DRAZIN INVERSE: REPRESENTATION, APPROXIMATION, CONTINUITY AND ILLUSTRATIONS

Sadli BENDJEDID ${ }^{1}$, Bekkai MESSIRDI ${ }^{*, 2}$ and Sofiane MESSIRDI ${ }^{3}$

Abstract

In this paper, we present some characteristics and expressions of the Drazin inverse for matrices and bounded linear operators in Banach spaces. We give a survey of some of results on the continuity of the Moore-Penrose and Drazin inverse, direct technics for computing the Drazin inverse are discussed, they are based on Euler-Knopp Method and characterized in terms of a limiting process. The examples presented are for illustrative purposes, some of which are provided for testing the considered iterative processes.

2000 Mathematics Subject Classification: 15A09, 47A10.
Key words: Moore-Penrose; Drazin inverse; Generalized Drazin inverse; Representation; Approximation; Continuity.

1 Introduction and preliminary results

The main theme of this paper is the study of a generalized inverse introduced by M. P. Drazin, and its generalization due to J. J. Koliha. $\mathbb{C}^{m \times n}$ denotes the set of all $m \times n$ matrices, with complex entries, equipped with the Euclidean norm. Suppose that $\left(A_{j}\right)_{j \in \mathbb{N}}$ is a sequence of $m \times n$ matrices, and $A \in \mathbb{C}^{m \times n}$, then $\left(A_{j}\right)_{j \in \mathbb{N}}$ converges to A if and only if the entries of A_{j} converge to the corresponding entries of A, as $j \rightarrow \infty$. Let $A \in \mathbb{C}^{m \times n}$, Penrose has proved in [15] that the system:

$$
A X A=A, X A X=X,(A X)^{*}=A X,(X A)^{*}=X A
$$

[^0]has a unique solution, which he called the Moore-Penrose inverse of A and denoted by $X=A^{\dagger}$. Let us recall that for any $A \in \mathbb{C}^{m \times n}$, we have $\left(A^{\dagger}\right)^{\dagger}=A$, $\left(A^{*}\right)^{\dagger}=$ $\left(A^{\dagger}\right)^{*},\left(A^{*} A\right)^{\dagger}=A^{\dagger}\left(A^{\dagger}\right)^{*}$, but in general, $A^{\dagger} A \neq A A^{\dagger}$.

Contrary to the usual inverse of a square matrix, it is well known that the Moore-Penrose inverse of a matrix is not necessarily a continuous function of the elements of the matrix. Indeed, let $A=\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & 0 \\ 0 & 1\end{array}\right)$, for each $\varepsilon>0$, we have $(A+\varepsilon B)^{\dagger}=\left(\begin{array}{cc}1 & 0 \\ 0 & \varepsilon\end{array}\right)^{-1}=\left(\begin{array}{cc}1 & 0 \\ 0 & \varepsilon^{-1}\end{array}\right)$, hence $(A+\varepsilon B) \rightarrow A$, but $(A+\varepsilon B)^{-1}$ has no limit when $\varepsilon \rightarrow 0^{+}$.

The following theorem gives necessary and sufficient conditions for the continuity of the Moore-Penrose inverse of matrix.

Theorem 1. ([15]) Let $A, A_{j}, j \in \mathbb{N}$, be $m \times n$ complex matrices such that $\lim _{j \rightarrow \infty} A_{j}=A$. Then, $\lim _{j \rightarrow \infty} A_{j}^{\dagger}=A^{\dagger}$ if and only if there exists $q \in \mathbb{N}$ for which $\operatorname{rank} A_{j}=\operatorname{rank} A$, for all $j \geq q$.

Let $\mathcal{B}(X)$ be the algebra of all bounded linear operators on a complex Banach space $X,\|\cdot\|$ represents the norm of X. For $A \in \mathcal{B}(X)$, write $\mathcal{N}(A), \mathcal{R}(A), \sigma(A)$, $\rho(A)$ and $r(A)$, as the null space, the range, the spectrum, the resolvent set and the spectral radius of A, respectively. For $\lambda \in \rho(A),(\lambda-A)^{-1}$ is the resolvent operator of A. I denotes the identity operator on X and A^{*} is the adjoint operator of A. By $\sigma^{\prime}(A)$ we denote the set of all non-zero elements of $\sigma(A)$. By $i s o \sigma(A)$ we define the set of all isolated spectral points of A. If M is a subspace of X, then $A_{\mid M}$ denotes the restriction of A to M. It is well known (see e.g. [3]) that $A \in \mathcal{B}(X)$ has closed range if and only if there exists a unique operator $A^{\dagger} \in \mathcal{B}(X)$, the Moore-Penrose inverse of A, which satisfies the following properties:

$$
A A^{\dagger} A=A, A^{\dagger} A A^{\dagger}=A^{\dagger},\left(A A^{\dagger}\right)^{*}=A A^{\dagger} \text { and }\left(A^{\dagger} A\right)^{*}=A^{\dagger} A
$$

In general, if $\lim _{j \rightarrow \infty} A_{j}=A$ uniformly, $\left(A_{j}\right)_{j \in \mathbb{N}}, A \in \mathcal{B}(X)$, and each A_{j} has a closed range, then A need not have a closed range.

Example 1. Let $X=l_{2}$ the space of square-summable complex sequences. Define $A_{j}, j \in \mathbb{N}^{*}$, and A on l_{2} by:

$$
\begin{aligned}
& A_{j}\left(x_{1}, x_{2}, \ldots, x_{j}, x_{j+1}, \ldots\right)=\left(x_{1}, \frac{x_{2}}{2}, \ldots, \frac{x_{j}}{j}, 0,0, \ldots\right) \\
& A\left(x_{1}, x_{2}, \ldots, x_{j}, x_{j+1}, \ldots\right)=\left(x_{1}, \frac{x_{2}}{2}, \ldots, \frac{x_{j}}{j}, \frac{x_{j+1}}{j+1}, \ldots\right) .
\end{aligned}
$$

Each A_{j} is of finite rank and thus with closed range and Moore-Penrose invertible operator. It is also clear that the sequence $\left(A_{j}\right)_{j \in \mathbb{N}^{*}}$ is uniformly convergent to A as $j \rightarrow \infty$. But the limit A does not have a closed range in l_{2} because A is a compact operator.

The continuity of the Moore-Penrose inverse of an operator on Hilbert spaces has been studied by Izumino [7]. If X is a Hilbert space, let $\left(A_{j}\right)_{j \in \mathbb{N}}$ be a sequence in $\mathcal{B}(X), A \in \mathcal{B}(X)$, and $\lim _{j \rightarrow \infty} A_{j}=A$. If A_{j}^{\dagger}, for all $j \in \mathbb{N}$, and A^{\dagger} exist, it is shown in [7] that the following four conditions are equivalent:

$$
\begin{aligned}
& \text { (1) } \lim _{j \rightarrow \infty} A_{j}^{\dagger}=A^{\dagger} \text {. (2) } \sup _{j \in \mathbb{N}}\left\|A_{j}^{\dagger}\right\|<\infty . \\
& \text { (3) } \lim _{j \rightarrow \infty} A_{j}^{\dagger} A_{j}=A^{\dagger} A \text {. (4) } \lim _{j \rightarrow \infty} A_{j} A_{j}^{\dagger}=A A^{\dagger} .
\end{aligned}
$$

The Drazin inverses of the elements of $\mathbb{C}^{n \times n}$ and $\mathcal{B}(X)$ have been intensively studied by authors such as Ben-Israel and Greville [1] and King [8], one may also refer to [[5], [17]] for some interesting applications about the Drazin inverse in singular differential and difference equations, Markov chain, numerical analysis, ... In this paper, we shall give, by analogy with the Moore-Penrose inverse, representation and computational procedures for the Drazin inverse. Let's recall some well-known results obtained for the Drazin inverse of a square matrix and the Drazin inverse of a bounded linear operator.

