NEW FIXED POINT RESULTS ABOUT \boldsymbol{F}-CONTRACTIONS IN A COMPLETE METRIC SPACE

Alexandrina Maria PROCA ${ }^{*, 1}$

Abstract

In this paper, we extend the results of Wardowski by applying some new conditions on the self map on a complete metric space, concerning the F contractions defined by Wardowski. We present some fixed point results of Wardowski type. An example is given to demonstrate the novelty of our work.

2000 Mathematics Subject Classification: 47H10, 54H25.
Key words: : fixed point theory, F contraction, metric space, Banach contraction.

1 Introduction and preliminaries

It is known that the contraction mapping principle formulated by Banach in 1920 in his Ph.D dissertation and published in 1922 in [1] is one of the most important theorems in clasical functional analysis. Because of its importance in mathematical theory many autors gave generalisations [2]-[15] of it in many directions. One of the most well-known generalisation of the Banach contraction principle is the Wardowski fixed point theorem [14].

Following this direction of research, in this paper, we well present some fixed point results of Wardowski type for self-mappings on complete metric spaces. Moreover, an example is given to illustrate the usability of these results.
Definition 1. A self-map T on a metric space (X, d) is said to be an F-contraction, if there exists $F \in \mathcal{F}$ and $\tau \in(0, \infty)$ such that

$$
[d(T x, T y)>0 \Rightarrow \tau+F(d(T x, T y)) \leq F(d(x, y))], \quad(\forall) x, y \in X
$$

where \mathcal{F} is the family of all functions $F:(0, \infty) \rightarrow \mathbb{R}$ such that
(F1) F is strictly increasing, i.e. for all $x, y \in \mathbb{R}_{+}, x<y \Rightarrow F(x)<F(y)$;
(F2) For each sequence $\left\{\alpha_{n}\right\}$ of positive numbers, $\lim _{n \rightarrow \infty} \alpha_{n}=0$ if and only if $\lim _{n \rightarrow \infty} F\left(\alpha_{n}\right)=-\infty ;$
(F3) There exists $k \in(0,1)$ such that $\lim _{\alpha \rightarrow 0_{+}} \alpha^{k} F(\alpha)=0$.

[^0]Every F-contraction is contractive and necessarly continuous map.
Theorem 1. [14] Let (X, d) be a metric space and $T: X \rightarrow X$ be an F-contraction. Then T has a unique fixed point $x^{*} \in X$ and $\left\{T^{n} x\right\} \rightarrow x^{*}$.

Later, Wardowski and Van Dung [15] introduced the concept of an F-weak contraction as follows.

Definition 2. Let (X, d) be a metric space. A mapping $T: X \rightarrow X$ is said to be an F - weak contraction on (X, d) if there exists $F \in \mathcal{F}$ and $\tau>0$ such that, (\forall) $x, y \in X$

$$
d(T x, T y)>0 \Rightarrow \tau+F(d(T x, T y)) \leq F(M(x, y))
$$

where

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2}\right\} .
$$

Theorem 2. [15] Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a F - weak contraction. If T or F is continuous, then T has a unique fixed point $x^{*} \in X$ and for all $x \in X$, the sequence $\left\{T^{n} x\right\}$ converges to x^{*}.

Dung and Hang introduced the notationof a modified generalised F-contraction and proved new fixed point theorem. They generalised F - weak contraction as folows.

Definition 3. [5] Let (X, d) be a metric space. A mapping $T: X \rightarrow X$ is said to be a generalised F-contraction on (X, d) if there exist $F \in \mathcal{F}$ and $\tau>0$ such that

$$
\forall x, y \in X,[d(T x, T y)>0 \Longrightarrow \tau+F(d(T x, T y)) \leq F(N(x, y))]
$$

where

$$
\begin{aligned}
N(x, y)= & \max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2},\right. \\
& \left.\frac{d\left(T^{2} x, x\right)+d\left(T^{2} x, T y\right)}{2}, d\left(T^{2} x, T x\right), d\left(T^{2} x, y\right), d\left(T^{2} x, T y\right)\right\}
\end{aligned}
$$

In 2016 Piri and Kumam replaced condition $\left(F_{3}\right)$ in the definition of F contraction introduced by Wardowski with
$\left(F_{3}^{\prime}\right) F$ is continuous $(0, \infty)$.
Using the family of all functions which satisfy conditions $\left(F_{1}, F_{2}, F_{3}^{\prime}\right)$, they proved some Wardowski and Suzuki type fixed point theorem. [9]

2 Main results

The aim of this paper is to give another type of generalisation for Wardowski fixed point theorem. We give an example to show that our result is a proper extension of clasical Wardowski fixed point theorem.

