
Bulletin of the Transilvania University of Braşov • Vol 13(62), No. 1 - 2020

Series III: Mathematics, Informatics, Physics, 303-330

https://doi.org/10.31926/but.mif.2020.13.62.1.23

MODIFIED PULAT’S ALGORITHM FOR THE MAXIMUM
OUTFLOW PROBLEM IN UNDIRECTED GENERALIZED

NETWORKS

Massoud AMAN1, Reza GHANBARI2 and Donya HEYDARI∗,3

Abstract

A generalized network is characterized by arc multipliers that specify
which portion of the flow entering an arc at its tail node reaches its head
node. In this paper, the goal is to maximize the flow excess at the sink in
undirected generalized networks. We show that the results of the directed
networks are not satisfied here. We have specifically stated and proved the
optimality conditions of the problem. We have also designed an algorithm
according to Pulat’s algorithm and achieved an efficient version.

2000 Mathematics Subject Classification: 05C21, 05C82
Key words: maximum outflow problem, generalized networks, undirected

networks.

1 Introduction

In generalized networks, there is a factor named multiplier defined on each arc
that is positive. Arc multipliers are not all equal to one. Indeed, they denote the
amount of flow reached the tail node if we enter one unit of flow to the arc. This
factor makes generalized networks distinctly different from traditional networks
(see Ahuja [2]). In this paper, we consider undirected networks. It is given in [2]
Appendix B and [27] that the undirected maximum flow problem in traditional
networks with nonenegative lower bounds is NP-hard.

In generalized networks, gains (when the arc multiplier is greater than one)
and losses (when the arc multiplier is less than one) can refer to evaporation,

1Department of Mathematics, Faculty of Mathematics and Statistics, University of Birjand,
Birjand, Iran, e-mail: mamann@birjand.ac.ir

2Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University
of Mashhad, Mashhad, Iran, e-mail: rghanbari@um.ac.ir

3∗ Corresponding author, Department of Mathematics, Faculty of Mathematics and Statistics,
University of Birjand, Birjand, Iran, e-mail: do heydari@birjand.ac.ir

304 M. Aman, R. Ghanbari and D. Heydari

energy dissipation, breeding, theft, interest rates, blending, currency exchange,
and transforming one commodity into another (see Ahuja [2] and [47]).

Here, we study the generalized flow maximization problem in undirected net-
works, where the objective is to send the maximum amount of flow to the sink.
This problem is named generalized maximum outflow problem in undirected net-
works (GMOPUN).

The generalized network problems have several applications in operations re-
search [Ahuja [2], Chapter 15], electrical systems (e.g. Adams et al. [1], Sasson
[40], Taluktar and Morton [42], and Liu and Wu [33]), financial problems (e.g.
Crum et al. [9], Guim and Nye [24], and Robichek, Teichroew and Jones [39]),
water distribution systems (e.g. Bhaumik [6]), copper refining process (e.g. Kim
[31]), air force course scheduling problem (e.g. Glover et al. [16]) and lot sizing
problems (e.g. Steinberg and Napier [41]). Additional applications of the general-
ized network flow problem are in resort development (e.g. Glover and Rogozinski
[19]), airline seat allocation problems (e.g. Glover et al. [17], and Dror, Trudeau
and Ladany [11]), personnel planning (e.g. Gorham [23]), a consensus ranking
model (e.g. Barzilai, Cook and Kress [5]), cash flow management in an insurance
company (e.g. Crum and Nye [10]), and land management (e.g. Glover, Glover,
and Martinson [15]). Glover et al [16], and Glover, Klingman and Phillips [18]
contain additional references concerning applications of generalized network flow
problems.

The GMOPUN is motivated by real-world and a wide range of theoretical and
practical applications of undirected networks. Consider transporting raw mate-
rials to provide the demands of some factories and research and investigation
departments in which commodities and materials are oxidized ,or combine with
each other, evaporate and dissipated without considering the direct of the trans-
port routes. We also can take transporting medicinal substances to hospitals and
clinics or some activities such as blood transfusion as some notable examples of
applications.

Since the early 1960s, there has been substantial amount of research done on
directed generalized networks. We can cite the work of Charnes and Cooper [8],
Eiseman [12], Balas and Ivanescu [4], and Balas [3] for the generalized transporta-
tion problems.

The first combinatorial algorithms for the directed generalized maximum flow
problem were exponential-time augmenting path algorithms proposed by Jewell
[30] and Onaga [35]. Truemper [43] observed that by using the cost function
c = logγ where γ is the arc multiplier, many of the early generalized maximum
flow algorithms were, in fact, analogue of pseudo-polynomial minimum cost flow
algorithms. Jewell’s [30] generalized maximum flow algorithm is an analogue of
Klein’s [32] cycle cancelling algorithm for the minimum cost flow problem. Sim-
ilarly, Onaga’s [35] algorithm is analogous to the successive shortest path algo-
rithm developed independently by Busacker and Gowen [7], Iri [26], and Jewell
[29]. Truemper’s [44] algorithm is an analogue of Ford and Fulkerson’s [13] primal-
dual algorithm. Jarvis and Jezior’s [28] algorithm is an analogue of Fulkerson’s

The maximum outflow problem in undirected generalized networks 305

[14] out-of-kilter algorithm. Goldberg, Plotkin, and Tardos [20] designed the first
two polynomial-time combinatorial algorithms for the generalized maximum flow
problem. Radzik [37] modified the Fat-Path algorithm and then Goldfarb and Jin
[21] designed an algorithm based on the minimum cost flow algorithm. Wayne
[47] developed the first efficient primal algorithm for the problem. Restrepo and
Williamson [38] designed an algorithm based on cancelling generalized augment-
ing paths. In 2016 and 2017, Vegh [45] and Olver and Vegh [34] designed two
strongly polynomial algorithms for generalized flow maximization. There is an-
other approach based on cancelling particular paths and cycles in directed gener-
alized networks constructed by Pulat [36] for maximum out flow problem. Indeed,
Pulat’s algorithm has increased the excess of the sink by, first augmenting flow
through the s-t paths in a maximal acyclic subnetwork and then determining the
maximum out flow in the rest of the network.

We are not able to find any algorithms designed particularly for undirected
generalized network problems. It is hard to handle network problems in undirected
generalized networks (the necessity of the problem with details is given in next
paragraph and subsequent sections).

In network theory, in order to apply the algorithms of directed networks for
undirected ones, it is essential to convert undirected networks to directed ones
mostly by replacing an edge with two directed arcs. Due to the existence of the arc
multipliers, not only this common conversion will create some significant problems
and ambiguity in residual network, but also we can not use usual definitions such
as cycles, residual capacity and flow augmentation (see Ahuja [2]). So we redefine
some essential notations and define a particular structure of residual network.

In directed generalized networks, just one type of cycle increases the amount
of flow at a sink node. But, in directed generalized networks constructed from
undirected generalized networks, all types of cycles in some cases could create
excess at the sink node. Consequently, the common optimality condition ([20],
[22]) of generalized maximum outflow problem in directed networks is not satisfied
here. Then achieving the optimal solution is a complicated task which has made
our proposed algorithm entirely different from Pulat’s algorithm. In next section,
we have stated and proved the optimality condition of our problem.

In Section 2, we provide some definitions and introduce some significant ter-
minology. The GMOPUN is also stated. In Section 3, we name our proposed
algorithm ”modified Pulat’s algorithm (MPA)”. Section 4 is devoted to the study
of one sub-function of the MPA and its influence on the efficiency of MPA. Section
5 includes an example. We conclude in Section 6.

