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A REGULAR LIE GROUP ACTION YIELD SMOOTH
SECTIONS OF THE TANGENT BUNDLE AND

RELATEDNESS OF VECTOR FIELDS, DIFFEOMORPHISMS

Chidanand BADIGER∗1 and T.VENKATESH2

Abstract

In this paper, we have concentrated on a group action on the tangent
bundle of some smooth/differentiable manifolds which has been built from
a regular Lie group action on such smooth/differentiable manifolds. Inter-
estingly, elements of orbit space yield smooth sections of the tangent bundle
having beautiful algebraic properties. Moreover, each of those smooth sec-
tions behaves nicely as a left-invariant vector field with respect to Lie group
action by G. We have explained here a simple isomorphism between the
set of such smooth sections and each tangent space of that smooth/differen-
tiable manifold. Also we have discussed more about F -relatedness and have
introduced vector field relatedness by notations relX(M)(F ), relDiff(M)(X),
etc. which are sets based on both vector field related diffeomorphisms and
diffeomorphism related vector fields. We have presented consequences based
on the algebraic structure on relX(M)(F ), relDiff(M)(X), etc. sets and built
some related group actions. We have placed some interrelationship between
the both kinds of rel operations.
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1 Introduction

Vector fields on smooth manifolds represents a major study in differential ge-
ometry. The entire theory of vector fields has majority applications in physics
especially in the field of gravity, electricity, and magnetism [1]. More so when
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Erlanger program was initiated by F. Klein in 1872’s which characterized the ge-
ometries with the help of projective geometry and group theory thereby helping
modern Physics mainly in symmetry. On the other hand, Poincare extensively
used group theory for topological invariants that has shown remarkable develop-
ments in differential topology as well as in algebraic topology.

It is well-known a smooth (cr-differentiable) section of the tangent bundle
of a smooth (cr-differentiable) manifold is a vector field, and indeed assigns a
unique vector in the tangent space at each element of the smooth (cr-differentiable)
manifold. In general, magnitude and direction to each vector assigned by a vector
field cannot be specified unless the ambient space is a Riemannian manifold. One
can easily visualize the vector fields in three-dimensional Euclidean space and its
subspaces from the ideas of curl, divergence etc. But concerning vector fields
invariance, existence, the existence of nowhere vanishing vector fields, complete
vector fields, killing vector fields, transitive of a class of vector fields, etc. on a
given smooth manifold needs a lot of enquiry to visualize as well as to absorb
their full utilization. For instance, the Hairy ball theorem on vector fields is one
such result that constitutes more usage, and its special case i.e. existence of a
vector field on compact manifolds characterized by a topological property-Euler
characteristics [4].

Theory of bundles, the tangent bundle and the cotangent bundle in both Lie
group and differential manifolds have a prominent role in solutions of ordinary
and partial differential equations, classifications of forms, tensors, and metrics on
Riemannian manifolds. Fundamental vector fields are instruments that explain
the infinitesimal behaviour of a Lie group action on a smooth manifold. Such vec-
tor fields find predominant applications in the study of Lie groups, representation
theory, symplectic geometry and the study of Hamiltonian group actions.

[7] Sophus Lie (1842-1899) introduced the theory of Lie groups. It was in-
troduced basically to model the continuous symmetries of differential equations
as a tool to simplify or solve the partial differential equations, ordinary differen-
tial equations found in Physics. The dynamics and bifurcation theory of group-
invariant vector fields is a much-sought branch of Mathematics. A part of this
i.e. left-invariant vector fields is also a classical study on a Lie group which is a
geometrical invariance under the translation group action of Lie group on itself.
Some developments have been taken in differential forms, Riemannian metrics,
etc. for the Lie group. Later, studies have been produced on the existence of
such an invariant vector field subject to some conditions. For instance, one can
see a result in [18]-let G be an odd-dimensional Lie group with a left-invariant
metric then there is a left-invariant minimal unit vector field on G, and J. C.
Gonzalez-Davila and et al in [6] showed that every uni-modular Lie group ad-
mits a left-invariant harmonic unit vector field. Recently in 2014, an isomorphic
notion between two left-invariant vector fields and fundamental applications in-
cluding some remarkable consequences are presented in [5].

