma(t)$.

Lemma 6. Let (M, g) be a Riemannian manifold. If $\omega \in \Im_{1}^{0}(M)$ is a covector field on M and $(x, p) \in T^{*} M$ such that $\omega_{x}=p$, then we have:

$$
d_{x} \omega\left(X_{x}\right)=X_{(x, p)}^{H}+\left(\nabla_{X} \omega\right)_{(x, p)}^{V}
$$

for all $X \in \Im_{0}^{1}(M)$.
Proof.
Let $\left(U, x^{i}\right)$ be a local chart on M in $x \in M$ and $\left(\pi^{-1}(U), x^{i}, p_{j}\right)$ be the induced chart on $T^{*} M$, if $X_{x}=\left.X^{i}(x) \frac{\partial}{\partial x^{i}}\right|_{x}$ and $\omega_{x}=\left.\omega_{i}(x) d x^{i}\right|_{x}=p$, then

$$
\begin{aligned}
d_{x} \omega\left(X_{x}\right)= & \left.X^{i}(x) \frac{\partial}{\partial x^{i}}\right|_{(x, p)}+\left.X^{i}(x) \frac{\partial \omega_{j}}{\partial x^{i}}(x) \frac{\partial}{\partial p_{j}}\right|_{(x, p)} \\
= & \left.X^{i}(x) \frac{\partial}{\partial x^{i}}\right|_{(x, p)}+\left.\omega_{k}(x) \Gamma_{j i}^{k}(x) X^{j}(x) \frac{\partial}{\partial p_{i}}\right|_{(x, p)} \\
& -\left.\omega_{k}(x) \Gamma_{j i}^{k}(x) X^{j}(x) \frac{\partial}{\partial p_{i}}\right|_{(x, p)}+\left.X^{i}(x) \frac{\partial \omega_{j}}{\partial x^{i}}(x) \frac{\partial}{\partial p_{j}}\right|_{(x, p)} \\
= & \left.X^{i}(x) \frac{\partial}{\partial x^{i}}\right|_{(x, p)}+\left.p_{k} \Gamma_{j i}^{k}(x) X^{j}(x) \frac{\partial}{\partial p_{i}}\right|_{(x, p)} \\
& +\left.X^{i}(x) \frac{\partial \omega_{j}}{\partial x^{i}}(x) \frac{\partial}{\partial p_{j}}\right|_{(x, p)}-\left.\omega_{k}(x) \Gamma_{i j}^{k}(x) X^{i}(x) \frac{\partial}{\partial p_{j}}\right|_{(x, p)} \\
= & X_{(x, p)}^{H}+X^{i}(x)\left[\frac{\partial \omega_{j}}{\partial x^{i}}(x)-\omega_{k}(x) \Gamma_{i j}^{k}(x) X^{i}(x)\right]\left(d x^{i}\right)_{(x, p)}^{V} \\
= & X_{(x, p)}^{H}+\left(\nabla_{X} \omega\right)_{(x, p) .}^{V}
\end{aligned}
$$

Lemma 7. Let (M, g) be a Riemannian manifold and ∇ denote the Levi-Civita connection of (M, g). If $\gamma(t)$ is a curve on M and $C(t)=(\gamma(t), \vartheta(t))$ is a curve on $T^{*} M$, then

$$
\begin{equation*}
\dot{C}=\dot{\gamma}^{H}+\left(\nabla_{\dot{\gamma}} \vartheta\right)^{V} . \tag{24}
\end{equation*}
$$

Proof. Locally, if $\omega \in \Im_{1}^{0}(M)$ is a covector field such $\omega(\gamma(t))=\vartheta(t)$, then

$$
\dot{C}(t)=d C(t)=d \omega(\gamma(t))=d_{\gamma(t)} \omega\left(d_{t} \gamma\right)=d_{\gamma(t)} \omega(\dot{\gamma})
$$

Using Lemma 6 we obtain $\dot{C}(t)=\dot{\gamma}^{H}+\left(\nabla_{\dot{\gamma}} \vartheta\right)^{V}$.

