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N(k)-PARACOMPACT THREE METRIC AS A ETA-RICCI
SOLITON

Debabrata KAR1 and Pradip MAJHI ∗,2

Abstract

In this paper, we study Eta-Ricci soliton (η-Ricci soliton) on three di-
mensional N(k)-paracontact metric manifolds. We prove that the scalar
curvature of an N(k)-paracontact metric manifold admitting η-Ricci solitons
is constant and the manifold is of constant curvature k. Also, we prove that
such manifolds are Einstein. Moreover, we show the condition of that the
η-Ricci soliton to be expanding, steady or shrinking. In such a case we prove
that the potential vector field is Killing vector field. Also, we show that
the potential vector field is an infinitesimal automorphism or it leaves the
structure tensor in the direction perpendicular to the Reeb vector field ξ.
Finally, we illustrate an example of a three dimensional N(k)-paracontact
metric manifold admitting an η-Ricci soliton.
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1 Introduction

In 1982, R. S. Hamilton [12] introduced the notion of Ricci flow in Riemannian
geometry to find a canonical metric of the aforesaid manifolds which plays an
important role to understand its singularities. The Ricci flow is an evolution
equation for metrics on a Riemannian manifold defined as follows:

∂

∂t
g = −2S, (1)

where S denotes the Ricci tensor of the Riemannian metric g. Ricci solitons are
special solutions of the Ricci flow equation (1) of the form g = σ(t)ψ∗

t g with the
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initial condition g(0) = g, where ψt are diffeomorphisms of M and σ(t) is the
scaling function. A Ricci soliton is a generalization of an Einstein metric.
We recall the notion of Ricci soliton according to [5]. On the manifold M , a Ricci
soliton is a triple (g, V, λ) with g, a Riemannian metric, V a vector field, called
the potential vector field and λ a real scalar, called potential function such that

£V g + 2S + 2λg = 0, (2)

where £V g denotes the Lie derivative of the metric g along V . Metrics satisfying
(2) are interesting and useful in physics and are often referred as quasi-Einstein
([6],[7]).
Reffering to the equation (2), a Ricci soliton is said to be shrinking, steady or
expanding according whether λ is negative, zero or positive, respectively.
Compact Ricci solitons are the fixed points of the Ricci flow ∂

∂tg = −2S projected
from the space of metrics onto its quotient modulo diffeomorphisms and scalings,
and often arise blow-up limits for the Ricci flow on compact manifolds. Theoretical
physicists have also been looking into the equation of Ricci soliton in relation with
string theory. The initial contribution in this direction is due to Friedan [11] who
discusses some aspects of it. Recently, the notion of almost Ricci soliton has been
introduced in [21] by Piagoli, Riogoli, Rimoldi and Setti.
Recently, Ricci solitons have also been extensively studied in pseudo-Riemannian
settings. For wide survey and further information on Riemannian (or pseudo-
Riemannian) Ricci solitons, we may refer to ([3], [13], [14], [20], [26], [27]) and
many others.
As a generalization of Ricci solitons, the notion of Eta-Ricci solitons(or η-Ricci
solitons) was introduced by Cho and Kimura [8]. This notion has also been studied
by Calin and Crasmareanu in [5], for Hopf hypersurfaces in complex space forms.
An η-Ricci soliton is a tuple (g, V, λ, µ), where V is a vector field on M , λ and µ are
real constants, and g is a Riemannian (or pseudo-Riemannian) metric satisfying
the equation

£V g + 2S + 2λg + 2µη ⊗ η = 0. (3)