Let $A \in \mathbb{C}^{n \times n}$, with $k=\operatorname{ind}(A)$ the smallest positive number such that $\operatorname{rank} A^{k+1}=\operatorname{rank} A^{k}$, the Drazin inverse of A is defined to be the unique matrix $X \in \mathbb{C}^{n \times n}$ that satisfying the following equations:

$$
\begin{equation*}
X A X=X, A X=X A \text { and } A^{k+1} X=A^{k} . \tag{1}
\end{equation*}
$$

It is denoted by $X=A^{D}$. In particular, a square matrix always has Drazin inverse and if $\operatorname{ind}(A)=0$, then A is invertible and $A^{D}=A^{\dagger}=A^{-1}$. Campbell and Meyer gave in [5] an explicit expression of the Drazin inverse of a square matrix via its canonical form representation.

Theorem 2. Let $A \in \mathbb{C}^{n \times n}$ is such that $\operatorname{ind}(A)=k>0$, then there exists a non-singular matrix P such that:

$$
A=P\left(\begin{array}{cc}
C & 0 \tag{2}\\
0 & N
\end{array}\right) P^{-1}
$$

where C is non-singular and N is nilpotent of index k.
Furthermore, if P, C and N are any matrices satisfying the above conditions, then:

$$
A^{D}=P\left(\begin{array}{cc}
C^{-1} & 0 \tag{3}\\
0 & 0
\end{array}\right) P^{-1}
$$

Proof. Let $\mathcal{B}=\left\{e_{1}, \ldots, e_{r}, e_{r+1}, \ldots, e_{n}\right\}$ be a basis for \mathbb{C}^{n} such that $\left\{e_{1}, \ldots, e_{r}\right\}$ is a basis for $\mathcal{R}\left(A^{k}\right)$ and $\left\{e_{r+1}, \ldots, e_{n}\right\}$ is a basis for $\mathcal{N}\left(A^{k}\right), k=\operatorname{ind}(A)>0 . \mathcal{R}\left(A^{k}\right)$ and $\mathcal{N}\left(A^{k}\right)$ are invariant subspaces for A and $A^{k}\left(\mathcal{N}\left(A^{k}\right)\right)=\{0\}$, on the other hand A restricted to $\mathcal{R}\left(A^{k}\right), C=A_{\mid \mathcal{R}\left(A^{k}\right)}$, is invertible and its restriction to $\mathcal{N}\left(A^{k}\right)$, $N=A_{\mid \mathcal{N}\left(A^{k}\right)}$, is nilpotent of degree k. So, we obtain the block form for A if $P=\left[e_{1}, \ldots, e_{n}\right]$. We can easily verify that the matrix A^{D} given by (3) satisfies the three equations (1) and then by uniqueness A^{D} is necessarily the Drazin inverse of A.

A first application of this representation is the following result:
Proposition 1. Let $A \in \mathbb{C}^{n \times n}$, then $A A^{D} A=A$ if and only if $\operatorname{ind}(A) \leq 1$.
Proof. If $\operatorname{ind}(A)=0$, then A is invertible, $A^{D}=A^{-1}$ and $A A^{D} A=A A^{-1} A=A$. Suppose that $\operatorname{in}(A) \geq 1$. Then by virtue of the canonical form representation (2) of A and the corresponding expression (3) of A^{D}, we have $A A^{D} A=A$ if and only if $N=0$. But $N=0$ is equivalent to $\operatorname{ind}(A)=1$.

Several methods and efficient algorithms have been given for computation of Moore-Penrose inverse of singular matrices and bounded linear operators with closed range, where this generalized inverse can be represented as the limit of a sequence of matrices or operators, respectively. The principle is to construct an iterative process of computing a sequence that converges to the generalized inverse. In what follows we explain this process for the Drazin inverse of a matrix and for a bounded linear operator and we estimate the corresponding error bounds. We also study the continuity of the generalized Drazin inverse.

The purpose of Section 1 is to present definitions and results that will be used throughout the paper. In Section 2, we recall and discuss some computational procedures for the Drazin inverse of a square matrix. The aim of Section 3 is to investigate the continuity of Drazin inverse in finite-dimensional case. Necessary and sufficient conditions for the continuity of the Drazin inverse of a matrix are given. In Section 4, we present the Drazin inverse (generalized Drazin inverse) of an operator, its uniqueness, existence, and some basic properties. We give also a representation theorem and a computational procedure of the Drazin inverse. In Section 5, we discuss some remarkable properties of the generalized Drazin inverse and we study its continuity in $\mathcal{B}(X)$. The results of each section are described in detail and interpreted by interesting examples.

2 Computational procedure for the Drazin inverse of a matrix

For $A \in \mathbb{C}^{n \times n}, A^{D}$ can be computed recursively by the well known algorithms [6]. We have chosen to explain here the procedure developed by [17] for the computational of Drazin inverse and corresponding error bound. Wei and Wu found in [17] a specific expression and computational procedures for Drazin inverse, they have established the following formula for $A \in \mathbb{C}^{n \times n}$ with real spectrum and $\operatorname{ind}(A)=k:$

$$
\begin{align*}
A^{D} & =\lim _{j \rightarrow \infty} S_{j}(\widetilde{A}) A^{l}, \tag{4}\\
\frac{\left\|A^{D}-S_{j}(\widetilde{A}) A^{l}\right\|_{P}}{\left\|A^{D}\right\|_{P}} & \leq \max _{x \in \sigma(\widetilde{A})}\left|S_{j}(x) x-1\right|+\mathcal{O}(\varepsilon), \varepsilon>0
\end{align*}
$$

where $\left(S_{j}(x)\right)_{j \in \mathbb{N}}$ is a family of continuous real valued functions on an open set Ω such that $\sigma(\widetilde{A}) \subset \Omega \subset] 0, \infty\left[\right.$, with $\lim _{j \rightarrow \infty} S_{j}(x)=\frac{1}{x}$ uniformly on the spectrum
$\sigma(\widetilde{A})$ of $\widetilde{A}=\left(A^{l+1}\right)_{\mid \mathcal{R}\left(A^{k}\right)}$ for $l \geq k, P$ is an invertible matrix such that $P^{-1} A P$ is the Jordan canonical form of A and $\|A\|_{P}=\left\|P^{-1} A P\right\|$.

Consider the following sequence with parameter $\alpha>0$:

$$
\begin{equation*}
S_{j}(x)=\alpha \sum_{m=0}^{j}(1-\alpha x)^{m} \tag{5}
\end{equation*}
$$

which can be viewed as the Euler-Knopp transform of the series $\sum_{j=0}^{\infty}(1-x)^{j}$. Clearly, $\lim _{j \rightarrow \infty} S_{j}(x)=\frac{1}{x}$ uniformly on any compact subset of the set:

$$
\begin{equation*}
E_{\alpha}=\{x:|1-\alpha x|<1\}=\left\{x: 0<x<\frac{2}{\alpha}\right\} \tag{6}
\end{equation*}
$$

Lemma 1. If $A \in \mathbb{C}^{n \times n}$ with ind $(A)=k, \widetilde{A}=\left(A^{l+1}\right)_{\mid \mathcal{R}\left(A^{k}\right)}$ for $l \geq k$, and the spectrum of A is real, then $\sigma(\widetilde{A}) \subset\left[\frac{1}{\left\|A^{D}\right\|^{l+1}},\|A\|^{l+1}\right]$.

