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2D WAVEGUIDES: ASYMPTOTICS OF EIGENVALUE
INDUCED BY A WINDOW IN A SEMITRANSPARENT

SEPARATING WALL

Igor POPOV1, Ekaterina TRIFANOVA2 and Alexei VOROBIEV3

Abstract

Two-dimensional quantum waveguides with common semitransparent wall
are considered. It is assumed that there is a small window in the separat-
ing wall. It leads to the appearance of an eigenvalue below the continuous
spectrum. Semitransparent wall is introduced as a potential supported by
a hypersurface. We use the method of asymptotic expansions of boundary
problems solutions. It allows us to obtain the main term of the asymptotics
explicitly.
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1 Introduction

There is a wide class of mathematical and physical problems related to sys-
tems perturbed at spatially small domains. It includes, particularly, systems of
waveguides and resonators coupled through small windows. Although these sys-
tem can be classical (acoustical or electro-dynamical), a special wave of interest
to the problem was excited by quantum waveguides and quantum dots in nano-
electronics [19]. Physical properties of such systems are closely related with the
spectral properties of the corresponding Schrödinger operator. In case of ballistic
regime, the Schrödinger operator reduces to the Laplacian in some domain. There
are a lot of papers devoted to the spectral problem for the Laplacian in complex
domains. As for the continuous spectrum, this is related to the system behavior
at infinity, e.g., periodicity. Influence of such properties on the continuous spec-
trum were described, e.g., in [6, 7, 25, 26, 8]. Local perturbations cannot change
the continuous spectrum but can lead to the appearance of the point spectrum,
i.e. bound states. Due to the importance for physical applications, this problem
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is the object of a lot of research for perturbations of different nature: waveguide
curvature [13, 18], coupling of a resonator [27, 28], change of boundary condi-
tion at some places [11, 12], coupling windows between resonators or waveguides
[17, 22, 29, 30, 31, 9, 10]. Eigenvalues are considered both below the continuous
spectrum (or in gaps) and imbedded in the continuous spectrum [5]. Last time, a
wave of interest appears to semitransparent boundaries (or potentials supported
by hypersurfaces) [15, 16, 4, 24, 14, 3, 32, 35, 33, 34, 36]. In the present paper we
consider two 2D waveguide separated by a semitransparent barrier. It is assumed
that there is a small window in the barrier which leads to the appearance of a
bound state below the threshold. We seek the asymptotics of the bound state in
the window width. The technique is based on matching of asymptotic expansions
of boundary value problem solutions [21].

2 Preliminaries

We consider the Laplace operator −∆ in a pair of two-dimensional quantum
waveguides Ω− and Ω+ with widths d− and d+. We assume d− < d+ < 2d−.
The choice of the Cartesian coordinates is shown in Fig. 1. Semitransparent
separating boundary lies on the first coordinate axis. Point (0, 0) is the center of
the small window of width 2a. We assume the Dirichlet boundary at the external

Figure 1: Geometry of the system

boundaries of the waveguides:

u(x1, x2)|x2=d± = 0. (1)

As for the common boundary, we assume that there is a delta-like potential sup-
ported by this line: {

u|x2=+0 = u|x2=−0,
∂u
∂x2
|x2=+0 − ∂u

∂x2
|x2=−0 = αu|x2=+0.

(2)
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The conditions of such type appear if one considers singular potential supported
on hypersurface. These potentials have been intensively investigated during last
two decades (see Introduction).

Definition 1. Let −∆ be the Laplace operator defined on functions from the
Sobolev space W 2

2 (Ω+) ∪W 2
2 (Ω−) satisfying conditions (1), (2).

Lemma 1. Operator −∆ is self-adjoint.

It is well-known lemma (see the above mentioned papers. Wall semitrans-
parency is described by the parameter α in (2). Generally, α ∈ (0; +∞), where
zero value means no barrier and infinity means absolutely nontransparent barrier.
Zero value is not included because actually it is not our case.

Due to the window, an eigenvalue appears below the lower bound of the oper-
ator continuous spectrum. We construct its asymptotics in window size, i.e. the
parameter a (half of the window size).

3 Asymptotics construction

3.1 Eigenfunctions for semitransparent wall

To satisfy the boundary (1) and matching (2) conditions, we seek the eigen-
functions in the following form:

χn(x) =

{
An sin((x2 − d+)ν), x2 > 0,
Bn sin((x2 + d−)ν), x2 < 0.

