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Abstract

There are several types of problems that can be modeled and solved as
minimum spanning tree problems. Sometimes the weighted graph in which
we need to determine a minimum spanning tree differs from another weighted
graph, in which a minimum spanning tree is already established, only by an
edge weight (which is reduced or augmented by a units). We will describe al-
gorithms that determine minimum spanning trees in the new weighted graphs
starting from a minimum spanning tree in the original weighted graph.
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1 Introduction

The literature on graph algorithms is extensive([1], [2], [3]) and one of the
reasons is the widespread and diverse applications of graphs. From the late 1920s
through the 1960s, researchers designed independently several minimum spanning
tree algorithms. For instance, the broadly and frequently used greedy algorithm,
that determines a minimum spanning tree by growing it starting from a single
node, is known as Prim’s algorithm. It is accurate that Robert Prim developed it
in 1957, but this algorithm was earlier described by Vojtech Jarnik, back in 1930,
and also later, in 1959, by Edsger Dijkstra. This is not an isolated fact, this hap-
pened also to another minimum spanning tree algorithm that was independently
developed by Otakar Boruvka in 1926 and by George Sollin in 1965.
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The minimum spanning tree problem is studied because it arises both when
modeling and solving a real world problem and, also, as a sub-problem in more
complex optimization problems.

Let G = (N,A) be an undirected graph, defined by a set N of n nodes and
a set A of m edges. To each edge [x, y] ∈ A a weight w[x, y], that can represent
length, cost, time, penalty etc, is associated. Consequently, G = (N,A,w) is a
weighted undirected graph.

Let G = (N,A,w) be a connected weighted undirected graph. This implies
that there is at least one spanning graph of G, denoted by G′ = (N,A′), with
A′ ⊂ A, such that G′ = (N,A′) is a tree. We refer to G′ = (N,A′) as a spanning
tree of G = (N,A,w). The weight of G′ is defined as w(G′) =

∑
[x,y]∈A′ w[x, y].

The edges in A′ are named tree edges, while the edges in A\A′ are named non-tree
edges.

In the connected weighted undirected graph G = (N,A,w), the minimum
spanning tree problem is to determine a spanning tree G′ = (N,A′), whose weight
is minimized. Such a spanning tree is called a minimum spanning tree of G.

The known minimum spanning tree algorithms are based on the following
optimality conditions: cut optimality conditions and path optimality conditions.

Let G = (N,A,w) be a connected weighted undirected graph and let G′ =
(N,A′) be a spanning tree of G. By removing an arbitrary tree edge [x, y] from
the spanning tree G′ = (N,A′) a disconnected graph, G” = (N,A′\{[x, y]}), is
obtained. Let X and Y be the node sets that induce the two connected compo-
nents of G”. The edges of graph G that have one endpoint in X and the other
endpoint in Y form a cut, named the cut formed by deleting the tree edge [x, y].

Theorem 1. [1](Cut Optimality Conditions) A spanning tree G′ = (N,A′) of the
connected weighted undirected graph G = (N,A,w) is a minimum spanning tree
if and only if it satisfies the following cut optimality conditions:

For every tree edge [x, y], w[x, y] ≤ w[u, z], for every edge [u, z] contained in
the cut formed by deleting the tree edge [x, y].

Let G = (N,A,w) be a connected weighted undirected graph and let G′ =
(N,A′) be a spanning tree of G. For every non-tree edge [x, y] there is a unique
path Px,y between x and y in the spanning tree G′ = (N,A′).

Theorem 2. [1](Path Optimality Conditions) A spanning tree G′ = (N,A′) of
the connected weighted undirected graph G = (N,A,w) is a minimum spanning
tree if and only if it satisfies the following path optimality conditions:

For every non-tree edge [x, y], w[x, y] ≥ w[u, z], for every edge [u, z] contained
in the unique path Px,y between x and y in the spanning tree G′ = (N,A′).

2 Incremental algorithms

Data may vary in time in the real life problems that can be modeled and
solved as minimum spanning tree problems. For instance, a usual variation in real
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world problems might imply an increase or a decrease in the weight of an edge
in the corresponding weighted graph. Suppose that a minimum spanning tree
has been already determined in the original weighted graph. In this case, instead
of applying to the modified graph a known minimum spanning tree algorithm,
starting from scratch, one can use the already established minimum spanning tree
in the original graph as a starting point. We focus on the second approach because
it is more efficient than the first one.