2 Terminology and Modelling

We consider an undirected generalized network G = (N,E) where N is the
set of nodes and E is the set of edges, with |N | = n and |E| = m. Let s and t
denote the source and sink nodes, respectively.

Suppose {i, j} shows an edge between two nodes i and j in E. if {i, j} origi-

306 M. Aman, R. Ghanbari and D. Heydari

nates from i to j or in reverse direction, it is written as (i, j) or (j, i), respectively.
Associated with each {i, j}, there are two non-negative parameters u{i, j}, the
upper bound of the flow that can enter into the edge, and γ{i, j}, the edge multi-
plier. We have uij = uji = u{i, j} and γij = γji = γ{i, j}. If some flow sent from
i to j or j to i, is shown by fij or fji, respectively. If fij units of flow are sent
from i to j (j to i), γijfij (γjifji) units will be received in j (i).

A generalized pseudoflow is a function f : E −→ R which for every edge
satisfies capacity constraints f{i, j} ≤ u{i, j} and anti symmetric constraints
fji = −γijfij .

A generalized flow is a generalized pseudoflow such that the conservation of
flow (2) is held at all nodes except s and t.

A blocking flow from s to t is a generalized flow that has saturated at least one
arc on each path from s to t. We name the saturated arcs blocking arcs.

In undirected generalized networks, an edge can be used in both directions,
we consider here that if it is used in one way, it can not be used in the other
direction, i.e., fijfji = 0.

Converting the undirected generalized networks to the directed ones is neces-
sary for the MPA. So, each edge {i, j} is replaced by two arcs (i, j) and (j, i). For
notational convenience, the new directed network is denoted by G = (N,A) and
named constructed directed network. We define residual network Gr = (N,Ar).
The residual network consists of only the arcs with a positive residual capacity
(it is defined in Definition 1).

Consider generalized flow f in G. The GMOPUN in constructed directed
network is;

Maximize Σ{j:(j,t)∈A}γjtfjt (1)

Subject to

Σ{j:(i,j)∈A}fij − Σ{j:(j,i)∈A}γjifji = 0 ∀i ∈ N − {s, t} (2)

0 ≤ fij ≤ αijuij ∀(i, j) ∈ A (3)

0 ≤ fji ≤ (1− αij)uji ∀(j, i) ∈ A (4)

αij ∈ {0, 1} ∀(i, j) ∈ A (5)

The capacity constraints are (3) and (4). In fact, we need to use αij because of
the constraint fijfji = 0.

Take Figure 1 in Gr. Let fij units of flow be sent from i to j in solid line.
Then there exist γijfij units of flow in j and immediately the reverse arc shown by
dotted line in Figure 1 will appear by arc multiplier 1

γij
. Now, if some flow should

be sent from j to i, first the flow (maximum γijfij units) must be sent along the
dotted arc and then, if necessary, along the solid arc from j. Because the available
flow in j should be sent back first and then sending extra flow is allowable. Since
the arc multipliers of solid and dotted arcs are different, we cannot consider them
as one arc and consequently we need Definition 1.

Now let some flow be sent through a cycle i − j − i (solid lines) in Figure 1.
Some excess or deficit or none is created depending on the arc multipliers. This

The maximum outflow problem in undirected generalized networks 307

excess or deficit is artificial (unreal) and also since just one direction of an edge
can be used, then these cycles must not be detected. Definition 1 can help us not
to detect them. The word ”cycle” in this paper excludes i− j − i.

Figure 1: The dotted and solid lines show the cancel and real arcs, respectively

Definition 1. Let f be a generalized flow. If fij units of flow are sent from i to j,
the reverse arc of (i, j) is added to the residual network of the constructed directed
network. Arc (i, j) is called real arc with updated residual capacity urij = uij − fij.
Moreover, the reverse arc (j, i) is named cancel arc and to distinguish from real arc
(j, i), it is shown by (j, i). Its residual capacity and arc multiplier are respectively
ur
ji

= γijfij and γji = 1
γij

.

If both arcs, real and cancel like (i, j) and (i, j) exist in Gr, we name them
parallel arcs. Note that there could be at last 3 arcs between two nodes in Gr

(Figure 1 shows an example.). If both real arcs (i, j) and (j, i) exist in Gr, we
name them active arcs and we name nodes i and j active nodes. If we do not
mention the type of the arc and just write arc (i, j), we mean both types real and
cancel.

An augmenting path (AP) is a residual s-t path. The product of all arc
multipliers, that is called gain factor, on an AP (or cycle) like P is given by g(P) =
Π(i,j)∈Pγij . There are three types of cycles on generalized networks according to
their gain factors; flow generating cycle (FGC) (when g(C) > 1), unit gain cycle
(UGC) (when g(C) = 1) and flow absorbing cycle (FAC) (when g(C) < 1).
Bicycle is an FGC, an FAC cycle and a (possibly trivial) path connecting the two
cycles. A generalized augmenting path (GAP) is a residual FGC, together with a
(possibly trivial) residual path from a node on the cycle to the sink.

Remark 1. To detect a residual cycle or an AP when we follow nodes, if we meet
a node with parallel arcs, the cancel arc should be selected as an arc of the cycle
or AP.

To know the type of a residual cycle like C1, g(C1) should be calculated first.
Take Figure 2 as an illustration. According to remark 1, the detected residual
cycle C1 (the left shape) in Figure 2 is 1 − 2− 3 − 1. Suppose some flow is
augmented in C1 and let arc (2, 3) be saturated. Afterwards, there exists another
residual cycle named C2 (the right shape) in Figure 2, 1−2−3−1 with the same
set of nodes but a different type. C1 is the FAC (g(C1) = (1/2)(1/2)(1/5)) but
C2 is the FGC (g(C2) = (1/2)(1/2)(5)). In fact, the introduction of (2, 3) to the
network creates another cycle with a different type which was hidden before and
after augmentation of C1 appeared.

308 M. Aman, R. Ghanbari and D. Heydari

Figure 2: An example of an FAC and an FGC.

In directed generalized networks, since there are no parallel arcs, after aug-
menting a cycle, there will not be another cycle with the same sets of nodes.
Consequently, FGCs are the only cycles that create excess at t. However, in undi-
rected generalized networks all types of cycles could create some excess at t since
they might make an FGC be hidden. Then all types of residual cycles should be
detected and checked if after their augmentation, cycles will be created (one after
each other).

The following definitions and paragraphs help us deal with all types of residual
cycles and describe the importance of them

Definition 2. An AP between two distinct nodes or a residual cycle with parallel
arcs is named multiple AP or multiple residual cycle, respectively. Otherwise it is
named simple.

Obviously, a simple AP or residual cycle is a kind of multiple one. Take
Figure 2 (the left shape) and 3 as an illustration of multiple residual cycle and
AP, respectively.

Figure 3: An s− t multiple AP

Definition 3. Consider P as a multiple AP (multiple residual cycle) in Gr. The
first sub-augmenting path (sub-cycle) that is detected according to Remark 1 is
named basis.

1 − 2− 3 − 1 and s− 1− 2 − 3− t are the basis in Figure 2 (the left shape)
and 3, respectively.

Definition 4. Given a residual multiple cycle with a residual UGC or FAC as its
basis together with an (possibly trivia) AP connecting the residual multiple cycle
to t. If the excess of t is increased by augmenting flow through the basis and some
of its subsequent subcycles, the residual multiple cycle and its AP is called multiple
generalized augmenting path (MGAP).

The maximum outflow problem in undirected generalized networks 309

Definition 5. A subnetwork of Gr is named a basic network if it consists of only
the simple APs, simple cycles and the bases of the multiple APs and cycles. We
show the basic network by Gb = (N,Ab).