Top space is a smooth manifold with a binary operation satisfying certain
axioms (see [3, 14]) like a Lie group. A similar work of left-invariant vector
fields has been built on the Top space with its binary operation. Moreover, a
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similar theory of Lie bracket, Lie algebras has been developed on a Top space
[3, 14, 15, 16, 17].

The set of invariant vector fields of a Lie group (of dimension n) is a subspace
(equal to the dimension n) of the set of vector fields on it, but it is different in the

case of left-invariant metrics such collection is of n(n+1)
2 dimension [9]. Concerning

the vector fields, the main issue in this area is to construct left-invariant vector
fields, left-invariant unit vector fields, left-invariant harmonic unit vector fields
etc. for a Lie group as well for an arbitrary manifold under a group action by
a Lie group. Handling the collection of such smooth vector fields pertaining to
certain conditions is another issue, one can see that in the study of [2, 10]. The
positive semi orbit of a family of left-invariant vector fields through a point of a
manifold leads to the definition of transitive to the family of vector fields of a Lie
group. Using this, in [2] B. Bonnard and et al. characterized the family of the
left-invariant vector fields of a Lie group to be transitive. In the context of the
mentioned issues, in this paper we have developed and discussed a method by a Lie
group action on some smooth manifolds that yield vector fields and which induces
Lie algebra on the tangent space of each element of its manifold. Also, we have
discussed F -related vector fields and have introduced X-related diffeomorphisms.
Further, by defining new notions rel(F ), rel(X), etc. we have deduced algebraic
structure on the respective notions. For the family of left-invariant vector fields,
we have mentioned an interrelationship with the transformation group of the Lie
group. We shall further extend it to the manifold that undergoes regular Lie
group actions, and the same for left-invariant unit vector fields in a forthcoming
paper.

2 Preliminaries

In the entire paper, whatever theory we develop for smooth manifolds one
can also do the same to the Cr-differentiable manifolds. Lie group is a smooth
manifold equipped with a group structure in which group operations are smooth
maps [12, 13]. Generally a group action on a set M by a group (G, ?) is group
homomorphism φ : G→ Sym(M) by g → φ(g) = φg, or it is a map µ from product
space of G and M to M satisfying µ(e, x) = x and µ(g, µ(h, x)) = µ(g ? h, x) for
all x ∈ M and g ∈ G [8, 12, 13] and in this paper, often in the many proofs of
propositions, we shall use the second definition for group action. Out of many
types of group actions, a group action that is both transitive and free is called a
regular group action. A Lie group action is a group action by a Lie group on a
smooth manifold M such that map µ : G×M →M is smooth. Every Lie group
action gives a transformations group which is a subgroup of Diff(M).

Tangent bundle TM of a smooth manifold M , itself is a smooth manifold of
dimension equal to twice of dim(M). Every smooth map from a manifold to a
manifold induces a linear map at each point x, called derivative map at x denoted
by F∗x. We often use the standard projection π from tangent space to M .

Our intuition in this paper is to obtain the smooth sections by group actions.
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Left-invariant vector fields are frequently studied in the theory of Lie groups and
we have studied the same for some kind of general manifolds. For a differentiable
manifold M , generally, Diff(M) acts on the tangent bundle of manifold M , by
(f, Vx)→ f∗x(Vx). But while computing the orbit of each vector, one can see this
contains more than two vectors from the same tangent space. See example, for
the manifold real line R, under the same group action by Diff(R) on its tangent
bundle as we stated, for any non-zero vector V1 ∈ T1R, the orbit of such vector
contains at least two different vectors (f(x) = 10x− 9)∗1(V1) and (f(x) = x)∗1(V1)
based at 1. Pertaining to this point, to place a unique vector to each point of
the manifold will not be possible from the orbit set of an element by this group
action. Not only the stated group action, but many group actions finally have
such an issue. But there is a group action on the tangent bundle of some manifold
from a special group, which has been built from a special kind of group action on
such manifold. Moreover here, one can see each element of the orbit space yields
a smooth section of the tangent bundle.