(3)

The choice of the form (10) ensures condition (1). Conditions (2) lead to the
following equations:{

−An sin(d+ν) = Bn sin(d−ν),
Anν cos(d+ν)−Bnν cos(d−ν) = αBn sin(d−ν).

We are interested in non-trivial solution of the system. It gives us the equation
for ν

−ν cot(d+ν)− ν cot(d−ν) = α. (4)

The eigenfunction corresponding to a root of (4) is as follows.

χn(x) =

{
−Cn sin(d−ν) sin((x2 − d+)ν), x2 > 0,
Cn sin(d+ν) sin((x2 + d−)ν), x2 < 0.

(5)

Cn is the normalizing constant.

Equation (4) is the dispersion equation. It has a countable number of roots ν.
The squares of the roots are the eigenvalues of the Sturm-Liouville problem for
the waveguide cross-section. Let λn = ν2

n be numbered in increasing order. These
values are the thresholds for the full operator in the waveguide. Thus, we obtain
the next lemma.
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Lemma 2. The continuous spectrum of operator −∆ consists of a countable num-
ber of branches [λn,∞), λn = ν2

n, where νn is root of the dispersion equation (4).

Remark 1. One can see that if α = ∞ (the Dirichlet separating wall) then
for our choice of the system parameters, the first two thresholds are as follows:

λ1 =
(
π
d+

)2
, λ2 =

(
π
d−

)2
. If α = 0 (absence of separating wall) then one has

λ1 =
(

π
d++d−

)2
, λ2 =

(
2π

d++d−

)2
.

3.2 Green’s function

We would like to construct the asymptotics of the eigenvalue k2
a close to the

first threshold (and less than λ1). We take the following form of the asymptotic
expansion:

√
λ1 − k2

a =
∞∑
j=2

[j/2]−1∑
i=0

kjia
j lni

a

a0
. (6)

Here a0 is the unit of length. As for the asymptotic expansion for the eigenfunc-
tion, it has the following form:

ψa(x) =


∑∞

j=−1 a
j Pj+1

(
Dy, ln

a
a0

)
G−(x, y, k)

∣∣∣
y=0

, x ∈ Ω− \ Sa0(a/a0)1/2 ,∑∞
j=1

∑[(j−1)/2]
i=0 vji

(
x
a

)
aj lni a

a0
, x ∈ S2a0(a/a0)1/2 ,

−
∑∞

j=−1 a
j Pj+1

(
Dy, ln

a
a0

)
G+(x, y, k)

∣∣∣
y=0

, x ∈ Ω+ \ Sa0(a/a0)1/2 ,

(7)
where Sr is the disk of radius r with the center at the center of the window,
G+(G−) is the Green function for the unperturbed operator (i.e. without coupling
window) in Ω+(Ω−), Pn is a polynomial of n-th degree Dy is the differentiation
with respect to y. Functions vji

(
x
a

)
will be determined later.

Let us describe the Green function. The general expression for waveguide is
well known:

G(x, y, k) =
∞∑
n=1

χn(x2) · χn(y2)

2pn
e−pn(x1−y1),

where pn =
√
λn − k2

a, χn(x2) is the n−th eigenfunction of the Sturm-Liouville
problem for the waveguide cross-section. Keeping in mind expression (5) for χn,
one obtains the following expression for the Green function:{

G+(x, y, k) =
∑∞

n=1
C2

n(sin(d−νn))2 sin((x2−d+)νn) sin((y2−d+)νn)
2pn

· e−pn(x1−y1),

G−(x, y, k) =
∑∞

n=1
C2

n(sin(d+νn))2 sin((x2+d−)νn) sin((y2+d−)νn)
2pn

· e−pn(x1−y1).

Differential operator Pn from formula (7) can be described as follows:

P0

(
Dy, ln

a

a0

)
= a

(0)
10 I, P1

(
Dy, ln

a

a0

)
= a

(1)
10 D

1
y, D

n
y =

∂n

∂nny
,
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Pm

(
Dy, ln

a

a0

)
=

m−1∑
q=1

[(q−1)/2]∑
i=0

a
(m)
qi

(
ln

a

a0

)i
D

m−q+1

y ,m ≥ 2

We obtain the following representation for Dn
yG:

Dj
yG±(x, 0, k) =

C2
1,±(sin(x2ν) cos(d±ν)∓cos(x2ν) sin(d±ν))Dj

y sin((y2∓d±)ν)

2p1

∣∣∣∣
y=0

e−x1p1

+Φj(x, k) ln r
a0

+ g±j (x, k) +
∑[j/2]

i=0

∑j−2i−1
t=0 b

(j)
it r
−j+2(i+t)φj−2i(θ)

(8)
where (r, θ) are the polar coordinates with the center at (0, 0),

φj−2i(θ) = cos((j − 2i)θ) +
α

2(j − 2i)
sin((j − 2i)θ).