Definition 4. Let (X, d) be a metric space. $T: X \rightarrow X$ is a Picard operator if and only if:
(1) (\exists !) $x^{*} \in X$ a fixed point for T,
(2) $\left\{T^{n} x\right\}$ converges to $x^{*},(\forall) x \in X$.

Theorem 3. Let (X, d) be a complete metric space. Let $T: X \rightarrow X$ and $\tau>0$ be such

$$
\begin{equation*}
(\forall) x, y \in X, \quad\left[d(T x, T y)>0 \Rightarrow \tau+F(d(T x, T y)) \leq F\left(M^{*}(x, y)\right)\right] \tag{1}
\end{equation*}
$$

where

1. $F:(0, \infty) \rightarrow \mathbb{R}$ is strictly increasing: $(\forall) x, y \in(0, \infty), x<y \Rightarrow F(x)<$ $F(y)$, and

$$
\begin{align*}
M^{*}(x, y)= & \max \{d(x, y)+|d(x, T x)-d(y, T y)| \\
& d(x, T x)+|d(y, T y)-d(x, y)| \tag{2}\\
& d(y, T y)+|d(x, y)-d(x, T x)|, \\
& \left.\frac{d(x, T y)+d(y, T x)+|d(x, T x)-d(y, T y)|}{2}\right\} .
\end{align*}
$$

2. There exists $\tau>0$, such that $\tau+\liminf _{u \rightarrow u_{0}} F(u)>\limsup _{u \rightarrow u_{0}} F(u)$, for every $u_{0}>0$.

Then T is a Picard operator.
Proof. Let $x_{0} \in X$. Put $x_{n+1}=T^{n} x_{0}, x_{0} \in X$, for all $n \in \mathbb{N}$. If there exists $n \in \mathbb{N}$ such that $x_{n+1}=x_{n}$, then $x_{n+1}=T x_{n}=x_{n}$. That is x_{n} is a fixed point of T.

Now, we suppose that $x_{n+1} \neq x_{n}$, for all $n \in \mathbb{N}$. Then $d\left(x_{n}, x_{n+1}\right)>0$, $(\forall) n \in \mathbb{N}$. We denote by

$$
\begin{equation*}
d_{n}=d\left(x_{n}, x_{n+1}\right), \quad(\forall) n \in \mathbb{N} \tag{3}
\end{equation*}
$$

If we put $x=x_{n}, y=x_{n+1}$ in (1), we deduce:

$$
\begin{align*}
\tau+F\left(d\left(T x_{n}, T x_{n+1}\right)\right) & =\tau+F\left(d\left(x_{n+1}, x_{n+2}\right)\right) \tag{4}\\
& =\tau+F\left(d_{n+1}\right) \leq F\left(M^{*}\left(x_{n}, x_{n+1}\right)\right),
\end{align*}
$$

where

$$
\begin{align*}
M^{*}\left(x_{n}, x_{n+1}\right)= & \max \left\{d\left(x_{n}, x_{n+1}\right)+\left|d\left(x_{n}, T x_{n}\right)-d\left(x_{n+1}, T x_{n+1}\right)\right|,\right. \\
& d\left(x_{n}, T x_{n}\right)+\left|d\left(x_{n+1}, T x_{n+1}\right)-d\left(x_{n}, x_{n+1}\right)\right|, \\
& d\left(x_{n+1}, T x_{n+1}\right)+\left|d\left(x_{n}, x_{n+1}\right)-d\left(x_{n}, T x_{n}\right)\right|, \\
& \left.\frac{d\left(x_{n}, T x_{n+1}\right)+d\left(x_{n+1}, T x_{n}\right)+\left|d\left(x_{n}, T x_{n}\right)-d\left(x_{n+1}, T x_{n+1}\right)\right|}{2}\right\} \\
= & \max \left\{d_{n}+\left|d_{n}-d_{n+1}\right| ; d_{n}+\left|d_{n+1}-d_{n}\right| ; d_{n+1}+\left|d_{n}-d_{n}\right| ; \quad\right. \text { (5) } \tag{5}\\
& \left.\frac{d\left(x_{n}, x_{n+2}\right)+d\left(x_{n+1}, x_{n+1}\right)+\left|d_{n}-d_{n+1}\right|}{2}\right\} \\
= & \max \left\{d_{n}+\left|d_{n}-d_{n+1}\right| ; d_{n+1} ;\right. \\
& \left.\frac{d\left(x_{n}, x_{n+2}\right)+\left|d_{n}-d_{n+1}\right|}{2}\right\} .
\end{align*}
$$