Proof. Let $\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$ be the nonzero eigenvalues of A where $\operatorname{rank}\left(A^{k}\right)=r$. Hence, $0<\lambda_{i}^{l+1} \in \sigma(\widetilde{A}) \subseteq \sigma\left(A^{l+1}\right), i=1, \ldots, r$. It is clear that $\operatorname{ind}\left(A^{l+1}\right)=1$ and $\frac{1}{\lambda_{i}^{l+1}} \in \sigma\left(\left(A^{D}\right)^{l+1}\right)$ and thus $\frac{1}{\lambda_{i}^{l+1}} \leq\left\|A^{D}\right\|^{l+1}, i=1, \ldots, r$. Therefore, $\lambda \geq$ $\frac{1}{\left\|A^{D}\right\|^{l+1}}$ for every $\lambda \in \sigma(\widetilde{A})$. Moreover, since $\left\|A^{l+1}\right\|=\left\|\left(A^{l+1}\right)_{\mid \mathcal{R}\left(A^{k}\right)}\right\|$, we have $\|\widetilde{A}\| \leq\|A\|^{l+1}$ and then $\lambda \leq\|A\|^{l+1}$ for every $\lambda \in \sigma(\widetilde{A})$.

Since, by Lemma $\left.1, \sigma(\widetilde{A}) \subset] 0,\|A\|^{l+1}\right]$, if we choose the parameter α such that $0<\alpha<\frac{2}{\|A\|^{l+1}}$, and $\left.] 0,\|A\|^{l+1}\right] \subseteq E_{\alpha}$ then we have the representation:

$$
\begin{equation*}
A^{D}=\alpha \sum_{j=0}^{\infty}\left(I-\alpha A^{l+1}\right)^{j} A^{l} \tag{7}
\end{equation*}
$$

Let us pose:

$$
\begin{equation*}
A_{j}=\alpha \sum_{m=0}^{j}\left(I-\alpha A^{l+1}\right)^{m} A^{l} \tag{8}
\end{equation*}
$$

Then $A_{0}=\alpha A^{l}, A_{j+1}=\left(I-\alpha A^{l+1}\right) A_{j}+A_{0}, j \in \mathbb{N}$, and by construction $\lim _{j \rightarrow \infty} A_{j}=A^{D}$. Now, remark that the sequence of functions $\left(S_{j}(x)\right)_{j \in \mathbb{N}}$ satisfies:

$$
\begin{equation*}
x S_{j+1}(x)-1=(1-\alpha x)\left(x S_{j}(x)-1\right), j \in \mathbb{N} \tag{9}
\end{equation*}
$$

hence,

$$
\begin{equation*}
\left|x S_{j}(x)-1\right|=|1-\alpha x|^{j+1} \leq\left[\max \left(\left|1-\alpha\|A\|^{l+1}\right|,\left|1-\frac{\alpha}{\left\|A^{D}\right\|^{l+1}}\right|\right)\right]^{j+1} \tag{10}
\end{equation*}
$$

which tends to 0 as $j \rightarrow \infty$ if $x \in \sigma(\widetilde{A})$ and $0<\alpha<\frac{2}{\|A\|^{l+1}}$, and estimates by virtue of (4) the variation of the errors. So, we have shown the following approximation result.

Theorem 3. Let $A \in \mathbb{C}^{n \times n}$ with $\operatorname{ind}(A)=k, \widetilde{A}=\left(A^{l+1}\right)_{\mid \mathcal{R}\left(A^{k}\right)}$ for $l \geq k$, and the spectrum of A is real. Then the sequence $\left(A_{j}\right)_{j \in \mathbb{N}}$ defined by (8) converges to the Drazin inverse A^{D} of A if $0<\alpha<\frac{2}{\|A\|^{l+1}}$. Furthermore, the error bound is:

$$
\frac{\left\|A_{j}-A^{D}\right\|_{P}}{\left\|A^{D}\right\|_{P}} \leq \beta^{j+1}+\mathcal{O}(\varepsilon), \varepsilon>0
$$

where $\beta=\max \left(\left|1-\alpha\|A\|^{l+1}\right|,\left|1-\frac{\alpha}{\left\|A^{D}\right\|^{l+1}}\right|\right)<1$.
Remark 1. We can significantly improve the convergence speed of this process using other iterative methods as Newton-Raphson method, Newton-Gregory interpolation formula, Hermite interpolation, ... (see e.g. [17]).

Example 2. We use the iterative algorithm previously developed to compute the Drazin inverse of the singular matrix:

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

It is easy to see that the minimal polynomial of A is given by $\lambda^{3}-3 \lambda^{2}$, hence $\sigma(A)=\{0,0,3\}$ and $A^{2}=3 A$. An easy computations show that $\operatorname{ind}(A)=1$ and that the Drazin inverse of A is given by $\frac{1}{9} A$. So we can choose $\alpha=10^{-2}$ and $l=1$, since $\|A\|^{2}=27$. Then the iterations are given by:

$$
\begin{aligned}
A_{0} & =\alpha A=\left(\begin{array}{lll}
0,01 & 0,01 & 0,01 \\
0,01 & 0,01 & 0,01 \\
0,01 & 0,01 & 0,01
\end{array}\right) \\
A_{j+1} & =B A_{j}+A_{0}, B=\left(I-\alpha A^{2}\right)=\left(I-3 A_{0}\right), j \in \mathbb{N}
\end{aligned}
$$

Thus,

$$
B=\left(I-3 A_{0}\right)=\left(\begin{array}{ccc}
0,97 & -0,03 & -0,03 \\
-0,03 & 0,97 & -0,03 \\
-0,03 & -0,03 & 0,97
\end{array}\right)
$$

and

$$
A_{j}=\left(B^{j}+B^{j-1}+\ldots+I\right) A_{0}=\sum_{m=0}^{j} B^{m} A_{0}, j \in \mathbb{N}
$$

The matrix B is diagonalizable, $B=S^{-1} D S$, where S is a non-singular matrix and D is diagonal:

$$
\begin{aligned}
S & =\left(\begin{array}{ccc}
-0,3333 & 0,6667 & -0,3333 \\
-0,3333 & -0,3333 & 0,6667 \\
0,3333 & 0,3333 & 0,3333
\end{array}\right), S^{-1}=\left(\begin{array}{ccc}
-1 & -1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right), \\
\text { and } D & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0,91
\end{array}\right) . \\
B^{m} & =S^{-1} D^{m} S, m \in\{0,1, \ldots, j\}, \\
A_{j} & =S^{-1} \sum_{m=0}^{j} D^{m} S A_{0}=S^{-1}\left(\begin{array}{ccc}
(j+1) & 0 & 0 \\
0 & (j+1) & 0 \\
0 & 0 & \alpha_{j}
\end{array}\right) S A_{0},
\end{aligned}
$$

where $\alpha_{j}=\sum_{m=0}^{j}(0,91)^{m}=\frac{1-(0,91)^{j+1}}{0,09}, j \in \mathbb{N}$.

$$
A_{j}=\left(\begin{array}{ccc}
-(j+1) & -(j+1) & \alpha_{j} \\
(j+1) & 0 & \alpha_{j} \\
0 & (j+1) & \alpha_{j}
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0,01 & 0,01 & 0,01
\end{array}\right)=\frac{\alpha_{j}}{100} A
$$

Since $\lim _{j \rightarrow \infty} \alpha_{j}=\sum_{m=0}^{\infty}(0,91)^{m}=\frac{100}{9}$, it follows that $\lim _{j \rightarrow \infty} A_{j}=\frac{1}{9} A=A^{D}$.