The APs and residual cycles of Gr allowed to be augmented are all in Gb.
Then, we can detect them easily in Gb.

Given a generalized pseudoflow f in a directed generalized network. f is asso-
ciated with a subnetwork induced by the arcs on which f is positive.

The structures of the subnetwork are: a path between two distinct nodes (it
creates deficit at the first node and excess at the end node), a UGC (it does not
create any excess or deficit), an FGC and a path connecting the cycle to a node
(it creates excess at the end of the path), an FAC and a path connecting the cycle
to a node (it creates deficit at the end of the path), a bicycle (it does not create
any excess or deficit). The five structures are named elementary pseudoflows.
According to the following theorem from [20] and [22], a generalized pseudoflow
in a directed generalized network can be decomposed into elementary pseudoflows.

Theorem 1. Given a generalized pseudoflow f. It can be decomposed into com-
ponents f1, f2, ..., fk with k ≤ m such that

f(i, j) =
∑
l

fl (6)

Now consider G and its corresponding constructed directed network G. All
five elementary pseudoflows and Theorem 1 are satisfied in Gb as well as directed
generalized networks.

We claim that s-t APs, GAPs and MGAPs are the only three ways to generate
excess at t in Gr. The following theorem proves our claim.

Theorem 2. A generalized flow in G is a generalized maximum outflow if and
only if Gr has no s− t APs, GAPs or MGAPs.

Proof. Clearly if a generalized flow f has an s-t AP, GAP or MGAP in Gr then it
is not optimal. Now, suppose f has no s-t Aps, GAPs or MGAPs in Gr. Let f∗ be
a generalized maximum outflow. Decompose f∗ − f in Gb according to Theorem
1. Then use the decomposition in Gr. The set of the elementary pseudoflows
denotes how to get f∗ from f . If we show there is none in the decomposition
to create excess at t, f is optimal. There are five cases according to elementary
pseudoflows as follows;

Case 1 : The decomposition has no s-t APs. Consequently, if t belongs to a residual
path, it does not have a flow generator (source node) or if s belongs to a
residual path, augmenting flow in the path cannot create any excess at t.

Case 2 : If t belongs to a residual UGC, by augmenting flow through the residual
UGC the excess of t will not change. Therefore, a residual UGC can create
excess at t only if it is a basis of an MGAP. But it is impossible since f has
no MGAP.

310 M. Aman, R. Ghanbari and D. Heydari

Case 3 : A residual FGC and a (possibly trivia) path in the decomposition creates
excess at t only if t is the endpoint of the path. Then there is a GAP. But
it is a contradiction since f has no GAP.

Case 4 : If t belongs to a residual FAC and a (possibly trivia) path, by augmenting
flow through it the excess of t is decreased. Therefore, it can create excess
at t only if it is a basis of an MGAP. But it is impossible since f has no
MGAP.

Case 5 : t cannot belong to any residual bicycles. Otherwise there is a GAP and
it is a contradiction. Then the excess of t could not change by augmenting
flow through any residual bicycles.

Let us introduce some further notation. A maximal acyclic subnetwork of Gr is
an acyclic subnetwork G1 ⊂ Gr such that there exists no other acyclic subnetwork
of Gr that contains G1. Clearly, it is not unique. In this paper, due to the possible
existence of closed paths including two real arcs like (i, j) and (j, i) in G1, we name
the maximal acyclic subnetwork G1, maximal acyclic real subnetwork. Although
here these closed paths are not considered as cycles, this name is chosen for G1

to be distinguishable from usual maximal acyclic subnetwork. Let G2 denote the
subnetwork of Gb1 formed by all s − t APs with maximum gain factor. Let G3

denote the subnetwork of G2 which contains all the s − t APs with minimum
numbers of arcs.

3 Our proposed algorithm

The principle of the algorithm is to saturate (augmenting some flow to saturate
at least one arc of an AP or GAP) all the s− t APs before GAPs . Then detecting
and saturating the MGAPs. It has five main steps, with each step executed at
most once.

The maximum outflow problem in undirected generalized networks 311

Algorithm 1: The modified Pulat’s algorithm
Input: an undirected generalized network.
Output: maximum outflow

1. Construct a directed network G.

2. Construct a maximal acyclic real subnetwork G1 of Gr.

3. Augmenting flow in s− t APs in G1.

4. Augment (extend) G1 with original arcs not in G1, one at a time, and
augmenting flow through the resulting s− t APs, if any and then in GAPs.

5. Determining the maximum out flow in G1
⋃
Gc1.

In subsequent subsections, Steps 2, 3, 4 and 5 are described in details.

3.1 Construct a maximal acyclic real subnetwork

This part includes two steps. Initial construction of G1 = (N1, A1) (for sim-
plicity notation, Ar1 is denoted by A1) and a step to extend G1 together with
checking for cycles.

The first step is the breadth-first-search (BFS) method (see Horowitz and
Sahni [25]). We start with node s in Gr which has BFS number zero. All the
nodes that can be reached from node s will have a BFS number one. Node s is
then said to be explored. In general, an unexplored node with BFS number l is
picked, all nodes without BFS numbers which can be reached from this node are
assigned BFS number l+1. BFS number to node t is assigned last. All arcs joining
nodes with a BFS number of the predecessor node less than the BFS number of
the successor node are put in A1. The remaining arcs are put in A1

c.

After applying BFS method, the resulting network is always a directed-out
tree since if both arcs (i, j) and (j, i) exist in Gr, one is chosen depending on
whether li < lj or li > lj and clearly the selected arc lies on a path from s to
other nodes.

The next step tries to add arcs in A1
c to A1 one at a time checking whether

or not the new arc forms a cycle with the network constructed so far.

Let (i, j) be one arc in A1
c. Then, (i, j) can be just real since we have not

augmented flow in Gc1 yet. Consequently, there are only two cases;

Firstly, if real arc (j, i) is not in A1, adding and checking can be accomplished
by using the fact that each node in a cycle is a predecessor node of one arc and
a successor node of another arc. One can iteratively eliminate nodes (along with
the incident arcs) of the network which do not satisfy the above condition. If the
network is emptied, then the new arc does not form a cycle with the arcs in A1,
so it is added to A1. Otherwise, it is kept in A1

c.

Secondly, if real arc (j, i) is in A1, to avoid detecting i − j − i, first (j, i)
is eliminated from A1 and afterwards we carry out the same procedure in the
preceding paragraph. Finally, (j, i) should be added to A1 again.

312 M. Aman, R. Ghanbari and D. Heydari

3.2 Augment flow in s− t APs in G1.

There are six main steps.

First we construct subnetwork G2 of Gb1 which includes only s−t APs with the
maximum gain g(.). Obviously, finding a path with maximum gain g(.) is equiv-
alent to finding a path with minimum cost with arc cost cij = −log(γij). G2 can
be constructed in O(mn) time by BellmanFord shortest-path algorithm (If all the
edge multipliers of G are less than or equal to one, G2 can be constructed in O(m)
time by Dijkstras shortest-paths algorithm). To use Bellman-Ford algorithm, the
network should not contain any negative cost cycles. Therefore, if there are active
nodes like i and j in Gb1 with arc multiplier greater than one, we should choose
one of the active arcs. So, when active node i is selected to be scanned for the
first time in first iteration of Bellman-Ford algorithm, if d(j) 6= ∞, then we set
τ = min(d(j) + cij , d(i) + cji). If active node i (j) is made τ , we delete arc (i, j)
((j, i)) temporarily from Gb1 and when Bellman-Ford algorithm is terminated we
add it again to Gb1.