If $d_{n}<d_{n+1},(\forall) n \in \mathbb{N}$,

$$
M^{*}\left(x_{n}, x_{n+1}\right)=\max \left\{d_{n+1} ; \frac{d\left(x_{n}, x_{n+2}\right)+d_{n+1}-d_{n}}{2}\right\} .
$$

Using the triangle inequality

$$
\frac{d\left(x_{n}, x_{n+2}\right)+d_{n+1}-d_{n}}{2} \leq \frac{d_{n}+d_{n+1}+d_{n+1}-d_{n}}{2}=d_{n+1}
$$

so

$$
M^{*}\left(x_{n}, x_{n+1}\right)=d_{n+1} .
$$

From (4) we deduce

$$
\tau+F\left(d_{n+1}\right) \leq F\left(d_{n+1}\right)
$$

which is false for $\tau>0$.
So, $d_{n} \geq d_{n+1},(\forall) n \in \mathbb{N}$ and from (5)

$$
\begin{aligned}
M^{*}\left(x_{n}, x_{n+1}\right)= & \max \left\{d_{n}+d_{n}-d_{n+1} ; d_{n+1} ;\right. \\
& \left.\frac{d\left(x_{n}, x_{n+2}\right)+d_{n}-d_{n+1}}{2}\right\} .
\end{aligned}
$$

But, $d_{n}+d_{n}-d_{n+1} \geq d_{n}, d_{n+1} \leq d_{n}$ and

$$
\frac{d\left(x_{n}, x_{n+2}\right)+d_{n}-d_{n+1}}{2} \leq \frac{d_{n}+d_{n+1}+d_{n}-d_{n+1}}{2}=d_{n},
$$

then

$$
\begin{equation*}
M^{*}\left(x_{n}, x_{n+1}\right)=2 d_{n}-d_{n+1} . \tag{6}
\end{equation*}
$$

By the assumption of the Theorem 3, specialy from relation (1) we have the following result:

$$
\begin{equation*}
\tau+F\left(d_{n+1}\right) \leq F\left(2 d_{n}-d_{n+1}\right) \tag{7}
\end{equation*}
$$

We known that $d_{n} \geq d_{n+1}$ and $d_{n}>0,(\forall) n \in \mathbb{N}$ so $\left\{d_{n}\right\}$ is convergent. Let now $d=\lim _{n \rightarrow \infty} d_{n}$, and we suppose that $d>0$. Taking the limit as $n \rightarrow \infty$, we get

$$
d_{n+1} \searrow d
$$

and

$$
2 d_{n}-d_{n+1} \searrow d
$$

Because F is strictly increasing,

$$
\begin{equation*}
\tau+F(d+0) \leq F(d+0) \tag{8}
\end{equation*}
$$

The contradiction obtained shows that

$$
\begin{equation*}
d_{n} \searrow 0 \tag{9}
\end{equation*}
$$

We claim now, that $\left\{x_{n}\right\}$ is a Cauchy sequence on (X, d) wich is complete metric space. Suppose, on the contrary, that there exist $\varepsilon>0$ and sequences $\{n(k)\},\{m(k)\}$ of positive integers such that $n(k)>m(k)>k$, and

$$
\begin{gather*}
d\left(x_{n(k)}, x_{m(k)}\right)>\varepsilon, \quad(\forall) k \geq 1 \tag{10}\\
d\left(x_{n(k)-1}, x_{m(k)}\right) \leq \varepsilon, \quad(\forall) k \geq 1 . \tag{11}
\end{gather*}
$$