Theorem 3. Let (M, g) be a Riemannian manifold and $T^{*} M$ its cotangent bundle equipped with the metric g^{f}. If ∇ (resp. $\left.\nabla^{f}\right)$ denote the Levi-Civita connection of $(M, g)\left(\right.$ resp. $\left.\left(T^{*} M, g^{f}\right)\right)$ and $C(t)=(\gamma(t), \vartheta(t))$ is the cure on $T^{*} M$ such $\vartheta(t)$ is a covector field along $\gamma(t)$, then

$$
\begin{align*}
\nabla_{\dot{C}}^{f} \dot{C}= & {\left[\nabla_{\dot{\gamma}} \dot{\gamma}-\frac{1}{2} g^{-1}(\nabla \dot{\gamma} \vartheta, \vartheta)^{2} g r a d f\right]^{H} } \\
& +\left[\nabla_{\dot{\gamma}} \nabla \dot{\gamma}^{\vartheta}+\frac{1}{f} \dot{\gamma}(f) \nabla_{\dot{\gamma}} \vartheta+\frac{1}{r^{2}} g^{-1}\left(\nabla_{\dot{\gamma}} \vartheta, \nabla_{\dot{\gamma}} \vartheta\right) \vartheta\right]^{V} . \tag{25}
\end{align*}
$$

Proof. Using Lemma 6 we obtain

$$
\begin{aligned}
\nabla_{\dot{C}}^{f} \dot{C}= & \left.\nabla_{\left[\dot{\gamma}^{H}\right.}^{f}+\left(\nabla_{\dot{\gamma}} \vartheta\right)^{V}\right] \\
= & \nabla^{f} \dot{\gamma}^{H}+\left(\nabla_{\dot{\gamma}} \dot{\gamma}^{H}+\nabla_{\dot{\gamma}^{H}}^{f}\left(\nabla_{\dot{\gamma}} \vartheta\right)^{V}+\nabla_{\left(\nabla_{\dot{\gamma}} \vartheta\right)^{V}}^{f} \dot{\gamma}^{H}+\nabla_{\left(\nabla_{\dot{\gamma}} \vartheta\right)^{V}}^{f}\left(\nabla_{\dot{\gamma}} \vartheta\right)^{V}\right. \\
= & \left(\nabla_{\dot{\gamma}} \dot{\gamma}\right)^{H}+\left(\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} \vartheta\right)^{V}+\frac{1}{2 f} \dot{\gamma}(f)\left(\nabla_{\dot{\gamma}} \vartheta\right)^{V}+\frac{1}{2 f} \dot{\gamma}(f)\left(\nabla_{\dot{\gamma}} \vartheta\right)^{V} \\
& -\frac{1}{2} g^{-1}\left(\nabla_{\dot{\gamma}} \vartheta, \vartheta\right) g^{-1}\left(\nabla_{\dot{\gamma}} \vartheta, \vartheta\right)(g r a d f)^{H}+\frac{1}{2} g^{-1}\left(\nabla_{\dot{\gamma}} \vartheta, \nabla_{\dot{\gamma}} \vartheta\right) \vartheta^{V} \\
= & \left(\nabla_{\dot{\gamma}} \dot{\gamma}\right)^{H}-\frac{1}{2} g^{-1}\left(\nabla_{\dot{\gamma}} \vartheta, \vartheta\right)^{2}(g r a d f)^{H} \\
& +\left(\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} \vartheta\right)^{V}+\frac{1}{f} \dot{\gamma}(f)\left(\nabla_{\dot{\gamma}} \vartheta\right)^{V}+\frac{1}{2} g^{-1}\left(\nabla_{\dot{\gamma}} \vartheta, \nabla_{\dot{\gamma}} \vartheta\right) \vartheta^{V} \\
= & {\left[\nabla_{\dot{\gamma}} \dot{\gamma}-\frac{1}{2} g^{-1}\left(\nabla \dot{\gamma}^{\vartheta}, \vartheta\right)^{2} g r a d f\right]^{H} } \\
& +\left[\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} \vartheta+\frac{1}{f} \dot{\gamma}(f) \nabla_{\dot{\gamma}} \vartheta+\frac{1}{r^{2}} g^{-1}\left(\nabla_{\dot{\gamma}} \vartheta, \nabla_{\dot{\gamma}} \vartheta\right) \vartheta\right]^{V} .
\end{aligned}
$$