3 Regular group action yield smooth sections of the
tangent bundle on some smooth manifolds

Let (G, ?) be a Lie group, M be a smooth manifold and µ1 : G ×M → M
be any regular (free and transitive) left Lie group action (one can take right
group action also). This induces a group homomorphism φ : G → Sym(M) by
g → φ(g) = φg, where φg : M → M is given by φg(x) = µ1(g, x), it is obvious φg
is a smooth diffeomorphism for each g ∈ G. Since Kernel of φ is trivial, hence φ
is a monomorphism. Choosing φ(G) =Image of φ on G as a codomain, φ becomes
an isomorphism. For further discussion, we denote φ(G) = Diffµ1(M) = {lg =
φg : g ∈ G} (lg is for the left group action) which is a subgroup of Sym(M) under
the composition of the functions. The group Diffµ1(M) naturally builds a group
action on the tangent bundle, which we shall discuss in this section. The orbit of
each element of the manifold under this group action gives smooth sections of the
tangent bundle.

In this section, we confine (from Lemma 3.1 to Proposition 3.17) M as a
smooth manifold that undergoes a regular smooth group action µ1 by a Lie group
G.

Lemma 3.1. If x, y ∈ M then there exists a unique lg ∈ Diffµ1(M) such that
lg(x) = y.

Proof. Let x ∈ M and for all y ∈ M the transitive of µ1 on M gives there exists
g ∈ G such that µ1(g, x) = lg(x) = y. The uniqueness of g is obvious, suppose
there exist two such g, h ∈ G such that µ1(g, x) = µ1(h, x) since the group action
µ1 is free so g = h.

Tangent bundle TM of the manifold stated in the introductory part of section
3 naturally undergoes a group action by the group Diffµ1(M), which we present
below.
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Proposition 3.2. For the manifold M , define a map µ2 : Diffµ1(M) × TM →
TM by µ2(lg, Vx) = (lg)∗x(Vx) then it is a non-transitive group action (where (lg)∗
is derivative map of lg at x).

Proof. Since each lg is a diffeomorphism, whose derivative map is a linear isomor-
phism from TxM to Tµ1(g,x)M . Hence (lg)∗x(Vx) ∈ Tµ1(g,x)M ⊂ TM, ∀Vx ∈
TM and ∀lg ∈ Diffµ1(M). Also µ2(le, Vx) = (le = IdM )∗x(Vx) = Vx and
µ2(lg, µ2(lh, Vx)) = µ2(lg, (lh)∗x(Vx)) = lg∗µ1(h,x)((lh)∗x(Vx)) = (lgolh)∗x(Vx) =

µ2(lg ◦ lh, Vx). Hence µ2 is group action on TM .
We have orbit i.e. Orb(Vx) = {µ2(lg, Vx) = (lg)∗x(Vx) : ∀lg ∈ Diffµ1(M)} one can
see that each (lg)∗x assign single vector in each tangent space TxM . Therefore it
does not cover the entire TM . Therefore µ2 is a non-transitive group action.

Throughout the paper, we use the fact that Orb(Vx) can be replaced by [Vx]
which is an equivalence class containing Vx under the equivalence relation implied
by the group action µ2. The quotient space or orbit space produced by group
action µ2 is denoted by TM�Diffµ1(M).

Note 3.3. The group action µ2 is free and necessarily faithful but not regu-
lar since it is non-transitive. Also we have stabilizers StabDiffµ1 (M)(Vx)={lg ∈
Diffµ1(M) : µ2(lg, Vx)=(lg)∗x(Vx) = Vx} = {le} and StabDiffµ1 (M)(TM) =⋂
Vx∈TM StabDiffµ1(M)

(Vx) = {le} and Fixed point set of TM is TMDiffµ1 (M) =
{Vx ∈ TM : µ2(lg, Vx) = (lg)∗x(Vx) = Vx, ∀lg ∈ Diffµ1(M)} since (lg)∗x are

isomorphisms hence TMDiffµ1 (M) = {Ox : x ∈ M}. This set contains all zero
vectors of each tangent space of manifold M , moreover one can visualize which is
like the zero vector field on M .