The choice of function φ is related to the boundary condition (2). Terms b
(j)
it ,

Φj(x, k), g±j (x, k) are analytic with respect to k in some neighborhood of the point
λ1,

bj00 = (−1)[(j+1)/2](j − 1)!/π, b310 =
λ2

2π
,Φ1n(0, k) = −λ2

2π
.

3.3 The main term of the asymptotics

3.3.1 Procedure of constructing

Boundary problems for vji
(
x
a

)
from (7) can be obtained in the following way.

We substitute the series (7) and (6) into the Helmholtz equation (for k = ka) and
then change variables ξ = x

a . The coefficients in the terms with the same powers
of a and ln a

a0
should be equal. Hence, we obtain the following problems:

∆ξvji = −
∑j−3

p=0

∑[p/2]
q=0 Λpqvj−p−2,i−q, ξ ∈ R2\γ,

vji = 0, ξ ∈ γ
(9)

where γ = {ξ|ξ2 = 0, ξ1 ∈ (−∞;−1]∪ [1; +∞)} and Λpq are the coefficients of the
series:

k2
a =

∑
p

∑
q

Λpqa
p lnq

a

a0
.

One can notice that (9) gives us the homogeneous Laplace equation for v10 and v20

but for v30 one gets the inhomogeneous Laplace equation (the Poisson equation)
and it looks like ∆ξv30 = −k2

0v10 because of the value of Λ00.

As the next step one needs to introduce operator Mpq(U). The operator
changes variables in expressions U (ξ = x

a , ρ = r
a , ln r = ln ρ + ln a) and filters

summand with ap lnq a
a0
ϕ(ξ). Also Mp =

∑
qMpq. It is used to get all summands

with ap.
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3.3.2 Calculating of k20

We will find the main term of the asymptotics. As for the next terms, they
are determined sequently in accordance with the procedure described above. Let’s
find summands of order a1 from (7) using operator M1.

a−1M1

(
−
√
λ1 − k2

a · P1G
+(x, 0, ka)

)
= 1

πk20a
(1)
10 ρ

−1φ1(θ)+

ρφ1(θ) · a
(1)
10 (sin(d−ν1))2ν21 cos2(d+ν1)

2 C2
1 ,

(10)

a−1M1

(√
λ1 − k2

a · P1G
−(x, 0, ka)

)
= − 1

πk20a
(1)
10 ρ

−1φ1(θ)+

ρφ1(θ) · a
(1)
10 (sin(d+ν1))2ν21 cos2(d−ν1)

2 C2
1 .

(11)

To find v10, we use the following lemma [20, 23].

Lemma 3. There exist harmonic functions Yq1(ξ), Yq2(ξ) in R2\(R\(−1; 1)), Yqs|R\(−1;1) =

0, Yqs ∈W 1
2,loc(R2), which have the following differentiable asymptotics by ρ, ρ→

∞:

Xq =

{
−
∑∞

j=1 ρ
−ja+

qj cos jθ, ξ2 > 0

ρqa0
q cos qθ +

∑∞
j=1 ρ

−ja−qj cos jθ, ξ2 < 0

Yq =

{
−
∑∞

j=1 ρ
−jb+qj sin jθ, ξ2 > 0

ρqb0q sin qθ +
∑∞

j=1 ρ
−jb−qj sin jθ, ξ2 < 0

Each harmonic in R2 \ (R \ (−1; 1)) function V that is 0 on R \ (−1; 1) and has
the order O(ρq) is a linear combination of Xj(ξ), Yj(ξ), Xj(ξ

∗), Yj(ξ
∗) for j ≤ q,

where ξ∗ = (ξ1,−ξ2).