Using the triangle inequality and (10) and (11), we get

$$
\begin{aligned}
\varepsilon & <d\left(x_{n(k)}, x_{m(k)}\right) \\
& \leq d\left(x_{n(k)}, x_{n(k)-1}\right)+d\left(x_{n(k)-1}, x_{m(k)}\right) .
\end{aligned}
$$

Taking the limit as $k \rightarrow \infty$ in this inequality and using (9) we deduce

$$
\begin{equation*}
d\left(x_{n(k)}, x_{m(k)}\right) \searrow \varepsilon . \tag{12}
\end{equation*}
$$

But

$$
d\left(x_{n(k)-1}, x_{m(k)-1}\right) \leq d\left(x_{n(k)-1}, x_{n(k)}\right)+d\left(x_{n(k)}, x_{m(k)}\right)+d\left(x_{m(k)}, x_{m(k)-1}\right)
$$

so

$$
\begin{equation*}
\left|d\left(x_{n(k)-1}, x_{m(k)-1}\right)-d\left(x_{n(k)}, x_{m(k)}\right)\right| \leq d\left(x_{n(k)-1}, x_{n(k)}\right)+d\left(x_{m(k)}, x_{m(k)-1}\right) \tag{13}
\end{equation*}
$$

Taking the limit as $k \rightarrow \infty$ in (13) we deduce

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{n(k)-1}, x_{m(k)-1}\right)=\varepsilon . \tag{14}
\end{equation*}
$$

In relation (1), we put $x=x_{n(k)-1}, y=x_{m(k)-1}$ and obtain

$$
\begin{equation*}
\tau+F\left(d\left(x_{n(k)}, x_{m(k)}\right)\right) \leq F\left(M^{*}\left(x_{n(k)-1}, x_{m(k)-1}\right)\right) \tag{15}
\end{equation*}
$$

where

$$
M^{*}\left(x_{n(k)-1}, x_{m(k)-1}\right)=
$$

$$
\begin{align*}
= & \max \left\{d\left(x_{n(k)-1}, x_{m(k)-1}\right)+\left|d\left(x_{n(k)-1}, T x_{n(k)-1}\right)-d\left(x_{m(k)-1}, T x_{m(k)-1}\right)\right|\right. \\
& d\left(x_{n(k)-1}, T x_{n(k)-1}\right)+\left|d\left(x_{m(k)-1}, T x_{m(k)-1}\right)-d\left(x_{n(k)-1}, x_{m(k)-1}\right)\right| \\
& d\left(x_{m(k)-1}, T x_{m(k)-1}\right)+\left|d\left(x_{n(k)-1}, x_{m(k)-1}\right)-d\left(x_{n(k)-1}, T x_{n(k)-1}\right)\right| \\
& \frac{1}{2}\left[d\left(x_{n(k)-1}, T x_{m(k)-1}\right)+d\left(x_{m(k)-1}, T x_{n(k)-1}\right)+\right. \\
& \left.\left.+\left|d\left(x_{n(k)-1}, T x_{n(k)-1}\right)-d\left(x_{m(k)-1}, T x_{m(k)-1}\right)\right|\right]\right\} \tag{16}\\
= & \max \left\{d\left(x_{n(k)-1}, x_{m(k)-1}\right)+\left|d\left(x_{n(k)-1}, x_{n(k)}\right)-d\left(x_{m(k)-1}, x_{m(k)}\right)\right|\right. \\
& d\left(x_{n(k)-1}, x_{n(k)}\right)+\left|d\left(x_{m(k)-1}, x_{m(k)}\right)-d\left(x_{n(k)-1}, x_{m(k)-1}\right)\right| \\
& d\left(x_{m(k)-1}, x_{m(k)}\right)+\left|d\left(x_{n(k)-1}, x_{m(k)-1}\right)-d\left(x_{n(k)-1}, x_{n(k)}\right)\right| \\
& \frac{1}{2}\left[d\left(x_{n(k)-1}, x_{m(k)}\right)-d\left(x_{m(k)-1}, x_{n(k)}\right)+\right. \\
& \left.\left.\quad+\left|d\left(x_{n(k)-1}, x_{n(k)}\right)-d\left(x_{m(k)-1}, x_{m(k)}\right)\right|\right]\right\} .
\end{align*}
$$

We will see that for $k \rightarrow \infty$, all the four terms which are in M^{*} tends to ε, be taking into account relation (9).