Proposition 3.4. Let x ∈ M and Vx,Wx be two distinct elements from TxM
then [Vx] 6= [Wx].

Proof. We will prove this by the contradiction method, suppose [Vx] = [Wx] im-
plies Vx is related to Wx under the relation built by µ2, this implies there exists
lg ∈ Diffµ1(M) such that (lg)∗x(Vx) = Wx. Since (lg)∗x : TxM → T(µ1(g,x))M so
(lg)∗x send vector into T(µ1(g,x))M therefore (lg)∗x(Vx) = Wx ∈ T(µ1(g,x))M . This
implies the vector Wx based at x that equals µ1(g, x). That is µ1(g, x) = x, since
the group action µ1 is free implies g = e. Since le = IdM , therefore we can see
(le)∗x(Vx) = Vx = Wx this is a contradiction to the hypothesis distinct of Vx,Wx.
Hence [Vx] 6= [Wx].

Corollary 3.5. Distinct linearly dependent vectors in TM have different equiv-
alence classes. That is for a non-zero vector Vx ∈ TxM and 1 6= α ∈ R then
[Vx] 6= [αVx].

Proof. It follows from Proposition 3.4. since Vx 6= αVx.

Proposition 3.6. Let [Vx] ∈ TM�Diffµ1(M) and for given y in M then there
exists a unique vector Vy ∈ [Vx].



44 Chidanand Badiger and T.Venkatesh

Proof. Consider the base point x in M , and any y in M the transitive of group
action µ1 on M implies there exists a unique g ∈ G such that µ1(g, x) = y. We
can choose a unique element lg ∈ Diffµ1(M) and also lg(x) = µ1(g, x) = y. For
this lg, the vector (lg)∗x(Vx) is in the orbit of Vx. Hence (lg)∗x(Vx) ∈ [Vx]. Indeed,
(lg)∗x : TxM → T(µ1(g,x)=y)M so (lg)∗x(Vx) ∈ T(µ1(g,x)=y)M . Say (lg)∗x(Vx) =
Vy ∈ [Vx] and this vector (lg)∗x(Vx) is unique because lg ∈ Diffµ1(M) is unique
such that lg(x) = y.

Proposition 3.6 can be exploited to get special kinds of smooth sections of
tangent bundle TM . This is explicitly expressed as follows.

Corollary 3.7. Let [Vx] ∈ TM�Diffµ1(M) then there exists a smooth section
which is obtained by [Vx], defined by X[Vx] : M → TM , by X[Vx](y) = (lg)∗x(Vx) =
Vy (Which is explicitly defined in the Proposition 3.6).

Proof. The map defined by X[Vx] : M → TM , by X[Vx](y) = (lg)∗x(Vx) = Vy
is well-defined, because for every element y ∈ M , the X[Vx] assigns a unique
vector (lg)∗x(Vx) based at y. Hence by composition with standard projection
π : TM →M gives identity i.e. π ◦X[Vx] = IdM trivially. Thus X[Vx] is a section
of TM .
[12, 13] For the smoothness, it suffices to show that for any smooth function f
on M , the function X[Vx]f is also C∞. Choose a smooth curve γ : R → M such
that γ(0) = x, and γ′(0) = X[Vx](x) = Vx. For every y ∈ M there exists unique
g ∈ G, we can have lg(x) = y. For this g ∈ G, then µ1(g, γ(t)) is a curve at
µ1(g, γ(0)) = µ1(g, x) = lg(x) with initial vector X[Vx](y) = (lg)∗x(Vx) and,

(µ1(g, γ(t)))′(0) = (lg)∗x(γ′(0)) = (lg)∗x(X[Vx](x)) = (lg)∗x(Vx) = X[Vx](y).