In this connection we mention the works of Blaga ([1], [2]) and Prakasha et al.
[22] on η-Ricci solitons. In particular, if µ = 0, then the notion of η-Ricci solitons
(g, V, λ, µ) reduces to the notion of Ricci solitons (g, V, λ). If µ 6= 0, then the η-
Ricci solitons is called proper η-Ricci solitons. We refer to ( [1], [2] [16], [17], [18],
[19]) and references therein for a survey and further references on the geometry
of η-Ricci solitons on pseudo-Riemannian manifolds.
The notion of almost paracontact manifolds as analogous to almost contact man-
ifolds was introduced by Sato in ([24],[25]). It is eye-catching that an almost
contact manifold is always odd dimensional but an almost paracontact manifold
could be even dimensional as well. The notion of paracontact metric structures
were initiated by Kaneyuki and Williams [15] in 1985. In the last few years, many
authors have studied paracontact metric manifolds, highlighting similarities and
differences regarding the most investigated research works on contact metric man-
ifolds.
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We have inspired to classify η-Ricci solitons on three dimensionalN(k)-paracontact
manifolds by the above studies and its interest to the theoretical physicists.
After introduction, in section 2, we study the basic informations and formulae
concerning three dimensional N(k)-paracontact metric manifolds. In section 3,
we prove that the scalar curvature of an N(k)-paracontact metric manifold ad-
mitting η-Ricci soliton is constant and the manifold is of constant curvature k.
Also, we prove that such manifolds are Einstein. Moreover, we show the condition
of that the η-Ricci soliton to be expanding, steady or shrinking. Then we prove
that the potential vector field is an infinitesimal automorphism or it leaves the
structure tensor in the direction perpendicular to the Reeb vector field ξ.

2 Three dimensional N(k)-paracontact metric mani-
folds

A (2n+1)-dimensional smooth manifold M2n+1 has an almost paracontact
structure (φ, ξ, η) if it admits a tensor field φ of type (1,1), a vector field ξ, a
1-form η and and a Riemannian metric g satisfying the following condition [29]:

φ2X = X − η(X)ξ, η(X) = g(X, ξ), (4)

for any smooth vector fields X,Y on M2n+1 and consequently we have

φξ = 0, η ◦ φ = 0, η(ξ) = 1. (5)

An almost paracontact manifold equipped with a pseudo-Riemannian metric g is
said to be an almost paracontact metric manifold if the following condition holds:

g(φX, φY ) = −g(X,Y ) + η(X)η(Y ), (6)

for any smooth vector fields X,Y on M2n+1.
The structure (φ, ξ, η, g) is named as almost paracontact metric structure. Any
almost paracontact structure admits compatible metrics, which, because of (5),
have signature (n + 1, n). The fundamental 2-form Φ of an almost paracontact
metric structure (φ, ξ, η, g) is defined by Φ(X,Y ) = g(X,φY ), for any smooth
vector fields X, Y on M2n+1. If dη = Φ, then the manifold (M2n+1, φ, ξ, η, g) is
called a paracontact metric manifold and g the associated metric.
An almost paracontact metric structure (φ, ξ, η, g) is said to be normal if

[φ, φ]− 2dη ⊗ ξ = 0, (7)

where [φ, φ] is the Nijenhuis torsion tensor of φ, is defined by [φ, φ](X,Y ) =
φ2[X,Y ] + [φX, φY ]− φ[φX, Y ]− φ[X,φY ], for any smooth vector fields X,Y on
M2n+1. In a paracontact metric manifold, we define a symmetric trace-free tensor
h of type (1,1) by h = 1

2£ξφ satisfying the following relations ([23], [29]):

φh+ hφ = 0, hξ = 0, Trh = Trφh = 0, (8)
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∇Xξ = −φX + φhX, (9)

for any smooth vector fields X,Y on M2n+1.
It is trivial to say that h vanishes if and only if the Reeb vector field ξ is Killing
and then (φ, ξ, η, g) is said to be K-paracontact structure. An almost paracontact
metric manifold is said to be para-Sasakian manifold if and only if

(∇Xφ)Y = −g(X,Y )ξ + η(Y )X, (10)

for any smooth vector fields X,Y on M2n+1.
A normal paracoontact metric manifold is a para-Sasakian manifold and it obeys

R(X,Y )ξ = η(X)Y − η(Y )X, (11)

for any smooth vector fields X,Y on M2n+1.
It is well known that every para-Sasakian manifold is K-paracontact, but the
converse is not always true, as it is shown in three dimensional case [4].

Definition 1 ([23]). A paracontact metric manifold is said to be a paracontact
(k, µ)-manifold if it satisfy the curvature condition

R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ], ∀X,Y ∈ χ(M2n+1),(12)

where R denotes the curvature tensor of M of type (1,3) and k, µ are real con-
stants.