3 Continuity of the Drazin inverse of a matrix

The Drazin inverse of a matrix is not necessarily a continuous function of the elements of the matrix. In particular, It is easy to produce examples to show that Theorem 1 is not valid for the Drazin inverse (see [4]).

Example 3. 1) Let:

$$
A_{j}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & \frac{1}{j} \\
0 & 0 & 0
\end{array}\right), A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Then, $\lim _{j \rightarrow \infty} A_{j}=A, \lim _{j \rightarrow \infty} A_{j}^{D}=A^{D}$, but $\operatorname{rank}\left(A_{j}\right)>\operatorname{rank}(A)$, for all $j \in \mathbb{N}^{*}$.
2) Let:

$$
A_{j}=\left(\begin{array}{cccc}
\frac{1}{j} & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right), A=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Then,

$$
A_{j}^{D}=\left(\begin{array}{cccc}
j & j^{2} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), A^{D}=0=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Thus, $\lim _{j \rightarrow \infty} A_{j}=A, \operatorname{rank}\left(A_{j}\right)=\operatorname{rank}(A)$ and $\operatorname{ind}\left(A_{j}\right)=\operatorname{ind}(A)$ for all $j \in \mathbb{N}^{*}$, but $\lim _{j \rightarrow \infty} A_{j}^{D} \neq A^{D}$.

Define the core-rank of $A \in \mathbb{C}^{n \times n}$ as rank of the matrix A^{k} where $k=\operatorname{ind}(A)$. It is showed in [4] an analogous result, to that of Moore Penrose (Theorem 1), for the Drazin inverse of a square matrix.

Theorem 4. ([4]) Suppose that $A_{j}, A \in \mathbb{C}^{n \times n}, j \in \mathbb{N}$, are such that $\lim _{j \rightarrow \infty} A_{j}=A$. Then, $\lim _{j \rightarrow \infty} A_{j}^{D}=A^{D}$ if and only if there is $q \in \mathbb{N}$ such that core-rank of A_{j} is equal to core-rank of A for all $j \in \mathbb{N}, j \geq q$.

Similarly, from the Jordan canonical form for A_{j} and $A, A=C+N, A_{j}=$ $C_{j}+N_{j}$, where $C, N, C_{j}, N_{j} \in \mathbb{C}^{n \times n}, C$ and C_{j} are non-singular and N and N_{j} are nilpotent, for every $j \in \mathbb{N}$, it is immediate to give necessary and sufficient conditions for the continuity of the Drazin inverse of a matrix. If $\lim _{j \rightarrow \infty} A_{j}=A$,

$$
\lim _{j \rightarrow \infty} A_{j}^{D}=A^{D} \Longleftrightarrow \exists q \in \mathbb{N}: \operatorname{rank}\left(C_{j}\right)=\operatorname{rank}(C) \text { for } j \geq q
$$

4 Remarkable properties and computational procedure for the GD-inverse

Recall that if $A \in \mathcal{B}(X)$, then $a(A)$ and $d(A)$, respectively the ascent and the descent of A, is the smallest non-negative integer k such that $\mathcal{N}\left(A^{k}\right)=\mathcal{N}\left(A^{k+1}\right)$ and $\mathcal{R}\left(A^{k}\right)=\mathcal{R}\left(A^{k+1}\right)$. If no such k exists, then $a(A)=\infty$ and $d(A)=\infty$. It is well known that if the ascent and the descent of an operator are finite, then they are equal. $A^{D} \in \mathcal{B}(X)$ is the Drazin inverse of $A \in \mathcal{B}(X)$ if $A^{D} A=A A^{D}$, $A^{D} A A^{D}=A^{D}$ and $A A^{D} A=A+Q$ where Q is a nilpotent operator on $X . A^{D}$ is unique. The concept of Drazin invertible operators has been generalized by Koliha [9] by replacing the nilpotent operator Q in the equation $A A^{D} A=A+Q$ by a quasi-nilpotent operator. In this case, A^{D} is called a generalized Drazin inverse (GD-inverse) of A and noted $A^{G D}$. Invertible operators, right invertible operators and left invertible operators are GD-invertible operators. We define the Drazin index of A by:

$$
\operatorname{ind}(A)=\left\{\begin{array}{lll}
0 & \text { if } & A \text { is invertible } \\
k & \text { if } & Q=A\left(A^{D} A-I\right) \text { is nilpotent of index } k \\
\infty & \text { if } & Q=A\left(A^{D} A-I\right) \text { is quasi-nilpotent. }
\end{array}\right.
$$

Note that a square matrix always has Drazin inverse. But, if X is an infinitedimensional complex Banach space, then it is well known that an operator $A \in$ $\mathcal{B}(X)$ has a Drazin inverse A^{D} if and only if it has finite ascent and descent (in such a case, the index of A is equal to the ascent of A), or equivalently if and only if 0 is a pole of its resolvent operator, which is also equivalent to the fact that $A=R \oplus N$ where R is invertible and N is nilpotent. A has a GD-inverse if and only if 0 is an isolated point of its spectrum or $A=R \oplus Q$ where R is invertible and Q is quasi-nilpotent, or equivalently if and only if there is a bounded projection P on X (the generalized Drazin idempotent of A) such that $R=A_{\mid \mathcal{R}(P)}$ is invertible operator and $Q=A_{\mid \mathcal{N}(P)}$ is quasi-nilpotent operator (see [[11], [9], [12], [14], [13]]). \oplus denotes the algebraic direct sum. Note that the GD-inverse $A^{G D}$ of A, if it exists, is uniquely determined by $A^{G D}=R^{-1} \oplus 0$. Moreover, by the spectral mapping theorem we have that:

$$
\sigma\left(A^{G D}\right)=\left\{\frac{1}{\lambda}: \lambda \in \sigma^{\prime}(A)\right\} \cup\{0\}, \sigma^{\prime}\left(A^{G D}\right)=\left\{\frac{1}{\lambda}: \lambda \in \sigma^{\prime}(A)\right\}
$$

and if $r(A)>0$, then $\operatorname{dist}\left(\sigma^{\prime}(A), 0\right)=\frac{1}{r\left(A^{G D}\right)}$, where dist is the distance between a bounded subset of \mathbb{C} and 0 .

Example 4. 1) Every Drazin invertible operator is GD-invertible. It is also clear from the definition of a GD-inverse that every quasi-nilpotent operator is GDinvertible with a generalized Drazin inverse 0.
2) Every quasi-nilpotent operator which is not nilpotent (for example Volterra operator) is GD-invertible and cannot be Drazin invertible. Indeed, suppose that $A \in \mathcal{B}(X)$ is quasi-nilpotent but not nilpotent and Drazin invertible with $A^{D}=B$. We have seen before that A is GD-invertible with GD-inverse 0 . By the uniqueness of the $G D$-inverse we must have that $B=0$. Also, because $A-A B A$ is nilpotent, we have that A is also nilpotent. This is a contradiction.

The following result gives an interesting characterization of Drazin invertible operators.