It is well-known, X[Vx](f)(y) = X[Vx](y)(f) = d
dt t=0

f(µ1(g, γ(t))). But the func-
tion f(µ1(g, γ(t))) is smooth, since it is the composition of smooth functions as
given below.

Id× γ : G× R→ G×M,µ1 : G×M →M,f : M → R

(g, t)→ (g, γ(t))→ µ1((g, γ(t)))→ f(µ1((g, γ(t))))

Hence X[Vx](f) is smooth at each y ∈M .

We denote Xµ2(M) for the set of all smooth sections/vector fields generated
by all of the equivalence classes [Vx] in fact by the group action µ2, i.e. Xµ2(M) =
{X[Vx] : all [Vx] ∈ TM�Diffµ1(M)} and from now onwards we use the same.

Proposition 3.8. For all x ∈ M , a map Ωx : TxM → Xµ2(M) defined by
Ωx(Vx) = X[Vx] is a bijection.

Proof. The map Ωx : TxM → Xµ2(M) defined by Ωx(Vx) = X[Vx] is well-defined
from Proposition 3.7.
For injection: for any Vx 6= Wx ∈ TxM , by Proposition 3.4, [Vx] 6= [Wx]. It is
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obvious that Ωx(Vx) = X[Vx] 6= X[Wx] = Ωx(Wx), because for the point x ∈ M,
X[Vx](x) = Vx 6= Wx = X[Wx](x).
For surjection: for every X[Vs] ∈ Xµ2(M), and for [Vs] there exists a unique
Vx ∈ [Vs] by Proposition 3.6. we can see [Vs] = [Vx]. Therefore, there exists this
vector Vx ∈ TxM , such that Ωx(Vx) = X[Vx] = X[Vs]. Hence Ωx is a bijection.

Note 3.9. i) There is inverse for Ωx i.e. Ω−1x : Xµ2(M) → TxM is given by
Ω−1x (X[Vs]) = [V ′x], where [Vs] = [V ′x].
ii) The vector field X[Ox] is a zero vector field. one can see Ωx maps zero vector
to the zero vector field.

Proposition 3.10. Every non-zero vector field in Xµ2(M) has support equal to
whole M .

Proof. For every non-zero vector field X[Vx] ∈ Xµ2(M). The support is the closure
of {y ∈M : X[Vx](y) 6= 0}, which is M , because each X[Vx] is a nowhere vanishing
vector field.

Proposition 3.11. Every vector field X[Vx] ∈ Xµ2(M) is a left-invariant vec-
tor field with respect to group action µ1 (or G-invariant vector field on M or
Diffµ1(M)-related vector field, see definition 4.12).

Proof. Every vector fieldX[Vx] ∈ Xµ2(M) and every element lg ∈ Diffµ1(M),∀y ∈
M consider the (lg)∗y ◦ X[Vx](y) = (lg)∗y((lh)∗x(Vx)) for some lh ∈ Diffµ1(M),
and lh(x) = µ1(h, x) = y. Hence (lg)∗y ◦X[Vx](y) = (lg ◦ lh)∗x(Vx) = (lg?h)∗x(Vx).
On the other hand, consider the X[Vx] ◦ lg(y) = X[Vx](µ1(g, y)) = (lk)∗x(Vx), for
some lk ∈ Diffµ1(M), and lk(x) = µ1(k, x) = µ1(g, y). By substituting the value
of y we can see µ1(k, x) = µ1(g, µ1(h, x)) = µ1(g ? h, x) the free group action
implies k = g ? h. Hence X[Vx] ◦ lg(y) = (lg?h)∗x(Vx). Comparing the discussion,
we can see (lg)∗ ◦X[Vx] = X[Vx] ◦ lg. Therefore X[Vx] is a left-invariant vector field
with respect to group action µ1.

It is well-known that the set X(M) of all smooth vector fields on M is an
infinite-dimensional linear space over R under point wise addition (+) and scalar
multiplication (·). We can get a linear structure on Xµ2(M) under these opera-
tions. Moreover, we can also define addition in another way but that coincides
with the usual operations trivially.