There might be more than one s-t AP with maximum gain, in this case the
layered subnetwork G3 of G2 contains all s− t APs in G2 with minimum number
of arcs. This generation of G3 has been done in Proc Layer given in Pulat [36].

We design Proc Advanced Block flow given with details in Section 4 to calculate
the blocking flow. When there is a multiple s− t AP (a residual cycle), there are
two ways to augment flow in them. First, to augment only through its basis.
Second, to augment flow through all multiple s − t AP (residual cycle), if it is
possible (Proposition 2). Both ways can be done by Proc Advanced Block flow.
The comparison of two ways is also given in Section 4.

Algorithm 2: Proc Outflow in G1

Input: G1.
Output: maximum outflow in G1.

1. Use Bellman-Ford algorithm to generate the maximum gain subnetwork
G2 ⊂ Gb1 from s to t.

(1.1) If no path can be found, then go to Step 6; else go to Step 2.

2. Use Proc Layer to determine the layered network G3 ⊂ G2.

(2.1) If no layered network can be found, then go to Step 1; else go to Step
3.

3. Use Proc Advanced Block flow.

4. R1 = {(i, j) ∈ G1 : (i, j) ∈ s− t AP}.

(4.1) For all (i, j) ∈ R1 if uij = 0 and γij > 1, then G1 = G1 −{(i, j)} and
Gc1 = Gc1

⋃
(i, j).

The maximum outflow problem in undirected generalized networks 313

5. Use Proc Update Cap by blocking flow (BF) to update arc capacities in G2

and G1.

(5.1) F=F+ BF and go to Step 1.

6. The outflow from s to t in G1, vt, is given by vt = Σi∈B(t)γitfit.(B(t) is the
set of immediate predecessor nodes to t.)

Although G1 is referred to as an acyclic real network, it is acyclic only if the
original arcs are considered. In fact, after the first augmentation in subnetwork
G1, the reverse arcs might create some FGCs. Proposition 1 and 2 indicate that
if the s − t AP is simple, the created cycles will not be FGCs and if the s − t
AP is multiple, under what circumstances the created cycles will not be FGCs,
respectively. So, for a multiple s − t AP that does not satisfy Inequality 7, we
augment flow only through its basis.

Proposition 1. The capacity update routine (Proc Update Cap) will not create
FGCs in G1 after augmenting flow in the basis of a multiple s − t AP or simple
s− t AP.

Proof. This is proved similar to Proposition 1 in Pulat [36] by considering remark
1 for GMOPUN.

Proposition 2. Consider P as a multiple s − t AP with a maximum gain basis
and let R show the set of all used (augmented) real arcs among parallel ones after
the augmentation of P . If P satisfies the following property

g(R) =
∏

(i,j)∈R

γij ≥ 1. (7)

after capacity alteration, no FGCs will be created by the reverse arcs.

Proof. Let P1 be the basis of P with the maximum gain factor among all available
bases. There are two cases;
First, if R = ∅, it is proved as same as proposition 1.
Second, if R 6= ∅, let H show the set of parallel arcs of P . Then, we have the
following sets;

F1 = {(i, j) : (i, j) ∈ H −R}

F2 = {(i, j) : (i, j) ∈ R}, E = P −H

Flow increase along path P causes an increase in the capacity of the reverse arcs.
Let P ′ show the reverse multiple AP. We should show that the basis of P ′, P ′1,
will not form an FGC (arcs of P ′1 are the reverse of R, F1 and E). Recall that P1

is the maximum gain basis in G2. Therefore, any s − t AP like P2 must have a
gain factor g(P2) ≤ g(P1). Then

g(P2) ≤ g(P1) = g(E)g(F1)g(F2) (8)

314 M. Aman, R. Ghanbari and D. Heydari

Also, we have

g(R) =
1

g(F2)
(9)

If P ′1 and P2 create a cycle like C, its gain factor is not greater then one since

g(C) = g(E′)g(F ′1)g(R′)g(P2) =
g(P2)

g(E)g(F1)g(R)
(10)

According to 7, 8 and 9 we have

g(C) ≤ g(F2)2 ≤ 1 (11)

If we augment flow through the s − t multiple APs or only their bases and
some cancel arcs among parallel arcs are saturated, their corresponding real arcs
will appear (we call them appeared real arcs) in G1. The appeared real arcs might
create FGCs. Therefore, Step 4 of Algorithm 2 is given to avoid the existence of
the created FGCs in G1. There are two cases:

First, if the gain factors of the appeared real arcs are less than or equal to
one, then there will not clearly be any FGCs (because the gain factors of their
corresponding cancel arcs are greater than one and they were not part of any
FGCs before. So the appeared real arcs are not part of any FGCs.)

Second, if the gain factors of the appeared real arcs are greater than one, then
they might be part of an FGC. So, we eliminate them from G1 and add them to
Gc1 to be checked later one by one whether they create any FGCs.

The following proposition proves the finiteness of the algorithm.

Proposition 3. No AP is used more than once.

Proof. This is proved similar to Proposition 2 in Pulat [36] by considering remark
1 for GMOPUN.

3.3 Augmenting flow in augmented G1 through s − t APs and
GAPs

The introduction of any arc from Ac1 into G1 might create a cycle which may
be an FGC and as a result a GAP, and may also create an s − t AP in G1. We
show the augmented G1 (when an arc is added to G1) by G′1 = (N ′1, A

′
1). Since

the principle of our method is to saturate all the APs before GAPs, dealing with
APs created by introducing new arc from Ac1 should be reached instantly.

Let a set of all APs with maximum gain from s to node i ∈ N in G1 be denoted
by Qsi and its gain by gsi. And if there exists no AP from s to i, we set gsi = 0.
The same concern is used for node j ∈ N to node t. Consider the termination of
Proc Out flow. Consider (i, j) ∈ Ac1. If gsi = 0 (or gjt = 0), clearly there will be
no s-t AP by adding (i,j). If gsi > 0 and gjt > 0, then Qsi

⋃
{(i, j)}

⋃
Qjt is the

maximum gain AP with (i, j) and note that Qsi and Qjt have no arc in common

The maximum outflow problem in undirected generalized networks 315

(otherwise there exists an AP from s to t in G1, contradicting the maximality of
the flow in G1). When all the created s − t APs are augmented, we look for the
cycles created by (i, j) (if (i, j) is not saturated yet). So, Qji is determined. Arc
(i, j) along with Qji will form cycles. Every cycle C has the same gain factor.
If the gain factor g(C) ≤ 1, arc (i, j) is added to Ac1, otherwise (i, j) is kept in
Ac1. In the latter case, there exists FGCs in G1 ∪ (i, j). Using Proc Layer one can
determine paths in Qji that contains the smallest number of arcs which will define
an FGC with the arc (i, j). Then Qjt is determined. Proc Layer on Qjt will define
paths with the smallest number of arcs. Finally, there is a GAP (Qji−i−j−Qjt).

Note that if (i, j) ∈ Ac1 forms an FGC with the arcs in G1, the addition of
the arc to G1 will create problems in determining the maximum gain subnetwork.
Then, arc (i, j) is kept in Ac1 until it is saturated or until all the cycles formed by
(i, j) are FAC or UGC.

All the above procedures are done by Algorithms 3, 4 and 5 given in Appendix.

3.4 Determine the maximum out flow in G1

⋃
Gc

1

When Step 4 in Algorithm 1 is finished, apply search algorithm [2] for (G1
⋃
Gc1)b.