Theorem 4. Let (M, g) be a Riemannian manifold, $T^{*} M$ its cotangent bundle equipped with the metric g^{f} and $C(t)=(\gamma(t), \vartheta(t))$ a cure on $T^{*} M$ such $\vartheta(t)$ is a covector field along $\gamma(t)$, then $C(t)$ is a geodesic on $T^{*} M$ if and only if

$$
\left\{\begin{array}{l}
\nabla_{\dot{\gamma}} \dot{\gamma}=\frac{1}{2} g^{-1}\left(\nabla \dot{\gamma}^{\vartheta}, \vartheta\right)^{2} g r a d f \tag{26}\\
\nabla \dot{\gamma} \nabla_{\dot{\gamma}} \vartheta=-\frac{1}{f} \dot{\gamma}(f) \nabla \dot{\gamma}^{\vartheta}-\frac{1}{r^{2}} g^{-1}\left(\nabla \dot{\gamma}^{\vartheta}, \nabla_{\dot{\gamma}} \vartheta\right) \vartheta
\end{array}\right.
$$

Proof. The statement is a direct consequence of Theorem 2 and definition of geodesic.

Corollary 1.

Let (M, g) be a Riemannian manifold and $T^{*} M$ its cotangent bundle equipped with the metric g^{f} and $C(t)=(\gamma(t), \vartheta(t))$ be a horizontal lift of the curve $\gamma(t)$. Then $C(t)$ is a geodesic on $T^{*} M$ if and only if $\gamma(t)$ is a geodesic on M.

Proof. Let $C(t)=(\gamma(t), \vartheta(t))$ be a horizontal lift of the curve $\gamma(t)$, then $\nabla \dot{\gamma} \vartheta=0$. Using Theorem 4 we deduce the result.

Remark 2. If $C(t)=(\gamma(t), \vartheta(t))$ horizontal lift of the curve $\gamma(t)$, locally we have:

$$
\begin{aligned}
\nabla_{\dot{\gamma}} \vartheta=0 & \Leftrightarrow \frac{d \vartheta_{h}}{d t}-\Gamma_{j h}^{i} \frac{d \gamma^{j}}{d t} \vartheta_{i}=0 \\
& \Leftrightarrow \vartheta(t)=\exp (A(t)) \cdot K
\end{aligned}
$$

where, $K \in \mathbb{R}^{n}, A(t)=\left[a_{h i}\right], a_{h i}=\sum_{j=1}^{n} \Gamma_{j h}^{i} \frac{d \gamma^{j}}{d t}$.
Remark 3. Using Remark 2 we can construct an infinity of examples of geodesics on ($T^{*} M, g^{f}$).
Example 1. Let \mathbb{R} equipped with the Riemannian metric $g=e^{x} d x^{2}$.
The Christoffel symbols of Riemannian connection are given by

$$
\Gamma_{11}^{1}=\frac{1}{2} g^{11}\left(\frac{\partial g_{11}}{\partial x^{1}}+\frac{\partial g_{11}}{\partial x^{1}}-\frac{\partial g_{11}}{\partial x^{1}}\right)=\frac{1}{2}
$$