Let G = (N,A,w) be the original connected weighted undirected graph in
which a minimum spanning tree G′ = (N,A′) of weight w(G′) is already estab-
lished. Let Ĝ = (N,A, ŵ) be the connected weighted undirected graph that differs
from G only by the weight of a given edge [l, k], which could be larger or smaller
than the initial weight of [l, k] by a given positive amount a. So, ŵ[x, y] = w[x, y],
for each [x, y] ∈ A\{[k, l]} and ŵ[k, l] = w[k, l]± a.

There are four cases that might occur:
Case 1: If the weight of a non-tree edge [l, k] increases by a units, then the

minimum spanning tree G′ = (N,A′) of G is, obviously, a minimum spanning tree
of the modified graph and it has the same weight as in the original graph.

Case 2: If the weight of a tree edge [l, k] increases by a units, then it is possi-
ble that the original graph G and the modified graph Ĝ have different minimum
spanning trees. In order to determine a minimum spanning tree of Ĝ, first, we
delete the edge [l, k] from the tree G′ = (N,A′). This way a cut is obtained.
Then a minimum weight edge, [x, y], of this cut is determined. The spanning tree
G” = (N,A”), where A” = A′\{[k, l]}∪{[x, y]} is, according to the cut optimality
conditions, a minimum spanning tree of Ĝ. The algorithm that determines a min-
imum spanning tree in the modified weighted graph Ĝ starting with a minimum
spanning tree G′ = (N,A′) of the original weighted graph G is the following:

UnderestimatedTreeEdge Algorithm;
Begin

determine the cut obtained by deleting the tree edge [l, k];
determine a minimum weight edge [x, y] in this cut;
A” = A′\{[k, l]} ∪ {[x, y]};

end.

Theorem 3. The UnderestimatedTreeEdge algorithm determines a minimum span-
ning tree G” = (N,A”) in the connected weighted graph Ĝ with an underestimated
tree edge weight starting with a minimum spanning tree G′ = (N,A′) in the orig-
inal network G in O(m) time.

Proof. The most time consuming operation in the algorithm is to determine the
cut obtained by deleting the tree edge [l, k], which in a graph with m edges can
be done in O(m) time.

Remark 1. Since w[k, l] ≤ ŵ[x, y], it follows that ŵ(G”) ≥ w(G′).

Case 3: If the weight of a non-tree edge [l, k] decreases by a units, then the
minimum spanning tree of the modified graph Ĝ can be different than from mini-
mum spanning tree G′ = (N,A′) of G. In order to determine a minimum spanning
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tree of Ĝ, first, we determine a maximum weight edge [x, y] in the unique path
Pk,l between nodes k and l in the spanning tree G′ = (N,A′).

If w[x, y] ≤ w[k, l] − a then G′ = (N,A′) is also a minimum spanning tree in
Ĝ; otherwise we form the spanning tree G” = (N,A”), where A” = A′\{[x, y]} ∪
{[k, l]}. The path optimality conditions imply that the spanning tree G” will be
a minimum spanning tree of Ĝ. Moreover, in this case, the weight of G” will be
smaller than the weight of G′ by w[x, y]− w[k, l] + a, which is a strictly positive
value. So, in this case we can use the following algorithm to determine a minimum
spanning tree in the modified graph:

OverestimatedNonTreeEdge Algorithm;
Begin

determine the unique path Pk,l between nodes k and l in the spanning
tree G′ = (N,A′);
determine a maximum weight edge [x, y] in the unique path Pk,l;

if w[x, y] ≤ w[k, l]− a then G′ is a minimum spanning tree in Ĝ;
else begin

A” = A′\{[x, y]} ∪ {[k, l]};
G” = (N,A”) is a minimum spanning tree in Ĝ;
end;

end.

Theorem 4. The OverestimatedNonTreeEdge algorithm determines a minimum
spanning tree G” = (N,A”) in connected weighted graph Ĝ with an overestimated
non-tree edge weight starting with a minimum spanning tree G′ = (N,A′) in the
original network G in O(n) time.

Proof. The most time consuming operation in the algorithm is to determine the
unique path Pk,l between the nodes k and l in the spanning tree G′ = (N,A′),
which, in a tree with n nodes, can be done in O(n) time.

Case 4: If the weight of a tree edge [l, k] decreases by a units, both the
original graph G and the modified graph Ĝ have the same minimum spanning
tree G′ = (N,A′). Obviously, the weight of the spanning tree in the modified
graph is smaller by a units than the weight of the same minimum spanning tree
in the original graph.
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