Then, we can find all the nodes that can reach node t along APs. Let these
nodes be shown by N4. We define subnetwork G4 = (N4, A4) in which A4 =
{(i, j), (i, j) ∈ G1

⋃
Gc1 : i, j ∈ N4}.

In Algorithms 6 and 7, we first detect MGAPs in G4 and saturate (augment)
them to increase the excess of t. Next, if any GAPs are created, they are imme-
diately saturated (this is done in Step 9 of Algorithm 7) and then we look for the
new MGAPs. These sequences are repeated until there are no MGAPs.

To detect MGAPs, we should detect UGCs and FACs (as the basis of the
multiple cycles) in G4. Wayne [46] has designed a polynomial time algorithm
based on Bellman-Ford algorithm to identify bicycles if one exists; if there is
none, then UGCs. At the beginning of Algorithm 6, there are no FGCs and
consequently G4 has no bicycles, then by Wayne’s algorithm we can obtain a
subset, say N ′, of all nodes that either participate in an FAC or can reach one
along a path and afterwards since there are no bicycles we can also find all nodes
on UGCs and add them to N ′. Let G′ denote a subnetwork of G4 induced by N ′.
Then all arcs by one outdegree are eliminated from G′. Next, by a depth first
search [2] we can detect a cycle (an FAC or a UGC) in G′. The detected FAC
and UGC can be the basis of an MGAP.

To detect them polynomially, we use Wayne’s algorithm [46]. In fact, his
algorithm is designed to detect all bicycles and UGCs in O(nm) time. His basic
approach is to first identify a bicycle if one exists; if we don’t find one, then we
detect UGCs. His algorithm first detects the FACs and then FGCs connected to
the detected FACs. Then, if there are no bicycles, it detects UGCs. Here, at first,
G4 has no bicycles (otherwise there is a GAP and it contradicts the condition that
we saturate all the GAPs before). But, after the first augmentation some FGCs
might be created in G4 by appeared real arcs. As soon as they are created, if
they are part of some GAPs, they are saturated. Otherwise they cannot reach t.

316 M. Aman, R. Ghanbari and D. Heydari

Then, they do not belong to the updated G4. Consequently, the updated G4 has
also no bicycles and we are able to apply Wayne’s algorithm during the execution
of Algorithm 6.

We design ProcBlocking Arcs given in Appendix to know the amount of aug-
mentation of a path or cycle and their blocking arcs.

Algorithm 6: Determining the maximum outflow in G1
⋃
Gc1

Input: G1
⋃
Gc1.

Output: maximum outflow in G1
⋃
Gc1.

1. Apply search algorithm for G1
⋃
Gc1 to make G4.

(1.1) If N4 6= � and G4 contains some parallel and unmarked arcs, then
go to Step 2; else stop. The current flow is the generalized maximum
outflow.

2. Use Wayne’s algorithm [46] in G4 to detect all nodes, N ′, participated in
FACs and UGCs. Make subnetwork G′ of G4 induced by N ′.

(2.1) Use depth first search in G′ to detect a cycle.

(2.2) If G′ has no cycles or has no cycle with some unmarked arcs (i.e.
Gr has no MGAP), then stop. The current flow is the generalized
maximum outflow.

(2.3) If the cycle found is simple, mark its arcs and go to Step 2.1.

3. Use Proc Multiple Cycles. If the procedure returns �, then go to Step 2.1;
else go to Step 1.

Algorithm 7: Multiple Cycles
Input: a multiple cycle named C.
Output: � if C is not part of an MGAP. Otherwise the detected MGAP and
created GAPs are saturated

1. C = C. Use Proc Blocking Arcs for the basis of C named C1 to distinguish
its blocking arcs and its amount of augmentation shown by BA1 and αC1 ,
respectively.

(1.1) If BA1 is the subset of the parallel arcs of C, then go to Step 2;
else mark arcs of C and return �.

2. If t ∈ N(C1) (nodes of C1), then set αP =∞ and go to Step 4;
else let iC be the junction node and let P = QiCt (QiCt is found by
Bellman-Ford algorithm.

3. Use Proc Blocking Arcs for P to calculate its amount of augmentation, αP .

The maximum outflow problem in undirected generalized networks 317

4. (If αC1 = 0, then use Proc Blocking Arcs) γ1 = αC1(g(C1) − 1) and A =
AC1

⋃
AP (arcs of C1 and P).

5. For l = 1 to |K| do (K is the set of parallel arcs of C)

(5.1) d = l and g(Cl+1) = g(Cl)

g(BAl)
2 .

(5.2) AC = AC −BAl. Consider Cl+1 as new basis.

(5.3) Use Proc Blocking Arcs for Cl+1 to know the BAs of Cl+1 and its
augmentation αl+1.

(5.4) γl+1 = αCl+1
(g(Cl+1)− 1) + γl.

(5.5) If γl+1 < αP , then l = l+ 1. Let Kl denote the parallel arcs of C (Kl

could be different from K).
If BAl ⊆ Kl, then go to the start of Step 5;
else d = l and go to Step 6;

else A = A
⋃

16j6l+1Aj , d = l + 1 and go to Step 8.

6. m = Max16i6l{γi}.

7. If m > 0, then let r be the minimum index that γr = m. A = A
⋃

16j6r Aj

is an MGAP. Go to Step 8; else mark arcs of C and return �.

8. Use Proc Advanced block flow to determine the blocking flow in A.

(8.1) Use Proc Update Cap by blocking flow to update arc capacities. F=F+
BF.

9. While KR 6= � do (KR is the set of appeared real arcs of K)

(9.1) Select (i, j) ∈ KR. Find Qji using Bellman-Ford algorithm.

(9.2) Find the layered network using Proc Layer.

(9.3) If g(Qji)γij ≤ 1, then remove (i, j) from KR and go to Step 9; else
determine Qjt using Bellman-Ford algorithm.

(9.4) Let jc denote the junction node between the cycle Qji
⋃

(j, i) and Qjt.

(9.5) Find the layered network using Proc Layer with the junction node jc
replacing node s.

(9.6) Use Proc Advanced block flow for the created FGC and for the multiple
AP .

(9.7) Use Proc Cap alt. Remove (i, j) from KR.

10. Stop.

Proposition 4. After the capacity update routine (Proc Update Cap), the reverse
arcs will not create a GAP.

Proof. There are two cases:

318 M. Aman, R. Ghanbari and D. Heydari

First, for Qit (i is a junction node on an MGAP), the reverse arcs after the capac-
ity update will not create any FGCs. This is proved similar to proposition
1 since Qit has the maximum gain factor along all the available i− t APs.

Second, consider C as a multiple cycle (as a part of an MGAP). In Algorithm 7,
we carry on augmenting flow through some subcycles of C until the rest of
the subcycles will definitely not create any excess or, the nodes of C have
no connection (AP) to t.
In the former, let L be the last saturated subcycle of C. Undoubtedly, L is
an FGC and its subsequent subcycle named S is a UGC or FAC (otherwise
L is not the last subcycle. If C is completely saturated, S is empty). As a
result, the reverse arcs of L as a basis of a new multiple cycle or as a simple
cycle will be an FAC and arcs of S as a probable basis of a new multiple
cycle or as a simple cycle are not an FGC.
The latter, even if S is an FGC, since there are no APs from C to t, there
is no GAP.

The following proposition proves the finiteness of the algorithm.

Proposition 5. No MGAP is used more than once .

Proof. Imagine Γ is an MGAP with a multiple cycle C and an AP from C to t.
Let Ck denote kth subcylce of C, 1 ≤ k ≤ l. If C1, ..., Ck (k ≤ l) are saturated,
the reverse of all Ck, ..., C1 will not be selected in Algorithm 7 since they together
create deficits. Consequently, Γ is not created again.