In the case, µ = 0, this manifold is called an N(k)-paracontact metric mani-
fold. Then the last equation gives

R(X,Y )ξ = k[η(Y )X − η(X)Y ], (13)

for any smooth vector fields X,Y on M2n+1.
In a three dimensional N(k)-paracontact metric manifold (M3, φ, ξ, η, g), the fol-
lowing relations hold for any smooth vector fields X,Y ∈ χ(M3) ([10], [23]):

QX = (
r

2
− k)X + (3k − r

2
)η(X)ξ, (14)

S(X,Y ) = (
r

2
− k)g(X,Y ) + (3k − r

2
)η(X)η(Y ), (15)

R(X,Y )Z = (
r

2
− 2k){g(Y, Z)X − g(X,Z)Y }

+(3k − r

2
){g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ

+η(Y )η(Z)X − η(X)η(Z)Y }, (16)

(∇Xφ)Y = −g(X − hX, Y )ξ + η(Y )(X − hX), (17)
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S(X, ξ) = 2kη(X), (18)

Qξ = 2kξ, (19)

where Q,S, r denote the Ricci operator, Ricci tensor and scalar curvature respec-
tively.
In a consequence of (9), we get

(∇Xη)Y = g(X,φY )− g(hX, φY ), (20)

for all smooth vector fields X,Y on M3

Definition 2. [9] An infinitesimal automorphism is a smooth vector field such
that the Lie derivatives of all objects of some tensor structure along it vanishes.

For an almost paracontact metric structure, the vector field V is an infinites-
imal automorphism if

£V η = £V ξ = £V φ = £V g = 0. (21)

3 η-Ricci solitons on three dimensional
N(k)-paracontact metric manifolds

This section deals with the characterization of η-Ricci solitons on three dimen-
sional N(k)-paracontact metric manifolds. Then equation (3) holds, which can
also be written as

(£V g)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) + 2µη(X)η(Y ) = 0, (22)

for any smooth vector fields X,Y on M3.
Applying (15) in (22), we get

(£V g)(X,Y ) = (2k − 2λ− r)g(X,Y ) + (r − 6k − 2µ)η(X)η(Y ). (23)

Taking covariant derivative to both sides of (23) with respect to an arbitrary
vector field W and then using (21), we have

(∇W£V g)(X,Y )) = −dr(W ){g(X,Y )− η(X)η(Y )}
+(r − 6k − 2µ){g(W,φX)η(Y )− g(hW,φX)η(Y )

+g(W,φY )η(X)− g(hW,φY )η(X)}. (24)

According to yano [28],

(£V∇Xg −∇X£V g −∇[V,X]g)(Y,Z) = −g((£V∇)(X,Y ), Z)

−g((£V∇)(X,Z), Y ). (25)
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Making use of parallelism of the pseudo-Riemanian metric g, in the above equation
yields

(∇X£V g)(Y, Z) = g((£V∇)(X,Y ), Z) + g((£V∇)(Z,X), Y ). (26)

Due to the symmetricity of £V∇, the equation (26) implies that

2g((£V∇)(X,Y ), Z) = (∇X£V g)(Y,Z) + (∇Y £V g)(X,Z)

−(∇Z£V g)(X,Y ). (27)

By the virtue of (24) and (27), we find that

2g((£V∇)(X,Y ), Z) = −dr(X){g(Y,Z)− η(Y )η(Z)}
−dr(Y ){g(X,Z)− η(X)η(Z)}
+dr(Z){g(X,Y )− η(X)η(Y )}
+(r − 6k − 2µ){g(X,φY )η(Z)

−g(hX, φY )η(Z) + g(X,φZ)η(Y )

−g(hX, φZ)η(Y ) + g(Y, φZ)η(X)

−g(hY, φZ)η(X) + g(Y, φX)η(Z)

−g(hY, φX)η(Z)− g(Z, φX)η(Y )

+g(hZ, φX)η(Y )− g(Z, φY )η(X)

+g(hZ, φY )η(X)}. (28)

As φ is skew-symmetric, the equation (28) gives

2g((£V∇)(X,Y ), Z) = −dr(X){g(Y,Z)− η(Y )η(Z)}
−dr(Y ){g(X,Z)− η(X)η(Z)}
+dr(Z){g(X,Y )− η(X)η(Y )}
+(r − 6k − 2µ){2g(X,φZ)η(Y )