Proposition 2. ([9]) Let $A \in \mathcal{B}(X)$ and $k \in \mathbb{N}, k \geq 1$. Then the following assertions are equivalent:

1) A is Drazin invertible and $\operatorname{ind}(A)=k$.
2) $a(A)=d(A)=k$.
3) The resolvent operator $(\lambda-A)^{-1}$ has a pole of order k at $\lambda=0$.

Example 5. Let's check that if $A \in \mathcal{B}(X)$ is normal, $A^{*} A=A A^{*}$, and if $0 \in$ $\operatorname{iso\sigma }(A)$, then A is Drazin invertible and $\operatorname{ind}(A)=1$. Indeed, if P is the spectral projection associated with 0 . We know that A and P commute and then $A(\mathcal{R}(P)) \subseteq$ $\mathcal{R}(P)$ and $\sigma\left(A_{\mid \mathcal{R}(P)}\right)=\{0\}$. On the other hand, since $A_{\mid \mathcal{R}(P)}$ is normal operator on $\mathcal{R}(P)$, we have $\left\|A_{\mid \mathcal{R}(P)}\right\|=r\left(A_{\mid \mathcal{R}(P)}\right)=0$, so it follows that $A P=0$. The Laurent series expansion around 0 of the resolvent $(\lambda-A)^{-1}$ is given by:

$$
\begin{equation*}
(\lambda-A)^{-1}=\sum_{j=1}^{\infty} \frac{P_{j}}{\lambda^{j}}+\sum_{j=0}^{\infty} Q_{j} \lambda^{j}, 0<|\lambda|<\epsilon \tag{11}
\end{equation*}
$$

where the coefficients P_{j} and Q_{j} are given by the formulas:

$$
\begin{equation*}
P_{j}=\frac{1}{2 \pi i} \oint_{0<|\lambda|<\epsilon} \lambda^{j-1}(\lambda-A)^{-1} d \lambda \text { and } Q_{j}=\frac{1}{2 \pi i} \oint_{0<|\lambda|<\epsilon} \lambda^{-j-1}(\lambda-A)^{-1} d \lambda . \tag{12}
\end{equation*}
$$

It follows from (12), immediately using the functional calculus, that:

$$
P_{1}=P \text { and } P_{j}=A^{j-1} P, j \in \mathbb{N}^{*},
$$

hence 0 is a simple pole of $(\lambda-A)^{-1}$. Proposition 2 shows that A is Drazin invertible and $\operatorname{ind}(A)=1$.

Drazin inverses are not symmetric in general. Let $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \in \mathbb{C}^{2 \times 2}, A$ is Drazin invertible with $A^{D}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, but $\left(A^{D}\right)^{D}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right) \neq A$. Our next result gives the expression of the element $\left(A^{G D}\right)^{G D}$.
Theorem 5. Let $A \in \mathcal{B}(X)$. Suppose that A is $G D$-invertible and that P is the generalized Drazin idempotent of A. Then $\left(A^{G D}\right)^{G D}=A(I-P)$.

Proof. Suppose that A is generalized Drazin invertible and that P is the generalized Drazin idempotent of A. If A is invertible then $P=0$ and the result obviously holds.

If $0 \in \operatorname{iso\sigma }(A)$, then P is the spectral projection of A corresponding to 0 and $P=I-A^{G D} A$. We show that $B=A(I-P)$ is the generalized Drazin inverse of $A^{G D}$. Using the fact that $A P=P A$, we have that $A^{G D} B=A^{G D} A(I-P)=$ $A(I-P) A^{G D}=B A^{G D}$. We also have that:

$$
\begin{aligned}
B A^{G D} B & =A(I-P) A^{G D} A(I-P)=A(I-P) A^{G D} A\left(A^{G D} A\right) \\
& =A(I-P)\left(A^{G D} A A^{G D}\right) A=A(I-P) A^{G D} A \\
& =A(I-P)(I-P)=A(I-P)=B
\end{aligned}
$$

and

$$
\begin{aligned}
A^{G D}-A^{G D} B A^{G D} & =A^{G D}-A^{G D} A(I-P) A^{G D}=A^{G D}-A^{G D} A\left(A^{G D} A\right) A^{G D} \\
& =A^{G D}-\left(A^{G D} A A^{G D}\right) A A^{G D}=A^{G D}-A^{G D} A A^{G D}=0
\end{aligned}
$$

is quasi-nilpotent. Hence, $\left(A^{G D}\right)^{G D}=B=A(I-P)$. This completes the proof.

As 0 is a simple pole of $(\lambda-A)^{-1}$ if and only if $A P=0$, we obtain:
Corollary 1. Let $A \in \mathcal{B}(X)$ and $0 \in \operatorname{iso\sigma }(A)$. Then $\left(A^{G D}\right)^{G D}=A$ if and only if 0 is a simple pole of $(\lambda-A)^{-1}$.

In the following we give a representation theorem for the Drazin inverse of a linear operator in Banach space and the corresponding error bound.

Theorem 6. Let $A \in \mathcal{B}(X)$ be Drazin invertible of index k and $\mathcal{R}\left(A^{k}\right)$ is closed. Define $\widetilde{A}=\left(A^{k} A^{* 2 k+1} A^{k+1}\right)_{\mid \mathcal{R}\left(A^{k}\right)}$. If Ω is an open set such that $\sigma(\widetilde{A}) \subset \Omega \subset$ $] 0, \infty\left[\right.$ and $\left(S_{j}(x)\right)_{j \in \mathbb{N}}$ is a sequence of continuous real valued functions on Ω with $\lim _{j \rightarrow \infty} S_{j}(x)=\frac{1}{x}$ uniformly on $\sigma(\widetilde{A})$, then:

$$
A^{D}=\lim _{j \rightarrow \infty} S_{j}(\widetilde{A}) A^{k} A^{* 2 k+1} A^{k}
$$

Furthermore, for any $\varepsilon>0$, there is an operator norm $\|\cdot\|_{*}$ on X such that:

$$
\frac{\left\|S_{j}(\widetilde{A}) A^{k} A^{* 2 k+1} A^{k}-A^{D}\right\|_{*}}{\left\|A^{D}\right\|_{*}} \leq \max _{x \in \sigma(\widetilde{A})}\left|S_{j}(x) x-1\right|+\mathcal{O}(\varepsilon)
$$

Proof. It's clear that $\sigma(\widetilde{A})=\sigma\left(A^{k} A^{* 2 k+1} A^{k+1}\right)=\sigma\left(\left(A^{2 k+1}\right)^{*}\left(A^{2 k+1}\right)\right) \subset$ $] 0, \infty[$, since \widetilde{A} is positive and boundedly invertible. Using functional calculus, we have:

$$
\lim _{j \rightarrow \infty} S_{j}(\widetilde{A})=\widetilde{A}^{-1}
$$

It then follows from [2] that:

$$
\lim _{j \rightarrow \infty} S_{j}(\widetilde{A}) A^{k} A^{* 2 k+1} A^{k}=\widetilde{A}^{-1} A^{k} A^{* 2 k+1} A^{k}=A^{D}
$$

To obtain the error bound, we note that:

$$
\begin{aligned}
A^{k} A^{* 2 k+1} A^{k} & =\widetilde{A} A^{D} \\
S_{j}(\widetilde{A}) A^{k} A^{* 2 k+1} A^{k}-A^{D} & =\left(S_{j}(\widetilde{A}) \widetilde{A}-I\right) A^{D} .
\end{aligned}
$$