Taking the limit $k \rightarrow \infty$ in (16) and using (12) and (14) we have $M^{*}\left(x_{n(k)-1}, x_{m(k)-1}\right) \rightarrow \varepsilon$, then it follows that

$$
\limsup _{n \rightarrow \infty} F\left(M^{*}\left(x_{n(k)-1}, x_{m(k)-1}\right)\right) \leq F(\varepsilon+0)
$$

Also, taking the limit $k \rightarrow \infty$ in (15), we have

$$
\begin{gather*}
\tau+\liminf _{k \rightarrow \infty} F\left(\left(x_{n(k)}, x_{m(k)}\right)\right) \leq \liminf _{k \rightarrow \infty} F\left(M^{*}\left(x_{n(k)-1}, x_{m(k)-1}\right)\right) \leq \\
\leq \limsup _{k \rightarrow \infty} F\left(M^{*}\left(x_{n(k)-1}, x_{m(k)-1}\right)\right) \leq F(\varepsilon+0), \text { so } \\
\tau+F(\varepsilon+0) \leq F(\varepsilon+0) \tag{17}
\end{gather*}
$$

This is a contradiction. Therefore, $\left\{x_{n}\right\}$ is a Cauchy sequence and (X, d) is a complete metric space, so $\left\{x_{n}\right\}$ converges to some point $x^{*} \in X$.

We shall prove that x^{*} is a fixed point of T. If there exist a sequence $\{l(n)\}_{n \in \mathbb{N}}$ of a natural numbers such that $x_{l(n)+1}=T x_{l(n)}=T x^{*}$, then $\lim _{n \rightarrow \infty} x_{l(n)+1}=x^{*}$, so $T x^{*}=x^{*}$. Otherwise, there exist $N \in \mathbb{N}$, such that $x_{n+1}=T x_{n} \neq T x^{*}, \forall n \geq$ N. Assume that $T x^{*} \neq x^{*}$. For the assumption of the Theorem 3, for $x=x_{n}, y=$ x^{*} we obtain

$$
\begin{equation*}
\tau+F\left(d\left(x_{n+1}, T x^{*}\right)\right) \leq F\left(M^{*}\left(x_{n}, x^{*}\right)\right) \tag{18}
\end{equation*}
$$

where

$$
\begin{align*}
M^{*}\left(x_{n}, x^{*}\right)= & \max \left\{d\left(x_{n}, x^{*}\right)+\left|d\left(x_{n}, x_{n+1}\right)-d\left(x^{*}, T x^{*}\right)\right|\right. \\
& d\left(x_{n}, x_{n+1}\right)+\left|d\left(x^{*}, T x^{*}\right)-d\left(x_{n}, x^{*}\right)\right| \\
& d\left(x^{*}, T x^{*}\right)+\left|d\left(x_{n}, x^{*}\right)-d\left(x_{n}, x_{n+1}\right)\right| \\
& \frac{1}{2}\left[d\left(x_{n}, T x^{*}\right)+d\left(x^{*}, x_{n+1}\right)+\right. \tag{19}\\
& \left.\left.+\left|d\left(x_{n}, x_{n+1}\right)-d\left(x^{*}, T x^{*}\right)\right|\right]\right\}
\end{align*}
$$

For $x_{n} \rightarrow x^{*}$ it clear that $M^{*}\left(x_{n}, x^{*}\right) \rightarrow d\left(x^{*}, T x^{*}\right)$, and

$$
\tau+\liminf _{n \rightarrow \infty} F\left(d\left(x_{n+1}, T x^{*}\right)\right) \leq \liminf _{n \rightarrow \infty} F\left(M^{*}\left(x_{n}, x^{*}\right)\right) \leq \limsup _{n \rightarrow \infty} F\left(M^{*}\left(x_{n}, x^{*}\right)\right)
$$