+2g(Y, φZ)η(X)− 2g(hX, φY )η(Z)}, (29)

from which it follows that

2(£V∇)(X,Y ) = −dr(X){Y − η(Y )ξ}
−dr(Y ){X − η(X)ξ}
+Dr{g(X,Y )− η(X)η(Y )}
−2(r − 6k − 2µ){η(Y )φX

+η(X)φY − g(hX, φY )ξ}, (30)
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and hence

(£V∇)(X,Y ) = −1

2
dr(X){Y − η(Y )ξ}

−1

2
dr(Y ){X − η(X)ξ}

+
1

2
Dr{g(X,Y )− η(X)η(Y )}

−(r − 6k − 2µ){η(Y )φX

+η(X)φY − g(hX, φY )ξ}. (31)

Putting Y = ξ in (31) and using the fact that ξr = 0, as ξ is a Killing vector field,
we obtain

(£V∇)(X, ξ) = −(r − 6k − 2µ)φX. (32)

Taking covariant derivative of the preceeding equation with respect to an arbitrary
smooth vector field W and applying (17), we find that

(∇W£V∇)(X, ξ) = −(Wr)φX − (r − 6k − 2µ)[−g(W,X)ξ

+g(hW,X)ξ + η(X)(W − hW )]. (33)

It is well known [28] that for any smooth vector field X, Y, Z,

(£VR)(X,Y )Z = (∇X£V∇)(Y,Z)− (∇Y £V∇)(X,Z), (34)

which shows in light of (33) that

(£VR)(X,Y )ξ = −(Xr)φY + (Y r)φX

+(r − 6k − 2µ)[η(X)Y − η(Y )X

+η(Y )hX − η(X)hY ]. (35)

Taking inner product of the above equation with an arbitrary smooth vector field
Z yields

g((£VR)(X,Y )ξ, Z) = −(Xr)g(φY,Z) + (Y r)g(φX,Z)

+(r − 6k − 2µ)[η(X)g(Y,Z)− η(Y )g(X,Z)

+η(Y )g(hX,Z)− η(X)g(hY, Z)]. (36)

Let us assume that {ei : i = 1, 2, 3} be a local orthonormal frame. Then on
contraction of X,Z, from (36) it follows that

(£V S)(Y, ξ) = −g(φY,Dr) + (Y r)Trφ

+(r − 6k − 2µ)[η(Y )− 3η(Y )

+η(Y ) Trh− g(hY, ξ)], (37)

which follows that

(£V S)(Y, ξ) = g(Y, φDr)− 2(r − 6k − 2µ)η(Y ). (38)
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Taking Lie derivative of (18) along V and using (20), we get

(£V S)(Y, ξ) = 2k[g(V, φY )− g(hV, φY )]. (39)

Comparing (38) and (39), we find that

g(Y, φDr)− 2(r − 6k − 2µ)η(Y )

= 2k[g(V, φY )− g(hV, φY )]. (40)

Replacing Y by ξ in the last equation, we have

r = 6k + 2µ, (41)

which implies that the scalar curvature of the aforesaid manifold is constant and
hence we are in a position to state the following:

Theorem 1. Let (M3, g, V, λ, µ) be an η-Ricci soliton on a three dimensional
N(k)- paracontact metric manifold. Then the scalar curvature of the manifold is
constant.

In view of Theorem 1, equation (16) takes the form

R(X,Y )Z = (k + µ){g(Y, Z)X − g(X,Z)Y }
−µ{g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+η(Y )η(Z)X − η(X)η(Z)Y }. (42)

Taking inner product of (42) with W and then contracting X,W , we get

S(Y, Z) = (2k + µ)g(Y, Z)− µη(Y )η(Z), (43)

which permits

S(Y, ξ) = (2k + µ)η(Y ). (44)

The equations (18) and (44) together allow the following equation

µ = 0. (45)

Hence we can conclude the following:

Theorem 2. In a three dimensional N(k)-paracontact metric manifold, η-Ricci
soliton (M3, g, V, λ, µ) reduces to a Ricci soliton (M3, g, V, λ).

With the help of (45), from (42) we obtain

R(X,Y )Z = k{g(Y, Z)X − g(X,Z)Y }. (46)

Thus we can say that
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Theorem 3. Let (M3, g, V, λ, µ) be an η-Ricci soliton on a three dimensional
N(k)- paracontact metric manifold. Then the manifold is of constant curvature
k.