We also know that for any $\varepsilon>0$, one can define a new norm $\|\cdot\|_{*}$ on X with the formula:

$$
\|x\|_{*}=\sqrt{\sum_{j=0}^{m}\left(\frac{\left\|A^{j} x\right\|}{M^{j}}\right)^{2}}
$$

where $M=r(A)+\varepsilon$ and $m \in \mathbb{N}$ has been chosen as the first integer such that $\left\|A^{m}\right\|^{1 / m}<M$. It is easy to see that this norm is equivalent to the original norm and it induces a norm on $\mathcal{B}(X)$ such that $\|A\|_{*}<r(A)+\varepsilon$. Thus,

$$
\begin{aligned}
\left\|S_{j}(\widetilde{A}) A^{k} A^{* 2 k+1} A^{k}-A^{D}\right\|_{*} & \leq\left\|S_{j}(\widetilde{A}) \widetilde{A}-I\right\|_{*}\left\|A^{D}\right\|_{*} \\
& \leq\left(\max _{x \in \sigma(\widetilde{A})}\left|S_{j}(x) x-1\right|+\mathcal{O}(\varepsilon)\right)\left\|A^{D}\right\|_{*}
\end{aligned}
$$

Now we explain the Euler-Knopp Method for computational of the Drazin inverse of a bounded operator and the way to get the corresponding error bound. First we need the following result concerning lower and upper bounds for $\sigma(\widetilde{A})$.

Lemma 2. Let $A \in \mathcal{B}(X)$ be Drazin invertible of index k and $\mathcal{R}\left(A^{k}\right)$ is closed. Then, for all $\lambda \in \sigma(\widetilde{A})$:

$$
\frac{1}{\left\|\left(A^{2 k+1}\right)^{\dagger}\right\|^{2}} \leq \lambda \leq\|A\|^{4 k+2}
$$

Proof. For all $\lambda \in \sigma(\widetilde{A}), \lambda>0$ and $\lambda \in \sigma\left(\left(A^{2 k+1}\right)^{*}\left(A^{2 k+1}\right)\right)$. Furthermore, it's clear that ind $\left(\left(A^{2 k+1}\right)^{*} A^{2 k+1}\right)=1$ and

$$
\frac{1}{\lambda} \in \sigma\left(\left(\left(A^{2 k+1}\right)^{*} A^{2 k+1}\right)^{\dagger}\right)=\sigma\left(\left(A^{2 k+1}\right)^{\dagger}\left(\left(A^{2 k+1}\right)^{\dagger *}\right)\right)
$$

Thus,

$$
\frac{1}{\lambda} \leq\left\|\left(A^{2 k+1}\right)^{\dagger}\left(\left(A^{2 k+1}\right)^{\dagger *}\right)\right\|=\left\|\left(A^{2 k+1}\right)^{\dagger}\right\|^{2} \text { and } \lambda \geq \frac{1}{\left\|\left(A^{2 k+1}\right)^{\dagger}\right\|^{2}}
$$

On the other hand, since $\left\|\left(A^{k} A^{* 2 k+1} A^{k+1}\right)_{\mid \mathcal{R}\left(A^{k}\right)}\right\| \leq\left\|A^{k} A^{* 2 k+1} A^{k+1}\right\|$, we obtain $\|\widetilde{A}\| \leq\|A\|^{4 k+2}$ so what $\lambda \leq\|\widetilde{A}\| \leq\|A\|^{4 k+2}$ for all $\lambda \in \sigma(\widetilde{A})$.

Consider now the sequence $\left(S_{p}(x)\right)_{p \in \mathbb{N}}$ and the set $E_{\alpha}, \alpha>0$, defined respectively in (5) and (6). By Lemma 2, we get $\left.\sigma(\widetilde{A}) \subseteq] 0,\|A\|^{4 k+2}\right]$. So, if we choose the parameter $\alpha, 0<\alpha<\frac{2}{\|A\|^{4 k+2}}$ such that $\left.\left.\sigma(\widetilde{A}) \subseteq\right] 0,\|A\|^{4 k+2}\right] \subset E_{\alpha}$, then we obtain the following representation of the Drazin inverse A^{D} of A :

$$
A^{D}=\alpha \sum_{j=0}^{\infty}\left(I-\alpha A^{k} A^{* 2 k+1} A^{k+1}\right)^{j} A^{k} A^{* 2 k+1} A^{k}
$$

Setting $A_{j}=\alpha \sum_{m=0}^{j}\left(I-\alpha A^{k} A^{* 2 k+1} A^{k+1}\right)^{m} A^{k} A^{* 2 k+1} A^{k}$, we have the following iterative procedure for the Drazin inverse:

$$
A_{0}=\alpha A^{k} A^{* 2 k+1} A^{k} \text { and } A_{j+1}=\left(I-\alpha A^{k} A^{* 2 k+1} A^{k+1}\right) A_{j}, j \in \mathbb{N}
$$

Therefore, $\lim _{j \rightarrow \infty} A_{j}=A^{D}$. For the error bound, we note that from (9) and (10), we have $\left|x S_{j}(x)-1\right|=|1-\alpha x|^{j+1} \leq \beta^{j+1} \underset{j \rightarrow \infty}{\longrightarrow} 0$, if $x \in \sigma(\widetilde{A}), 0<\alpha<\frac{2}{\|A\|^{4 k+2}}$
and $\beta=\max \left\{\left|1-\alpha\|A\|^{4 k+2}\right|,\left|1-\frac{\alpha}{\left\|\left(A^{2 k+1}\right)^{\dagger}\right\|^{2}}\right|\right\}<1$. It follows from the above inequality and Theorem 6, the error bound:

$$
\frac{\left\|A_{j}-A^{D}\right\|_{*}}{\left\|A^{D}\right\|_{*}} \leq \beta^{j+1}+\mathcal{O}(\varepsilon), \varepsilon>0
$$

Note that this approximation generalizes to infinite-dimensional case the result obtained on the square matrices in Theorem 3.

Example 6. Let $A \in \mathcal{B}(X)$ be selfadjoint, $A^{*}=A$, and $0 \in \operatorname{iso\sigma }(A)$. Then A has closed range and is Drazin invertible with ind $(A)=1$. Let's use the iterative procedure developed previously with $0<\alpha<\frac{2}{\|A\|^{6}}$ and $\beta=\max \left\{\left|1-\alpha\|A\|^{6}\right|,\left|1-\frac{\alpha}{\left\|\left(A^{3}\right)^{\dagger}\right\|^{2}}\right|\right\}<$ 1. So, $\lim _{j \rightarrow \infty} A_{j}=A^{D}$ where $A_{0}=\alpha A^{5}, A_{j+1}=\left(I-\alpha A^{6}\right) A_{j}, j \in \mathbb{N}$, and the error bound $\frac{\left\|A_{j}-A^{D}\right\|_{*}}{\left\|A^{D}\right\|_{*}} \leq \beta^{j+1}+\mathcal{O}(\varepsilon), \varepsilon>0$.

5 Continuity of the GD-Drazin inverse

Drazin inversion is not continuous in general, we illustrate this in the following example.