The geodesics $\gamma(t)$ such that $\gamma(0)=a \in \mathbb{R}, \gamma^{\prime}(0)=v \in \mathbb{R}$ satisfy the equation,

$$
\frac{d^{2} \gamma^{k}}{d t^{2}}+\sum_{i, j=1}^{n} \frac{d \gamma^{i}}{d t} \frac{d \gamma^{j}}{d t} \Gamma_{i j}^{k}=0 \Leftrightarrow \gamma^{\prime \prime}+\frac{1}{2}\left(\gamma^{\prime}\right)^{2}=0
$$

Hence $\gamma^{\prime}(t)=\frac{2 v}{2+v t}$ and therefore $\gamma(t)=a+2 \ln \left(1+\frac{v t}{2}\right)$.
If $C(t)=(\gamma(t), \vartheta(t))$ is horizontal lift of the curve $\gamma(t)$ i.e $\nabla_{\dot{\gamma}} \vartheta=0$ then,

$$
\frac{d \vartheta_{h}}{d t}-\Gamma_{j h}^{i} \frac{d \gamma^{j}}{d t} \vartheta_{i}=0 \Leftrightarrow \vartheta^{\prime}-\frac{1}{2} \vartheta \gamma^{\prime}=0 \Leftrightarrow \vartheta(t)=k \cdot \exp \left(\frac{1}{2} \gamma^{\prime}(t)\right)=k \cdot \exp \left(\frac{v}{2+v t}\right) .
$$

Example 2. Consider the upper half-plane

$$
\mathbb{R}_{+}^{2}=\left\{(x, y) \in \mathbb{R}^{2}, y>0\right\}
$$

with the metric of Lobachevsky's non-euclidean geometry given by

$$
g_{11}=g_{22}=\frac{1}{y^{2}}, g_{12}=g_{21}=0 .
$$

The Christoffel symbols of the Riemannian connection are given by:

$$
\Gamma_{11}^{1}=\Gamma_{22}^{1}=\Gamma_{12}^{2}=\Gamma_{21}^{2}=0, \Gamma_{11}^{2}=\frac{1}{y}, \Gamma_{22}^{2}=\Gamma_{12}^{1}=\Gamma_{21}^{1}=-\frac{1}{y} .
$$

1) If $C(t)=(\gamma(t), \vartheta(t))$ is a horizontal lift of the curve $\gamma(t)=(a, y(t))$, $a \in \mathbb{R}$ then the matrix $A(t)$ is given by

$$
A(t)=\frac{-1}{y(t)}\left(\begin{array}{cc}
y^{\prime}(t) & 0 \\
0 & y^{\prime}(t)
\end{array}\right)
$$

and

$$
\vartheta(t)=\exp \left(\frac{-1}{y(t)}\left(\begin{array}{cc}
y^{\prime}(t) & 0 \\
0 & y^{\prime}(t)
\end{array}\right)\right) \cdot K, K \in \mathbb{R}^{2} .
$$

2) If $C(t)=(\gamma(t), \vartheta(t))$ is a horizontal lift of the curve $\gamma(t)=(x(t), y(t))$ such $y(t)=a x(t)+b, a, b \in \mathbb{R}$ and $x \neq 0$, then the matrix $A(t)$ is given by

$$
A(t)=\frac{-x^{\prime}(t)}{a x(t)+b}\left(\begin{array}{cc}
a & -1 \\
1 & a
\end{array}\right)
$$

and

$$
\vartheta(t)=\exp \left(\frac{-x^{\prime}(t)}{a x(t)+b}\left(\begin{array}{cc}
a & -1 \\
1 & a
\end{array}\right)\right) \cdot K, K \in \mathbb{R}^{2} .
$$

Theorem 5. Let (M, g) be a Riemannian manifold, $T^{*} M$ its cotangent bundle equipped with the metric g^{f} and $\gamma(t)$ be a geodesic on M. If $C(t)=(\gamma(t), \vartheta(t))$ is a geodesic on $T^{*} M$ such that $\nabla \dot{\gamma}^{\vartheta} \neq 0$, then f is constant.