Moreover, from (43) and (45), we observe that

S(Y,Z) = 2kg(Y,Z). (47)

Therefore, we have the following:

Theorem 4. Let (M3, g, V, λ, µ) be an η-Ricci soliton on a three dimensional
N(k)- paracontact metric manifold. Then the manifold is Einstein with constant
scalar curvature 6k.

With the help of Theorem 4, the soliton equation (22) can also be written as

g(∇XV, Y ) + g(∇Y V,X) + (4k + 2λ)g(X,Y ) = 0. (48)

Substituting V = ξ in the previous equation and then using (9), we have

2g(φhX, Y ) + 2(2k + λ)g(X,Y ) = 0. (49)

Putting X = Y = ξ in (49), we get,

λ = −2k. (50)

Analogously, from (50), we can easily can state the following:

Theorem 5. In a three dimensional N(k)-paracontact metric manifold, η-Ricci
soliton (M3, g, V, λ, µ) is shrinking, steady or expanding accordingly k is positive,
zero or nagetive.

As λ = −2k and µ = 0, from (23), it follows that

£V g = 0, (51)

that is, V is a Killing vector field and then one can easily observe that £V η = 0
and £V ξ = 0. Also from dη(X,Y ) = g(X,φY ), we deduce

(£V dη)(X,Y ) = −g(£VX,φY )− g(X, (£V φ)Y ). (52)

Setting X = ξ in the last equation, we derive

g(£V φ)Y, ξ) = 0, (53)

and hence we have the following statement:

Theorem 6. Let (M3, g, V, λ, µ) be an η-Ricci soliton on a three dimensional
N(k)- paracontact metric manifold. Then the potential vector field is an infinitesi-
mal automorphism or it leaves the structure tensor φ in the direction perpendicular
to the Reeb vector field ξ.
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4 Example

In the present section, we illustrate an example of a three dimensional N(−1)-
paracontact metric manifold admitting an η-Ricci soliton.

Example 1. In this section we illustrate an example of an η−Ricci soliton on a
3-dimensional N(−1)-paracontact metric manifold (M, g, V,−9, 4). We consider
a 3-dimensional manifold M = {(x, y, z) ∈ R3 : z 6= 0}, where (x, y, z) are the
standard certesian co-ordinates of R3. We consider the vector fields

φe2 = e1, φe1 = e2, φe3 = 0,

where

e1 =
∂

∂x
, e2 =

∂

∂y
, e3 = x

∂

∂x
+ y

∂

∂y
+

∂

∂z

are linearly independent at each point of the manifold M The 1-form η = dz
defines an almost paracontact structure on M with characteristic vector field ξ =
e3.
Let g be a pseudo-Riemannian metric defined by:

g = (gij) =

1 0 0
0 −1 0
0 0 1


with respect to the basis ∂

∂x ,
∂
∂y ,

∂
∂z .

Using Koszul’s formula we have

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1,

∇e2e1 = 0, ∇e2e2 = e3, ∇e2e3 = e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

The components of the curvature tensor are:

R(e1, e2)e1 = e2, R(e1, e2)e2 = e1, R(e1, e2)e3 = 0,

R(e1, e3)e1 = e3, R(e1, e3)e2 = 0, R(e1, e3)e3 = −e1,

R(e2, e3)e1 = 0, R(e2, e3)e2 = −e3, R(e2, e3)e3 = −e2.

It is very easy to check that R(X,Y )ξ = k[η(Y )X−η(X)Y ], for k = −1 and hence
this is an example of a 3-dimensional N(−1)−paracontact metric manifold.
The components of Ricci tensor are:

S = (Sij) =

0 0 0
0 2 0
0 0 0

 ,
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which implies that the scalar curvature r = 2.
Using r = 2 and k = −1 in the relation (41), we have µ = 4.
Therefore, the Ricci soliton equation

g(∇XV, Y ) + g(∇Y V,X) + 2S(X,Y ) + 2λg(X,Y ) + 2µη(X)η(Y ) = 0

with V = e1 gives λ = −9.
Thus this an example of a three dimensional N(−1)-paracontact metric manifold
admitting an η-Ricci soliton of type (M3, g, V,−9, 4).
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