For $n \rightarrow \infty$, we have $d\left(x_{n+1}, T x^{*}\right) \rightarrow d\left(x^{*}, T x^{*}\right)$, and $M\left(x_{n}, x^{*}\right) \rightarrow d\left(x^{*}, T x^{*}\right)$, hence

$$
\tau+\liminf _{u \rightarrow d\left(x^{*}, T x^{*}\right)} F(u) \leq \liminf _{u \rightarrow d\left(x^{*}, T x^{*}\right)} F(u) \leq \limsup _{u \rightarrow d\left(x^{*}, T x^{*}\right)} F(u)
$$

wich contradicts the second condition of the Theorem 3. Hence $T x^{*}=x^{*}$.
Let now, x^{*}, y^{*} be two fixed points of T and suppose that $x^{*} \neq y^{*}$. It folows that $d\left(T x^{*}, T y^{*}\right)>0$ and from the hypotesis of the Theorem 3:

$$
\begin{equation*}
\tau+F\left(d\left(T x^{*}, T y^{*}\right)\right) \leq F\left(M^{*}\left(x^{*}, y^{*}\right)\right) \tag{20}
\end{equation*}
$$

where

$$
\begin{align*}
M^{*}\left(x^{*}, y^{*}\right)= & \max \left\{d\left(x^{*}, y^{*}\right)+\left|d\left(x^{*}, T x^{*}\right)-d\left(y^{*}, T y^{*}\right)\right| ;\right. \\
& d\left(x^{*}, T x^{*}\right)+\left|d\left(y^{*}, T y^{*}\right)-d\left(x^{*}, y^{*}\right)\right| ; \\
& d\left(y^{*}, T y^{*}\right)+\left|d\left(x^{*}, y^{*}\right)-d\left(x^{*}, T x^{*}\right)\right| ; \tag{21}\\
& \frac{1}{2}\left[d\left(x^{*}, T y^{*}\right)+d\left(y^{*}, T x^{*}\right)+\right. \\
& \left.\left.+\left|d\left(x^{*}, T x^{*}\right)-d\left(y^{*}, T y^{*}\right)\right|\right]\right\} \\
= & d\left(x^{*}, y^{*}\right) .
\end{align*}
$$

We obtain a contradiction, which shows that condition $x^{*} \neq y^{*}$ is false:

$$
\tau+F\left(d\left(x^{*}, y^{*}\right)\right) \leq F\left(d\left(x^{*}, y^{*}\right)\right)
$$

so,

$$
d\left(x^{*}, y^{*}\right)=0 \Rightarrow x^{*}=y^{*} .
$$

This proves than the fixed point of T is unique.
Example 1. Let $X=[0,1], T x=\left\{\begin{array}{cc}1, & x=0 \\ \frac{1}{6}, & x \in(0,1]\end{array}\right.$ and $F(x)=\ln x, d(x, y)=$ $|x-y|$. Then (X, d) is a complet metric space.

We choosing $F(\alpha)=\ln \alpha, \alpha \in(0, \infty)$ and. Since T is not continuous, T is not a contraction.

From definition of mapping T, we observe that $d(T x, T y)>0$, only for two situations:

1. $x \in(0,1]$ and $y=0$ and
2. $x=0$, and $y \in(0,1]$, which can be reduced to only one, from symmety of $d(x, y)$.

First we show that T does not satisfy the conditions of Theorem 1. Indeed, let $\tau>0$ arbitrary. We can write $\tau=\ln a$, with $a>1$. If we take $x=\frac{1}{2}$ and $y=0$, then inequality

$$
\tau+F(d(T x, T y)) \leq F(d(x, y))
$$

is equivalent with

$$
\ln a \cdot \frac{5}{6} \leq \ln \frac{1}{2}(\text { false })
$$

So that T is not a F-weak contraction,
On the other hand, if we take $\tau=\ln \frac{11}{10}$, the conditions of Theorem 3 are satisfied. Indeed, first we obtain:

$$
\begin{aligned}
M^{*}(x, 0)= & \max \{d(x, 0)+|d(x, T x)-d(0, T 0)| \\
& d(x, T x)+|d(0, T 0)-d(x, 0)| \\
& d(0, T 0)+|d(x, 0)-d(x, T x)| \\
& \frac{1}{2}[d(0, T x)+d(x, T 0)+ \\
& +|d(x, T x)-d(0, T 0)|]\} \\
= & \max \left\{x+\left|\left|x-\frac{1}{6}\right|-1\right|\right. \\
& \left(\left|x-\frac{1}{6}\right|+|x-1|\right),\left(1+\left|\left|x-\frac{1}{6}\right|-x\right|\right), \\
& \left.\frac{1}{2}\left(\frac{1}{6}+1-x+\left|\left|x-\frac{1}{6}\right|-1\right|\right)\right\} .
\end{aligned}
$$

We have the following cases:

1) $x \in\left(0, \frac{1}{12}\right]$

$$
\begin{aligned}
& M^{*}(x, 0)= \max \left\{x+\left|\left|x-\frac{1}{6}\right|-1\right|,\left|x-\frac{1}{6}\right|+|x-1|, 1+\left|\left|x-\frac{1}{6}\right|-x\right|\right. \\
&\left.\frac{1}{2}\left(\frac{1}{6}+1-x+\left|\left|x-\frac{1}{6}\right|-1\right|\right)\right\}= \\
&=\max \left(2 x+\frac{5}{6} ; \frac{7}{6}-2 x ; \frac{7}{6}-2 x ; 1\right)=\frac{7}{6}-2 x
\end{aligned}
$$

So, relation (1) from Theorem 3 became $\ln \frac{11}{10} \cdot \frac{5}{6}<\ln \left(\frac{7}{6}-2 x\right)$, which is true for every $x \in\left(0, \frac{1}{12}\right]$.
2) $x \in\left(\frac{1}{12} ; \frac{1}{6}\right], M^{*}(x, 0)=\max \left\{2 x+\frac{5}{6} ; \frac{7}{6}-2 x ; 2 x+\frac{5}{6} ; 1\right\}$ $M^{*}(x, 0)=2 x+\frac{5}{6}$, so relation (1) from Theorem 3 became

$$
\ln \frac{11}{10} \cdot \frac{5}{6}<\ln \left(2 x+\frac{5}{6}\right)
$$

which is true for every $x \in\left(\frac{1}{12} ; \frac{1}{6}\right]$
3) $\frac{1}{6}<x \leq 1$

$$
M^{*}(x, 0)=\max \left\{\frac{7}{6}, \frac{5}{6}, \frac{7}{6}, \frac{7}{6}-x\right\}=\frac{7}{6}
$$

and relation (1) from Theorem 3 is true

$$
\ln \frac{11}{10} \cdot \frac{5}{6}<\ln \frac{7}{6}
$$

The second condition of Theorem 3 is satisfied by $F(\alpha)$, which is continuous, $\forall \alpha>0$.

Since the conditions of Theorem 3 are satisfied, then T has a unique fixed point

References

[1] Banach, S., Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fundamenta Mathematicae 3 (1922), 133-181.
[2] Berinde, V. and Vetro, F., Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory and Applications 2012 (2012), article ID 105.
[3] Berinde, V. and Vetro, F., Fixed point for cycling ($\Psi, C)$-contractions in O-complete partial metric spaces, Filomat 27 (2013) 1405-1413.
[4] Concertino, M., Vetro, P. Fixed point results for F-Contractive Mappings of Hardy-Rogers type, Filomat 28 (2014), no. 4, 715-722.
[5] Van Dung, N. Hang, V.L.. A fixed point theorem for generalised Fcontractions on complete metric space, Vietnam J. Math, 43, (2015), 743-753.
[6] Fulga, A. Proca, A.M., Fixed point for Geraghty φ_{E}-contractions, J. Nonlinear Sci. Appl 10 (2017), no. 9, 5125-5131.
[7] Popescu, O.,Some new fixed point theorems for $\alpha-$ Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl. 2013 (2013), Article ID 329.
[8] Piri, H. and Kumam, P., Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl., 2014, (2014), article ID 210.
[9] Piri, H. and Kumam, P., Wardowski type fixed point theorem in complete metric space, Fixed Point Theory Appl. 2016 (2016), article 45.
[10] Secelean, N.A., Iterated function sistems consisting of F-contractions, Fixed Point Theory Appl. 2013, Article ID 277.
[11] Suzuki, T. A new type of fixed point theorem in metric spaces, Nonlinear Anal. 71 (2009) 5313-5317.
[12] Suzuki, T., Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl. 253, 440-458 (2001).
[13] Suzuki, T., Several fixed point theorems concerning τ-distance, Fixed Point Theory Appl. 2004, (2004) 195-209.
[14] Wardowski, D., Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory and Applications 2012, (2012), article ID 94.
[15] Wardowski, D., and Van Dung, N., Fixed points of F-weak contractions on complete metric space, Demonstr. Math. 47 (2014) 146-155.

[^0]: ${ }^{1 *}$ Corresponding author, Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail: alexproca@unitbv.ro