Proposition 3.12. i) On the set Xµ2(M), a map ⊕ : Xµ2(M) × Xµ2(M) →
Xµ2(M) defined by ⊕(X[Vs], X[Vu]) = X[Vs+V ′s ]

, (where [V ′s ] = [Vu]) is well-defined.
Further, this addition coincides with the usual point wise addition operation.
ii) A map � : R × Xµ2(M) → Xµ2(M) defined by �(α,X[Vs]) = X[α·Vs] is well-
defined. Further, this scalar multiplication coincides with the usual point wise
scalar multiplication operation.
iii) Under the operations ⊕ and � the set Xµ2(M) becomes a linear space.
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Note 3.13. The set Xµ2(M) can acquire a linear structure of tangent spaces of
the manifold M , indeed which is identically equal to the operations in Proposition
3.12.

Proposition 3.14. For any point x ∈ M then TxM is linearly isomorphic to
Xµ2(M) under the map Ωx.

Proof. The map Ωx : TxM → Xµ2(M) given by Ωx(Vx) = X[Vx] is a bijection from
Proposition 3.8 and we have for linearity. We have Ωx(Vx + Wx) = X[Vx+Wx] =
X[Vx] ⊕X[Wx] = Ωx([Vx]) ⊕ Ωx([Wx]), because X[Vx+Wx](y) = (lg)∗x(Vx + Wx) =
(lg)∗x(Vx) + (lg)∗x(Wx) = X[Vx](y) + X[Wx](y) = X[Vx] ⊕ X[Wx](y) for all y ∈
M , where lg(x) = y. Similarly, for any real α, we have Ωx(α[Vx]) = X[αVx] =
α � X[Vx] = α � Ωx([Vx]), because X[αVx](y) = (lg)∗x(αVx) = α(lg)∗x(Vx) =
αX[Vx](y) = (α�X[Vx])(y) for all y ∈M , where lg(x) = y. Hence the result.

Note 3.15. The linear space Xµ2(M) is a finite-dimensional (equal to dimensional
of manifold M). Hence it is a Lie group

Proposition 3.16. For the manifold M if B = {v1x, v2x, ...vnx} is basis for TxM
for a point x then B′ = {X[v1x], X[v2x], ..., X[vnx]} forms a smooth frame.

Proof. Since the map Ωx is a linear isomorphism, it will send basis to basis, and
each vector field in the basis is smoothly varying, therefore B′ forms a smooth
frame on M .

Restriction of the Lie bracket of X(M) on Xµ2(M) forms a Lie subalgebra
hence all tangent space can be viewed as a Lie algebra induced by Xµ2(M) as
follows.

Proposition 3.17. i) With the usual definition of [X[Vu], X[Vs]] = X[Vu]X[Vs] −
X[Vs]X[Vu] for all X[Vu], X[Vs] ∈ Xµ2(M) then Xµ2(M) becomes a Lie subalgebra of
X(M).
ii) Let Vx,Wx ∈ TxM and define [|Vx,Wx|] = Ωx

−1([X[Vx], X[Wx]]) then (TxM, [|, |])
forms Lie algebra, and all tangent spaces are Lie algebras isomorphic to one an-
other.

Proof. Both results are quite simple i) is obtained from the usual Lie bracket of
X(M) restricting on Xµ2(M).
ii) Here, Lie bracket comes from Lie bracket of Xµ2(M) under the isomorphism
Ωx.

In the theory of Lie groups usually one can see the fact that TeG is isomorphic
to the set of left-invariant vector fields L(G). We immediately conclude which is
a case of the general discussion for smooth manifolds undergoing a regular Lie
group action made above. Since for the Lie group (G, ?) the G-action transla-
tion µ1(g, h) = g ? h is a regular group action. This group action yields group
Diffµ1(G), which further acts on TG, by µ2(lg, Vh) = (lg)∗h(Vh). In the group
action µ2, the orbit of each element yields a vector field of G. Moreover it is a
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left-invariant vector field, and commonly, the collection of all left-invariant vector
fields is denoted by L(G) or LX(G)(G). Under the isomorphism (lg)∗e all tangent
spaces are isomorphic to TeG and under X → X(e) which become an isomorphism
between LX(G)(G) and TeG. Hence LX(G)(G) is finite-dimensional linear space,
with induced Lie bracket operation on it, and thus it becomes a Lie subalgebra.
The tangent spaces TeG become Lie algebra denoted by g, which absorbs it from
the Lie algebra structure of LX(G)(G). Therefore that translation group action on
G itself is a case in general regular group action defined for any smooth manifold
M by a Lie group.