Proof. Let $\gamma(t)$ be a geodesic on M, then $\nabla_{\dot{\gamma}} \dot{\gamma}=0$. Using the first equation of formula (26) we obtain $\operatorname{grad} f=0$ i.e f is constant.

Corollary 2. Let (M, g) be a Riemannian manifold, $T^{*} M$ its cotangent bundle equipped with the metric g^{f} and $\gamma(t)$ be a curve on M. If $C(t)=(\gamma(t), \vartheta(t))$ is a geodesic on $T^{*} M$ such that $\|\vartheta\|$ is constant, then $\gamma(t)$ is a geodesic on M.

Proof. We have $0=\dot{\gamma} g^{-1}(\vartheta, \vartheta)=2 g^{-1}\left(\nabla \dot{\gamma}^{\vartheta}, \vartheta\right)$ Using the first equation of formula (26) we obtain $\nabla \dot{\gamma} \dot{\gamma}=0$.

References

[1] Ağca, F., g-natural metrics on the cotangent bundle, International Electronic Journal of Geometry 6 (2013). no. 1, 129-146.
[2] Djaa, N.E.H., Boulal, A. and Zagane, A., Generalized warped product manifolds and biharmonic maps, Acta Math. Univ. Comenianae 81 (2012), no. 2, 283-298.
[3] Gezer, A. and Altunbas, M., On the rescaled Riemannian metric of Cheeger Gromoll type on the cotangent bundle, arXiv:1309.1354v1http:[math DG] 5 Sep 2013.
[4] Latti, F., Djaa, M. and Zagane, A., Mus-Sasaki metric and harmonicity, Mathematical Sciences and Applications E-Notes 6 (2018), no. 1, 29-36.
[5] Ocak, F. and Kazimova, S., On a new metric in the cotangent bundle, Transactions of NAS of Azerbaijan, Issue Mathematics 38 (2018), no. 1, 128-138.
[6] Ocak F., Notes about a new metric on the cotangent bundle, International Electronic Journal of Geometry 12 (2019), no. 2, 241-249.
[7] Patterson, E. M., and Walker, A. G., Riemannian extensions, Quart. J.Math. Oxford Ser. 2 (1952), no. 3, 19-28.
[8] Kada Ben Otmane, R., Zagane, A. and Djaa, M., On generalized CheegerGromoll metric and Harmonicity, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 69, (2020), no. 1, 629-645.
[9] Salimov, A.A. and Ağca, F., Some properties of Sasakian metrics in cotangent bundles, Mediterranean Journal of Mathematics; 8 (2011), no. 2, 243255.
[10] Salimov, A.A. and Ağca, F., Some notes concerning Cheeger-Gromoll metrics, Hacettepe Journal of Mathematics and Statistics, 42, (2013), no. 5, 533-549.
[11] Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifoldsII, Tohoku Math. J. 14 (1962), 146-155.
[12] Sekizawa, M., Natural transformations of affine connections on manifolds to metrics on cotangent bundles, In: Proceedings of 14th Winter School on Abstract Analysis (Srni, 1986), Rend. Circ. Mat. Palermo 14 (1987) 129-142.
[13] Yano, K. and Ishihara, S., Tangent and cotangent bundles, Marcel Dekker, INC. New York 1973.
[14] Zagane, A. and Djaa, M., On geodesics of warped Sasaki metric, Mathematical Sciences and Applications E-Notes 5 (2017), no. 1, 85-92.
[15] Zagane, A. and Djaa, M., Geometry of Mus-Sasaki metric, Communications in Mathematics 26 (2018), 113-126.

[^0]: ${ }^{1}$ Department of Mathematics, University Centre of Relizane 48000, Relizane-Algeria, e-mail: Zaganeabr2018@gmail.com