According to Theorem 2, the proposed algorithm correctly solves the maxi-
mum outflow in G.

4 Procedure advanced block flow

In this paper, in order to determine the blocking flow we propose and use
a procedure named Advanced block flow which is entirely different from Pulat’s
procedure named Block flow in [36]. In fact, the difference occurs because of the
difference in augmenting flow through the multiple and simple residual APs and
cycles. The difference is re-described by the following example.

Figure 3 shows a multiple AP with basis s− 1− 2 − 3− t named P1. Then,
depending on which arc will be saturated after augmentation, a new path but with
the same sets of nodes as P1 might exist. Suppose for instance (s, 1) is the blocking
arc first. Then, new path P2 (as a subpath), s− 1− 2− 3− t, exists. During the
MPA, if necessary, P2 might be detected and augmented to create extra excess at
t. Consequently, some procedures such as Bellman-Ford algorithm, proc Layer,
Advanced block flow, and Cap alt are repeated several times to saturate all the
s− t APs as the subpaths of a multiple AP such as P1 and P2. To avoid repeating

The maximum outflow problem in undirected generalized networks 319

the procedures, we propose Proc Advanced block flow (see an example 4.2). So,
the purpose of Proc Advanced block flow is to augment flow through the multiple
APs and MGAPs instead of augmenting flow separately in their basis and the
subsequent subpaths and subcycles.

Note that if there is an FGC and it is a basis of a multiple residual cycle, then
we use Proc Advanced block flow just for the FGC. Otherwise, some deficit might
create or the amount of excess created by the FGC might be decreased (Proc
Advanced block flow is also applicable for simple APs).

4.1 The correctness

We just describe the reasons for APs and we have the same concern for the
cycles of MGAPs.

Undoubtedly, utilizing Proc Advanced block flow only once seems more bene-
ficial than applying Proc Block flow beside several repetitions of procedures such
as Bellman-Ford algorithm, Layer and Cap alt. The running time of all proce-
dures required to augment flow through a simple AP either by Proc Block flow
or Proc Advanced block flow is O(n2m). To augment flow through a multiple AP
by Proc Block flow, maximum m+ 1 iterations of Bellman-Ford algorithm, Layer
and Cap alt are needed. However, the iterations reduce to one by applying Proc
Advanced block flow. Consequently, the complexity of the two mentioned cases
are O((m+ 1)n2m) and O(n2m), respectively. As a result, it is estimated that if
a multiple AP contains lots of parallel arcs (then the multiple AP contains many
subpaths) or is too long, the proposed algorithm including Proc Advanced block
flow is more efficient.

Now we should prove that after applying the Proc Advanced block flow and
ProcCap alt, no FGCs will be created. So we need Proposition 7. It is given and
proved in Section 3.2.

Consider αi denotes the maximum amount of flow that node i can send to its
subsequent node to augment flow in an AP. Furthermore, let uij show the capacity
of (i, j) (uij = fjiγji). In addition, two functions named Heaviside step and Sign
are used in the following procedure and shown by H and Sgn respectively. The
Proc Advanced block flow is designed for s − t APs. Then, for any i − j APs (or
cycles), i and j are replaced by s and t, respectively.

Algorithm 8: Advanced block flow
Input: s− t APs or residual cycles .
Output: the blocking flow.

1. Initialize: set k = 1 and w(k) = s, where w(k) denotes the k-th node in the
AP (multiple or simple), henceforth referred to as an element of path. All
arcs of the input network, A3, are ’unmarked’ initially. Go to Step 2 with
i = s.

2. If there exists an unmarked arc (i, j) or (i, j) ∈ A3, then

320 M. Aman, R. Ghanbari and D. Heydari

(2.1) k = k + 1, w(k) = j, i = j.

(2.2) If i 6= t, then go to the start of Step 2; else the AP found is named
Ps and go to Step 3;

else backtrack to node w(k − 1).

(2.3) if k = 0, then go to Step 7; else let h = w(k − 1), mark arc (h, i), set
i = h, k = k − 1 and go to Step 2.

3. /* Construct the multiple AP named Pm*/

Pm includes Ps and (i, j) ∈ A1 where (i, j) ∈ Ps. Go to Step 4 by Pm.

4. /* Augment flow into node t*/

(4.1) αw(1) = uw(1)w(2) + uw(1)w(2), l = 2.

(4.2) While l ≤ k do

i. i = w(l − 1), j = w(l). If l 6= k, then h = w(l + 1).

ii. βj = (
uij
γij

+ (αi − uij)γijSgn(αi − uij))H(αi − uij) + αi
γij
Sgn(uij−

αi)H(uij − αi).
iii. If l = k, then αj = βj ; else αj = min(βj , ujh + ujh).

iv. l = l + 1.

5. /* Modify capacity*/ γ = 1.

(5.1) While k ≥ 2 do

i. i = w(k − 1), j = w(k), θ = αj .

ii. If uij > 0 and uij > 0, then R = uij and r = 1 else r = 0.

iii. uji = uji + (θγij − uij)γijSgn(γijθ − uij)H(γijθ − uij).
iv. uji = uji + θH(uij − γijθ).
v. If uij = 0, then uij = uij − θ

γij
;

else uij = uij − (θγij − uij)Sgn(γijθ − uij)H(γijθ − uij).
vi. uij = (uij − γijθ)H(uij − γijθ).
vii. If R > uij and r = 1, then γ = γγij .

viii. k = k − 1.

6. If γ < 1, then use original capacity vector, U , and Ps. Go to Step 4;
else

(6.1) mark each arc (i, j) or (i, j) whose capacity is zero.

(6.2) If there are unmarked arcs, then let w(k′) denote the tail of the last
unmarked arc on the path. Set h = w(k′), i = h, k = k′ and clear j.
Delete arcs in Ps from k′ to t. Then return to the start of Step 2; else
go to Step 7.

7. /* Determine blocking flow in G3*/ Let U and U2 denote the original capacity vector
and the capacity vector at this step, respectively. The blocking flow vector
in G3 is determined from blocking flow = U − U2.

The maximum outflow problem in undirected generalized networks 321

4.2 An example

Figure 4 is provided to perform a comparison between Proc Advanced block
flow and ProcBlock flow.

In Figure 4, four sequential APs are 1− 2− 3− 4 (the basis), 1 − 2− 3− 4,
1 − 2 − 3− 4 and 1 − 2 − 3 − 4 when 2,3,2 and 2 units of flow are augmented
through them, respectively.

Figure 4: A multiple AP in Gr

Now consider ProcBlock flow is used in the MPA. After using Bellman-Ford
algorithm and Proc Layer, if the basis is selected to be augmented, then the next
residual AP is 1 − 2− 3− 4 shown in Figure 5. Suppose that this path is also
selected to be augmented, then the next AP is 1− 2− 3− 4. After saturating it,
if it is in G3, next AP 1− 2− 3− 4 will be detected. Finally the excess 20

3 creates
at t if the last AP belongs to G3 too. Consequently, several repetitions of Proc
Layer, Bellman-Ford algorithm, Block flow and Proc Cap alt are necessary for all
the preceding operations.

Now consider ProcAdvanced block flow is used in the MPA. Since the multiple
AP satisfies equation 4.1 (property of Proposition 7), it is possible to saturate
four APs at the same time by augmenting 9 units of flow and achieve 20

3 excess
at t as well. Notice that even if the AP in Figure 5 is not in G3 , i.e., it is not
allowed to be augmented and as a result the next two APs will not exist in Gr

in the preceding paragraph, applying Proc Advanced block flow and augmenting
flow in the multiple AP are considered more beneficial than applying ProcBlock
flow and augmenting flow just in its basis since the first case creates more excess
at t in less time.