4 Vector field-related diffeomorphisms,
diffeomorphism-related Vector fields and their
algebra

The left-invariant vector field is a particular case of the concept F -related
vector field which is a more general notion. Pullback and pushforward are the
motivations to develop such concepts [12, 11, 13], in the theory of vector fields, we
commonly see such notions. Here, we enhance that idea to diffeomorphisms called
vector field relatedness, and we develop some interrelationships between both rel
operations in this section.
Definition 4.1. [12, 8, 13] Let M,N be smooth manifolds and F : M → N be
a smooth map then a vector field X ∈ X(M) is said to be F−related to a vector
field Y ∈ X(N) if F∗ ◦X = Y ◦ F , or the following diagram commute,

At the same time, we call F is pair (X,Y )-related smooth map. Here we
can define a relation Q : C∞(M,N) → X(M) × X(N), by Q(F ) = (X,Y ), if
F∗ ◦ X = Y ◦ F . With reference to the above definitions, we can define the
following notions,
i) For a given F ∈ C∞(M,N) then the set of all pairs of vector fields from
X(M)×X(N) for which F∗ ◦X = Y ◦F , is called F−related pairs of vector fields,
is denoted by relX(M)×X(N)(F ). Moreover, we can see Q(F ) = relX(M)×X(N)(F ).
ii) For a given X ∈ X(M) and Y ∈ X(N) then the set of all smooth maps F
from M to N for which F∗ ◦ X = Y ◦ F , is called pair (X,Y )−related smooth
maps, is denoted by relC∞(M,N)(X,Y ). Moreover, we can see Q−1({(X,Y )}) =
relC∞(M,N)(X,Y ).
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For a given X ∈ X(M) and Y ∈ X(N) the set relC∞(M,N)(X,Y ) may sometimes
be empty, since the relation is non-universal. However, relX(M)×X(N)(F ) is always
non-empty. More interestingly, for a given smooth map F , the relX(M)×X(N)(F )
is a linear subspace of X(M) × X(N) under coordinate wise addition and scalar
multiplication.

Definition 4.1 can be used for a diffeomorphism, but we are defining separately
for a diffeomorphism as a new definition to avoid confusion in notation and also
for the frequent usage of relatedness in terms of diffeomorphisms.

Definition 4.2. [12, 8, 13] Let M,N be smooth manifolds and F : M → N be a
diffeomorphism, a vector field X ∈ X(M) is said to be F−related to a vector field
Y ∈ X(N) if F∗ ◦X = Y ◦ F , or the following diagram commute,

At the same time, we call F is pair (X,Y )−related diffeomorphism. Here we
can define a relation R : Diff(M,N) → X(M) × X(N), by R(F ) = (X,Y ), if
F∗ ◦X = Y ◦F . With reference to the above definitions, we can define the follow-
ing notions,
i) For a given F ∈ Diff(M,N) then the set of all pairs of vector fields from
X(M)×X(N) for which F∗ ◦X = Y ◦F , is called F−related pairs of vector fields,
is denoted by relX(M)×X(N)(F ). Moreover, we can see R(F ) = relX(M)×X(N)(F ).
ii) For a given X ∈ X(M) and Y ∈ X(N) then the set of all diffeomorphisms F
from M to N for which F∗ ◦X = Y ◦ F , is called pair (X,Y )−related diffeomor-
phisms, is denoted by relDiff(M,N)(X,Y ). Moreover, we can see R−1({(X,Y )}) =
relDiff(M,N)(X,Y ).
For a given X ∈ X(M) and Y ∈ X(N) the set relDiff(M,N)(X,Y ) may sometimes
be empty since the relation is non-universal. However, relX(M)×X(N)(F ) is always
non-empty. More interestingly, for a given diffeomorphism F , the relX(M)×X(N)

is a linear subspace of X(M) × X(N), under coordinate wise addition and scalar
multiplication.