Example 7. Let $A \in \mathcal{B}\left(l_{2}\right)$ be a weighted shift with weight sequence:

$$
0,0,-1,0,0,-1,0,0,-1, \ldots
$$

so that A is nilpotent of index 3 . Then A is Drazin invertible and with $A^{D}=0$. Let $A_{j}=A+\frac{1}{j} I$, for all $j \in \mathbb{N}^{*}$. Then, for each $j \in \mathbb{N}^{*}$:

$$
A_{j}\left(j I-j^{2} A+j^{3} A^{2}\right)=\left(j I-j^{2} A+j^{3} A^{2}\right) A_{j}=I
$$

Thus A_{j} is invertible and hence Drazin invertible with:

$$
A_{j}^{D}=A_{j}^{-1}=\left(j I-j^{2} A+j^{3} A^{2}\right), j \in \mathbb{N}^{*}
$$

It is clear that $A_{j} \longrightarrow A$ as $j \rightarrow \infty$ in $\mathcal{B}\left(l_{2}\right)$, but the unbounded sequence $\left(A_{j}^{D}\right)_{j \in \mathbb{N}^{*}}$ does not converge to $A^{D}=0$.

Rakocevic investigate in [16] the continuity of the Drazin inverse of a bounded linear operator on Banach space, i.e. the continuity of the maps $A \longrightarrow A^{D}$ and $A \longrightarrow A^{G D}, A \in B(X)$, he generalized the continuity result of $[7]$ to Drazin inverse in the following way. Let $\left(A_{j}\right)_{j \in \mathbb{N}}$ be a sequence in $\mathcal{B}(X)$, and let $\lim _{j \rightarrow \infty} A_{j}=A$. Suppose that A and A_{j}, have Drazin inverses A^{D} and A_{j}^{D} respectively. Then the following conditions are equivalent:

$$
\text { (1) } \lim _{j \rightarrow \infty} A_{j}^{D}=A^{D} \text {. (2) } \sup _{j \in \mathbb{N}}\left\|A_{j}^{D}\right\|<\infty \text {. (3) } \lim _{j \rightarrow \infty} A_{j}^{D} A_{j}=A^{D} A \text {. }
$$

Furthermore, by virtue of Banach-Steinhaus theorem, we can easily deduce, as a generalization, an equivalent result when $\left(A_{j}\right)_{j \in \mathbb{N}}$ converges to A strongly.

It is interesting to study the continuity of the GD-inverse. We are now ready to present the main result of this section, it is due to Koliha and Rakocevic [10], nevertheless, the proof below is direct and of a technical nature.
Theorem 7. Let $\left(A_{j}\right)_{j \in \mathbb{N}}$ be a sequence in $\mathcal{B}(X)$, and let $\lim _{j \rightarrow \infty} A_{j}=A$. Suppose that A and A_{j} have generalized Drazin inverses $A^{G D}$ and $A_{j}^{G D}$, and let P and P_{j} be the spectral projections corresponding to 0 , of A and A_{j}, respectively, for every $j \in \mathbb{N}$. Then the following conditions are equivalent:
(i) $\lim _{j \rightarrow \infty} A_{j}^{G D}=A^{G D}$.
(ii) $\sup _{j \in \mathbb{N}}\left\|A_{j}^{G D}\right\|<\infty$.
(iii) $\sup _{j \in \mathbb{N}}\left\|r\left(A_{j}^{G D}\right)\right\|<\infty$.
(iv) $\inf _{j \in \mathbb{N}} \operatorname{dist}\left(\sigma^{\prime}\left(A_{j}\right), 0\right)>0$.
(v) There exists an $r>0$ such that $\widetilde{B}(0, r) \subseteq \rho(A) \cap \bigcap_{j=0}^{\infty} \rho\left(A_{j}\right)$, where $\widetilde{B}(0, r)$ is the open ball excluding the center 0 and with radius r.
(vi) $\lim _{j \rightarrow \infty} A_{j}^{G D} A_{j}=A^{G D} A$.
(vii) $\lim _{j \rightarrow \infty} P_{j}=P$.

Proof. (i) \Longrightarrow (ii). Follows from the fact that convergence implies boundedness.
(ii) \Longrightarrow (iii). Suppose that (ii) holds. Since $r\left(A_{j}^{G D}\right) \leq\left\|A_{j}^{G D}\right\| \leq \sup _{j \in \mathbb{N}}\left\|A_{j}^{G D}\right\|<$ ∞, for all $j \in \mathbb{N}$, we obtain that $\sup _{j \in \mathbb{N}} r\left(A_{j}^{G D}\right) \leq \sup _{j \in \mathbb{N}}\left\|A_{j}^{G D}\right\|<\infty$.
(iii) \Longrightarrow (iv). Suppose that $k=\sup _{j \in \mathbb{N}} r\left(A_{j}^{G D}\right)<\infty$. We distinguish the following three cases:

Case I: $r\left(A_{j}^{G D}\right)=0$ for all $j \in \mathbb{N}$. Then $\sigma\left(A_{j}^{G D}\right)=\{0\}$ and hence $\sigma\left(A_{j}\right)=$ $\{0\}$, so $\operatorname{dist}\left(\sigma^{\prime}\left(A_{j}\right), 0\right)=\infty$, for all $j \in \mathbb{N}$. It then follows that $\inf _{j \in \mathbb{N}} \operatorname{dist}\left(\sigma^{\prime}\left(A_{j}\right), 0\right)=$ $\infty>0$.

Case II: If $r\left(A_{j}^{G D}\right)>0$ for all $j \in \mathbb{N}$, then $k>0$ and $\left(r\left(A_{j}^{G D}\right)\right)^{-1} \geq$ k^{-1}. Hence, $r\left(A_{j}^{G D}\right)=r\left(A_{j}^{G D} A_{j} A_{j}^{G D}\right) \leq\left(r\left(A_{j}^{G D}\right)\right)^{2} r\left(A_{j}\right)$, so that $r\left(A_{j}\right) \geq$ $\left(r\left(A_{j}^{G D}\right)\right)^{-1} \geq k^{-1}>0$, for all $j \in \mathbb{N}$. Or, for all $j \in \mathbb{N}, \operatorname{dist}\left(\sigma^{\prime}\left(A_{j}\right), 0\right)=$ $\left(r\left(A_{j}^{G D}\right)\right)^{-1} \geq k^{-1}>0$, and hence $\inf _{j \in \mathbb{N}} \operatorname{dist}\left(\sigma^{\prime}\left(A_{j}\right), 0\right) \geq k^{-1}>0$.

Case III: There is at least one $j \in \mathbb{N}$ such that $r\left(A_{j}^{G D}\right)>0$ and possibly some other j^{\prime} for which $r\left(A_{j^{\prime}}^{G D}\right)=0$. By case II, we have that $\operatorname{dist}\left(\sigma^{\prime}\left(A_{j}\right), 0\right)=$ $\left(r\left(A_{j}^{G D}\right)\right)^{-1} \geq k^{-1}>0$ for all $j \in \mathbb{N}$ satisfying $r\left(A_{j}^{G D}\right)>0$. By case I,
$\operatorname{dist}\left(\sigma^{\prime}\left(A_{j^{\prime}}\right), 0\right)=\infty$ for all $j^{\prime} \in \mathbb{N}$ such that $r\left(A_{j^{\prime}}^{G D}\right)=0$. Let $k_{j}=\operatorname{dist}\left(\sigma^{\prime}\left(A_{j}\right), 0\right)$. Then,

$$
\inf \left\{\operatorname{dist}\left(\sigma^{\prime}\left(A_{j}\right), 0\right): j \in \mathbb{N}\right\}=\inf \left\{k_{j}: j \in \mathbb{N} \text { satisfies } r\left(A_{j}^{G D}\right)>0\right\} \geq k^{-1}>0
$$