To find the main term of the asymptotics, we need only two functions which
can be obtained by using the complex variable ζ = ξ1 + iξ2:

X = < ln(ζ +
√
ζ2 − 1, Y = =(ζ +

√
ζ2 − 1,

and, correspondingly, X̃(ζ) = X(ζ∗), Ỹ (ζ) = Y (ζ∗). To construct the term
φj satisfying the boundary condition at the semitransparent boundary (φj =
cos(jθ) + α

2j sin(jθ)), we use a combination φ = X + α
2Y and φ̃ = X̃ + α

2 Ỹ .
To match terms increasing for ρ→∞ in accordance with (10), (11), we choose

v10(ξ) in such a way:

v10(ξ) =
a

(1)
10 (sin(d+ν1))2ν2

1 cos2(d−ν1)

2
C2

1φ(ξ)+
a

(1)
10 (sin(d−ν1))2ν2

1 cos2(d+ν1)

2
C2

1 φ̃(ξ).

Hence, matching terms of order ρ−1φ1(θ) in (10), (11) with v10 leads to the fol-
lowing relation:

a
(1)
10 (sin(d+ν1))2ν2

1 cos2(d−ν1)

2
C2

1 +
a

(1)
10 (sin(d−ν1))2ν2

1 cos2(d+ν1)

2
C2

1 =
1

π
k20a

(1)
10 .

Finally:

k20 =
(sin(d+ν1))2ν2

1 cos2(d−ν1)

2
C2

1 +
(sin(d−ν1))2ν2

1 cos2(d+ν1)

2
C2

1 . (12)

Thus, we come to the main theorem of this paper.
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Theorem 1. The asymptotics of the eigenvalue k2
a of the operator −∆ induced

by a small coupling window of width 2a in semitransparent barrier is as follows:

k2
a ≈ λ1 − k2

20a
4,

where k20 is given by formula (12).

3.3.3 Discrepancy estimation

One can obtain the discrepancy estimation using the following lemma from
[20].

Lemma 4. Let ψ̂a,N , k̂a,N be the parts of the corresponding asymptotic series up
to the order N . Then, the following correlations take place:

ψ̂a,N (x, k̂a,N )−MN (ψ̂a,N (x, k̂a,N )) = O(rN+1 + aN+1(ln a)N ),

(ψ̂a,N (x, k̂a,N )−MN (ψ̂a,N (x, k̂a,N )))′xi = O(rN + aN+1(ln a/r)N ).

Let us present ψ̂a,1 in the form

ψ̂a,1(x, k̂a,1) = κ(ra−1/2)(ψ̂+
a,1(x, k̂a,1) + ψ̂−a,1(x, k̂a,1)) + (1− κ(ra−1/2))v̂10,

where κ is a cutting function: κ ∈ C∞,

κ(t) =

{
0, t ≤ 1,
1, .t ≥ 2.

Then,

(∆ + k̂2
a,1)ψ̂a,1(x, k̂a,1) = (1− κ(ra−1/2))(∆ + k̂2

a,1)v̂10+

κ(ra−1/2)(∆ + k̂2
a,1)(ψ̂+

a,1(x, k̂a,1) + ψ̂−a,1(x, k̂a,1))−
2∑
i=1

κxixi(ra
−1/2)(v̂10 − ψ̂+

a,1(x, k̂a,1)− ψ̂−a,1(x, k̂a,1))−

2∑
i=1

κxi(ra
−1/2)(v̂10 − ψ̂+

a,1(x, k̂a,1)− ψ̂−a,1(x, k̂a,1))xi .

The first term is of order O(a1/2), the second gives one zero. The last two terms
can be transformed to the following form allowing one to use lemma 4:

v̂10 − ψ̂+
a,1(x, k̂a,1)− ψ̂−a,1(x, k̂a,1) = v̂10 −M1(ψ̂+

a,1(x, k̂a,1) + ψ̂−a,1(x, k̂a,1))+

M1(ψ̂+
a,1(x, k̂a,1))− ψ̂+

a,1(x, k̂a,1) +M1(ψ̂−a,1(x, k̂a,1))− ψ̂−a,1(x, k̂a,1).

Using Lemma 4 one obtains that the last two terms has the order O(a1/2) in
L2(Ω− ∪ Ω+) and, finally, one comes to the discrepancy estimation:

‖(∆ + k̂2
a,1)ψ̂a,1(x, k̂a,1)‖L2(Ω−dΩ+) ≤ Ca1/2.
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4 Conclusion

The suggested procedure can be continued to obtain terms of the asymptotic
expansion of any order. The obtained results give one an estimation of the shift
of the eigenvalue with respect to the threshold. These results can be useful for
the description of ”quantum waveguide – quantum dot – quantum waveguide”
systems. One can find such systems in different nanotechnological applications.
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