Figure 5: The AP in G3

5 The other example

Take undirected network G in Figure 6 to apply the MPA.
The s-t path found in ProcOutflow in G1 is s-1-3-2-t.
Now arc (2,1) is chosen from Gc1. In fact, this is the only arc from Gc1 made

a GAP. Then G1
⋃
Gc1 has an MGAP with the basis in Figure 9. Its subsequent

cycles are shown in Figure 10 and 11.

322 M. Aman, R. Ghanbari and D. Heydari

Figure 6: Undirected network G

Figure 7: The output of Proc Outflow in G1

Figure 8: The output of Proc Out flow in augmented G1

Figure 9: An FAC and an AP to t in G1
⋃
Gc1

Finally, G1
⋃
Gc1 satisfies the optimality condition in Theorem 2 (vt = 2 +

4/3− 2− 1/2 + 12 = 77/6).

The maximum outflow problem in undirected generalized networks 323

Figure 10: The FAC and the AP to t in G1
⋃
Gc1

Figure 11: The FGC and the AP to t in G1
⋃
Gc1

6 Conclusions

We have designed an algorithm for undirected generalized maximum out flow
problem. We have also stated and proved the optimality condition of maximum
outflow problem in its corresponding directed network. In addition, we have
improved its running time by a complete change in one of its procedure. The
proposed algorithm raises several interesting questions for future research such as
the maximization of the value of flow from s to t (inflow), the maximization of
flow in multi-terminal networks, multi-commodity problems, convex generalized
flow,or design problems.

7 Appendix

This Section is about Proc Out flow in augmented G1, Proc Max path flow in
aug G1, Proc Cycle max flow in aug G1 and Proc Cap alt from Pulat [36] adapted
to GMOPUN. We also design Proc Blocking arcs at the end.

Algorithm 3: Proc Out flow in augmented G1- the parent Proc
Input: A1 and Ac1.
Output: A1

⋃
Ac1 without any s− t APs and GAPs.

Initially all arcs are unscanned.

1. If Ac1 or all the arcs in Ac1 are scanned, then stop;
else unscan all arcs and go to Step 2.

2. Select (i, j) ∈ Ac1. Use Proc Max path flow in aug G1.

324 M. Aman, R. Ghanbari and D. Heydari

If gjt 6= 0 and uij > 0, then go to Step 3;
else scan arc (i, j) and go to Step 1.

3. Use Proc Cycle max flow in aug G1. Go to Step 2.

Algorithm 4: Proc Max path flow in aug G1

Input: this Proc is entered with gsi > 0 (corresponding to subnetwork of maximal
gain Qsi) and gjt > 0 (corresponding to subnetwork of maximal gain Qjt).
Output: A′1 without any s− t APs.

1. Go to Proc Layer with Qsi and Qjt.

2. If no layered network can be constructed for either network, then return
to Parent Proc; else go to Proc Advanced block flow, then go to Step 3.

3. Update arc capacities in Qsi, Qjt and arc (i, j) using Proc Cap alt.
If uij = 0, then add arc (i, j) to A1 and subtract it from Ac1. Return to
Parent Proc; else determine new gsi > 0 and gjt > 0, and go to Step 1.

Algorithm 5: Proc cycle max flow in aug G1

Input: A1 with arc (i, j) ∈ Ac1.
Output: A′1 without GAPs.

1. With arc (i, j) ∈ Ac1, determine Qji, hence gji using Bellman-Ford algorithm.
If no maximum gain path exists from node j to node i, then label arc (i, j)

as scanned and return to Parent Proc.
else if g(C) ≤ 1 (g(C) = gjiγij), then set A1 = A1 ∪ (i, j) and Ac1 =

Ac1 − (i, j) and return to start of the step; else go to Step 2.

2. Find the layered network using Proc Layer with the nodes j and i replacing
the nodes s and t, respectively.
If no layered network exists, then go to Step 1; else go to Step 3 with
C = {arcs of the layer network ∪(i, j)}.

3. Find the maximum gain subnetwork Qjt, using Bellman-Ford algorithm.
If no such path exists, then go to Step 1; else go to Step 4.

4. Let jc denote the junction node between the cycle C and the maximum gain
subnetwork Qjt. Find the layered network G3 ⊂ G2 using Proc Layer with
the junction node jc replacing node s.
If there exists no layered network, then go to Step 3; else continue to Step
5.

5. Determine the blocking flow using Proc Advanced block flow. Maximum flow
through the cycle to node jc (for the basis) and from node jc to node t is
determined.

The maximum outflow problem in undirected generalized networks 325

6. Perform capacity alteration by blocking flow in G2 and G1 using Proc Cap
alt.
If the saturated arc is in G3, then go to Step 4.
else if uij > 0, then go to Step 1.

else uij = 0, in which case set A1 = A1 ∪ (i, j). Return.

Algorithm 9: Proc Cap alt
To alter the capacity of the arcs in the maximum gain subnetwork by the blocking
flow in the layered subnetwork.

1. For arc (i, j) with fij > 0 (blocking flow), uij = uij − fij and uji = uji +
γijfij .
For arc (i, j) with fij = 0, uij and uji remain unchanged.

Algorithm 10: Blocking arcs
Input: Arcs of an AP or a cycle (GAP) that are denoted by A.
Output: The amount of augmentation of the inputs and their blocking arcs.

1. Unscan all arcs of A.

2. i=s, βi =∞, l = 1.

3. If there is no (j, i) ∈ A, then go to Step 5; else go to Step 4.

4. Select an (i, j) ∈ A \ P .

(4.1) If j=t, then P = P
⋃
{(i, j)}, set i = s and mark arcs (s, h) ∈ P . Go

to the start of Step 4.

(4.2) If j=s, then P = P
⋃
{(i, j)}, select an unmarked arc (s, h) ∈ P , i=s,

j=h and unmark all arcs. Start Step 5 by (i, j).

(4.3) If j 6= s and j 6= t, then P = P
⋃
{(i, j)}, i=j and clear j. Go to the

start of Step 4.

5. Select an unscan (i, j) ∈ A and continue. If there is none, then go to Step
6.

(5.1) If i=s and l > 1, then αij = αs; else αij = min{βi, uij}.
(5.2) If αij = uij and i 6= s, then K = K

⋃
{αij}.

(5.3) βj = αijγij and L = L
⋃
{(i, j)}.

(5.4) Scan arc (i, j).

(5.5) If j=t, then

If αs = 0, then for (s, h) ∈ L set αsh =
βj∏

(v,w)∈L γvw
.

(5.6) If αsh = ush, then K = K
⋃
{αsh}, αs = αsh and go to Step 6.

(5.7) else for the marked (s, h) ∈ L set αsh =
βj∏

(v,w)∈L γvw
.

326 M. Aman, R. Ghanbari and D. Heydari

(5.8) If αsh = ush, then K = K
⋃
{αsh}, αs = αsh. Unmark (s, h) and go

to Step 6.

(5.9) If j=s, then for (s, h) ∈ L set αsh =
βj∏

(v,w)∈L γvw
, mark (s, h), αs =

βs − αsh, l = l + 1 and go to the start of Step 5.

(5.7) l = l + 1 and go to the start of Step 5.

6. α = min{αij : (i, j) ∈ K}.
for all (i, j) ∈ L if αij = α, then mark (i, j) as the blocking arc.
Return αs as the amount of augmentation and marked arcs of L as the
blocking arcs.