hence the result follows.
(iv) $\Longrightarrow(\mathrm{v})$. Suppose that $M=\inf _{j \in \mathbb{N}} \operatorname{dist}\left(\sigma^{\prime}\left(A_{j}\right), 0\right)>0$. Let $r=\min (m, M)$ where $m=\operatorname{dist}\left(\sigma^{\prime}(A), 0\right)$. By the choice of r and the fact that $\bigcap_{j=0}^{\infty} \rho\left(A_{j}\right)=$ $\mathbb{C} \backslash \bigcup_{j=0}^{\infty} \sigma\left(A_{j}\right)$, we have that $\widetilde{B}(0, r) \subseteq \bigcap_{j=0}^{\infty} \rho\left(A_{j}\right)$ and $\widetilde{B}(0, r) \subseteq \rho(A)$.
$(\mathrm{v}) \Longrightarrow($ vi). Suppose that there exists an $r>0$ such that $\widetilde{B}(0, r) \subseteq \rho(A) \cap$ $\bigcap_{j=0}^{\infty} \rho\left(A_{j}\right)$ and show that $A_{j}^{G D} A_{j} \longrightarrow A^{G D} A$ as $j \rightarrow \infty$.

If A is invertible, so A_{j} is too for all sufficiently large $j \in \mathbb{N}$ and $A_{j}^{G D}=$ $A_{j}^{-1} \longrightarrow A^{-1}=A^{G D}$ as $j \rightarrow \infty$. By the continuity of multiplication in $\mathcal{B}(X)$, it follows that $A_{j}^{G D} A_{j} \longrightarrow A^{G D} A$ as $j \rightarrow \infty$.

Suppose now that $0 \in \operatorname{iso\sigma }(A)$ and P is the spectral projection of A corresponding to 0 . Let:

$$
\Omega_{1}=\left\{\lambda \in \mathbb{C}:|\lambda|<\frac{r}{3}\right\} \text { and } \Omega_{2}=\left\{\lambda \in \mathbb{C}:|\lambda|>\frac{2 r}{3}\right\} .
$$

By hypothesis, Ω_{1} and Ω_{2} are open sets containing $\{0\}$ and $\sigma^{\prime}(A)$ respectively, and hence $\Omega=\Omega_{1} \cup \Omega_{2}$ is an open set containing $\sigma(A)$. Define $f: \Omega \longrightarrow \mathbb{C}$ by:

$$
f(\lambda)=\left\{\begin{array}{lll}
1 & \text { if } & \lambda \in \Omega_{1} \\
0 & \text { if } & \lambda \in \Omega_{2}
\end{array} .\right.
$$

Then, f is holomorphic on Ω and $P=f(A)$. The spectral projection P_{j} of A_{j} corresponding to 0 , might be 0 for several $j \in \mathbb{N}$. Also, by hypothesis, Ω_{2} is an open set containing $\sigma^{\prime}\left(A_{j}\right)$ for all $j \in \mathbb{N}$, so that $P_{j}=f\left(A_{j}\right)$ for all $j \in \mathbb{N}$. It follows that $P_{j}=f\left(A_{j}\right) \longrightarrow f(A)=P$ as $j \rightarrow \infty$ and since $A^{G D}=(A+P)^{-1}(I-P)$ and $A_{j}^{G D}=\left(A_{j}+P_{j}\right)^{-1}\left(I-P_{j}\right)$, we have $A_{j}^{G D} A_{j} \longrightarrow A^{G D} A$ as $j \rightarrow \infty$.

From the above, it is clear that (vi) is equivalent to assertion (vii).
Finally, we prove that (vii) \Longrightarrow (i). Suppose that (vii) holds. Since $A_{j}+P_{j}$ and $A+P$ are invertible in $\mathcal{B}(X)$, for all $j \in \mathbb{N}$, and $\left(A_{j}+P_{j}\right) \longrightarrow A+P$ as $j \rightarrow \infty$, it then follows that $\left(A_{j}+P_{j}\right)^{-1} \longrightarrow(A+P)^{-1}$ as $j \rightarrow \infty$. Hence, by the continuity of multiplication in $\mathcal{B}(X), A_{j}^{G D}=\left(A_{j}+P_{j}\right)^{-1}\left(I-P_{j}\right) \longrightarrow(A+P)^{-1}(I-P)=A^{G D}$ as $j \rightarrow \infty$. This completes the proof.

References

[1] Ben-Israel, A. and Greville, T.N.E., Generalized inverses: Theory and applications, Springer, Berlin, second edition, 2003.
[2] Campbell, S.L., Recent Application of Generalized Inverses, Pitman, London, 1982.
[3] Caradus, S.R., Generalized Inverses and Operator Theory, Queen's Papers in Pure and Applied Mathematics 50, Queen's University, Ontario, 1978.
[4] Campbell, S.R. and Meyer Jr., C.D., Continuity properties of the Drazin pseudoinverse, Linear Algebra Appl. 10 (1975), 77-83.
[5] Campbell, S.L. and Meyer, Jr., C.D., Generalized Inverses of Linear Transformations, Pitman, 1979.
[6] Householder, A.S., The Theory of Matrices in Numerical Analysis, Blaisdell Publishing Co. New York, 1964.
[7] Izumino, S., Convergence of generalized inverses and spline projectors, J. Approx. Theory. 38 (1983), 269-278.
[8] King, C.F., A note on Drazin inverses, Pacific J. Math. 70 (1977), no. 2, 383-390.
[9] Koliha, J.J., A generalized Drazin inverse, Glasgow Math. J. 38 (1996), 367381.
[10] Koliha, J.J. and Rakocevic, V., Continuity of the Drazin inverse II, Studia Math. 131 (1998), no. 2, 167-177.
[11] Lay, D.C., Spectral analysis using ascent, descent, nullity and defect, Math. Ann. 184 (1970), 197-214.
[12] Miloud Hocine, K., Benharrat, M. and Messirdi, B., Left and right generalized Drazin invertible operators, Linear Multilinear A. 63 (2015), 1635-1648.
[13] Ounadjela, D., Benharrat, M. and Messirdi, B., The Perturbation Classes Problem for Generalized Drazin Invertible Operators II, Complex Anal. Oper. Th. 13 (2019), no. 3, 1361-1375.
[14] Ounadjela, D., Miloud Hocine, K. and Messirdi, B., The Perturbation Classes Problem for Generalized Drazin Invertible Operators I, Rend. Circ. Mat. Palermo, II. Ser. 67 (2018), 159-172.
[15] Penrose, R., A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406-413.
[16] Rakocevic, V., Continuity of the Drazin inverse, J. Operator Theory. 41 (1999), 55-68.
[17] Wei, Y. and Wu, H., The representation and approximation for Drazin inverse, J. Comput. Appl. Math. 126 (2000), 417-432.

[^0]: ${ }^{1}$ Department of Mathematics, University Tahar Moulay of Saida, B.P. 128 cité ANNASR 20000. Saida, Algeria, e-mail: b.saadli@yahoo.fr

 2* Corresponding author, High School of Electrical and Energetic Engineering-Oran, Algeria. Laboratory of Fundamental and Applicable Mathematics of Oran (LMFAO), Algeria, e-mail: bmessirdi@yahoo.fr
 ${ }^{3}$ Department of Mathematics University of Oran1, Ahmed Ben Bella. Laboratory of Fundamental and Applicable Mathematics of Oran (LMFAO), Algeria, e-mail: messirdi.sofiane@hotmail.fr