References

[1] Adams, Beglari, Laughton, and Mitra, Mathematical programming systems
in electrical power generation, transmission and distribution planning, Proc.
with Power System Computation Conference, 1972.

[2] Ahuja, R. K., Magnanti, T. L. and Orlin, J. B., Network Flows, Theory,
Algorithms, and Applications, Prentice Hall, Englewood Clifs, NJ, 1993.

[3] Balas, E., and Evanescu, P.L., On the generalized transportation problem,
Management Science 11 (1964), 188-202.

[4] Balas, E., The dual method for the generalized transportation problem, Man-
agement Science 12 (1966), 555-568.

[5] Barzilia, J., Cook, W.D., and KRESS, M., A generalized network formulation
of the pairwise comparison consensus ranking model, Management Science 32
(1986), 1007-1014.

[6] Bhaumik, G., Optimum operating policies for a water distribution system
with losses, Unpublished PhD dissertation, University of Texas at Austin,
Texas, (1973).

[7] Busacker, R. G. and Gowen, P. J., A procedure for determining a family
of minimum-cost network flow patterns, Technical Report 15, Operations
Research Office, Johns Hopkins University, (1961).

[8] Charnes, A., and Cooper, W.W., Management Models and Industrial Appli-
cations of Linear Programming, Wiley, New York, (1961).

[9] Crum, R.L., Klingrnan, D., and Tavis, L.A., Implementation of large-scale
financial planning models; Solution efficient transformations, Research report
CCS 267, The University of Texas at Austin, Texas, (1976).

[10] Crum, R.L. and Nye, DJ., A network model of insurance company cash flow
management, Mathematical Programming 15 (1981), 86-101.

The maximum outflow problem in undirected generalized networks 327

[11] Dror, M., Trudeau, P. and Ladany, S.P., Network models for seat allocation
on flights, Transportation Research 22B (1988), 239-250.

[12] Eiseman, K., The generalized stepping stone method for the machine loading
model, Management Science 11 (1963), 154-176.

[13] Ford, L. R. and Fulkerson, D. R., Flows in Networks, Princeton University
Press, Princeton, NJ, 1962.

[14] Fulkerson, D. R., An out-of-kilter method for minimal cost flow problems,
SIAM Journal 9 (1961), 13-27.

[15] Glover, F., Glover, R. and Martinson, F.K., A netform system for resource
planning in the U.S. Bureau of land management, Journal of the Operational
Research Society 35 (1984), 605-616.

[16] Glover, F., Hultz, J., Klingman, D., and Stutz, J., Generalized networks:
A fundamental computer based planning tool, Management Science 24/12
(1978), 1209-1220.

[17] Glover, F., Klingman, D., and Phillips, N., A new polynomially bounded
shortest path algorithm, Operations Research 33 (1985), 65-73.

[18] Glover, F., Klingman, D., and Phillips, N., Netform modelling and applica-
tions, Interfaces 20 (1990), 7-27.

[19] Glover, F., and Rogozinski, J., Resort development: A network-related model
for optimizing sites and visits, Journal of Leisure Research (1982), 235-247.

[20] Goldberg, A. V., Plotkin, S. A. and Tardos, E’., Combinatorial algorithms
for the generalized circulation problem, Mathematics of Operations Research
16 (1991), 351- 379.

[21] Goldfarb, D. and Jin, Z., A faster combinatorial algorithm for the generalized
circulation problem, Mathematics of Operations Research 21 (1996), 529-539.

[22] Gondran, M. and Minoux, M., Graphs And Algorithms, Wiley, 1984.

[23] Gorham, W., An application of a network flow model to personnel planning,
EEE Transactions on Engineering Management 10 (1963), 113-123.

[24] Guim, L., and Nye, D.J. , A network model of insurance company cash flow
management, Mathematical Programming Study 15 (1981), 86-101.

[25] Horowitz, E., and Sahni, S., Fundamental of Computer Algorithms, Com-
puter Science Press, Inc, (1974).

[26] Iri, M., A new method of solving transportation-network problems, Journal of
the Operations Research Society of Japan 3 (1960), 27-87.

328 M. Aman, R. Ghanbari and D. Heydari

[27] Itai, A., Two-commodity flow, Journal of the Association for Computing Ma-
chinery 25 (1978), no. 4, 596-611.

[28] Jarvis, J. J. and Jezior, A. M., Maximal flow with gains through a special
network, Operations Research. 20 (1972), 678-688.

[29] Jewell, W. S., Optimal flow through networks, Technical Report 8, Operations
Research Center (1958) MIT.

[30] Jewell, W. S., Optimal flow through networks with gains, Operations Research
10 (1962), 476-499.

[31] Kim, Y., An optimal computational approach to the analysis of a generalized
network of copper refueling process, Joint ORSA /TIMS/AIIE Conference,
Atlantic City, NJ, (1972).

[32] Klein, M., A primal method for minimal cost flows with applications to the
assignment and and transportation problems, Management Science 14 (1976),
205- 220.

[33] Liu, C., and Wu, F.F., A generalized network flow model with application to
power supply-demand problems, Networks 14 (1984), 117-139.

[34] Olver, N. and Vgh, L. A., A simpler and faster strongly polynomial al-
gorithm for generalized flow maximization, In Proceedings of 49th Annual
ACM SIGACT Symposium on the Theory of Computing, Montreal, Canada,
(STOC17) (2017), no. 12.

[35] Onaga, K., Dynamic programming of optimum flows in lossy communication
nets, IEEE Trans, Circuit Theory 13 (1966), 308-327.

[36] Pulat, P.S., Maximum outflow in generalized flow networks, European Jour-
nal of Operational Research 43 (1989), 65-77.

[37] Radzik, T., Faster algorithms for the generalized network flow problem, Math-
ematics of Operations Research 23 (1998), 69-100.

[38] Restrepo, M. and Williamson, D.P., A simple gap-cancelling algorithm for the
generalized maximum flow problem, Mathematical Programming 118 (2009),
47-74.

[39] Robichek, A.A., Teichroew, D., and Jones, J.M., Optimal short-term financ-
ing decision, Management Science 12 (1965), 1-36.

[40] Sasson, A.M. , Nonlinear programming solutions for load flow, minimum loss
and economic dispatching problems, IEEE Transactions on Power Apparatus
Systems PAS. 88 (1969), 399-409.

[41] Steinberg, E., and Napier, H.A., Optimal multi-level lot sizing for require-
ments planning systems, Management Science. 26/12 (1980), 1258-1271.

The maximum outflow problem in undirected generalized networks 329

[42] Talukdar, S.N., and Morton, T.E., The optimal operation of power distri-
bution networks with dispersed storage, dispersed generation and curtailable
loads, Unpublished paper, (1980).

[43] Truemper, K., On max flows with gains and pure min-cost flows, SIAM Jour-
nal on Applied Mathematics 32 (1977), 450-456.

[44] Truemper, K., Optimal flows in networks with positive gains, PhD thesis,
Case Western Reserve University, (1973).

[45] Vegh, L. A, A Strongly Polynomial Algorithm for Generalized Flow Maxi-
mization, Mathematics of Operations Research (2016), 1-33.

[46] Wayne, K. D., A polynomial-time combinatorial algorithm for generalized
minimum cost flow, STOC ’99 Proceedings of the thirty-first annual ACM
symposium on Theory of computing (1999), 11-18.

[47] Wayne, K. D., Generalized maximum flow algorithms, PhD thesis, Cornell
University, (1999).

330 M. Aman, R. Ghanbari and D. Heydari