Definition 4.3. [12, 8, 13] Let M be smooth manifold and F : M → M be a
diffeomorphism, a vector field X ∈ X(M) is said to be F−related or F−invariant
vector field if F∗ ◦X = X ◦ F , or the following diagram commute,
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At the same time, we are calling F is X−related diffeomorphism. Define a
relation S : Diff(M)→ X(M), by S(F ) = X, if F∗ ◦X = X ◦F . With reference
to the above definitions, we can define the following notions,
i) For a given F ∈ Diff(M) then the set of all vector fields on M for which
F∗ ◦X = X ◦ F , is called F−related vector fields or F−invariant vector fields, is
denoted by relX(M)(F ) = {X ∈ X(M) : F∗ ◦X = X ◦ F}. Moreover, we can see
S({F}) = relX(M)(F ).
ii) For a given X ∈ X(M) then the set of all diffeomorphisms F on M for which
F∗◦X = X◦F , is called X−related diffeomorphisms, is denoted by relDiff(M)(X).
Explicitly relDiff(M)(X) = {F ∈ Diff(M) : F∗ ◦X = X ◦ F}, also which equal
to S−1({X}).
For a given X ∈ X(M) the set relDiff(M)(X) is always non-empty, since Id∗◦X =
X ◦ Id for every vector field X, therefore Id ∈ relDiff(M)(X) . And also always
set relX(M)(F ) is non-empty since F∗ ◦O = O ◦ F .

Proposition 4.4. Let M be a smooth manifold and X ∈ X(M) then the set
relDiff(M)(X) is a subgroup of Diff(M).

Proof. Obviously relDiff(M)(X) is a non-empty subset of the set of all diffeo-
morphisms on M . Take any two F,G ∈ relDiff(M)(X), consider (FoG)∗ ◦ X =
F∗ ◦ G∗ ◦ X = F∗ ◦ X ◦ G = X ◦ (F ◦ G). Therefore F ◦ G ∈ relDiff(M)(X).
Associativity is true which is coming from the general property of the compo-
sition. Since Id ∈ relDiff(M)(X) and it is the identity in relDiff(M)(X). Also
for any F ∈ relDiff(M)(X) one can see F−1 ∈ relDiff(M)(X) because consider
F−1∗ ◦X = F−1∗ ◦X◦F ◦F−1 = F−1∗ ◦F∗◦X◦F−1 = X◦F−1. Hence relDiff(M)(X)
is a subgroup.

Note 4.5. Let M be a smooth manifold and O from X(M) be the zero vector field
then relDiff(M)(O) = Diff(M).

Definition 4.6. Let M be a smooth manifold and B ⊂ X(M) then set of all
diffeomorphisms F on M for which F∗ ◦ X = X ◦ F , for all X ∈ B is called
B−related diffeomorphisms, denoted by relDiff(M)(B). i.e. relDiff(M)(B) =
{F ∈ Diff(M) : F∗ ◦X = X ◦ F, for all X ∈ B}.

Proposition 4.7. Let M be a smooth manifold and B ⊂ X(M) be a subset of
vector fields on M then the set relDiff(M)(B) is a subgroup of Diff(M).

Proof. Similar to Proposition 4.4.
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Note 4.8. i) relDiff(M)(X(M)) = {Id}.

Discussed results are groups, which can also be seen as an isotropy subgroup
of a point in X(M) or stabilizer of a vector field and stabilizer of a set under a
crucial group action on X(M) by Diff(M).

Proposition 4.9. Let M be a smooth manifold and µ : Diff(M) × X(M) →
X(M) a map defined by (F,X) = F∗ ◦X ◦ F−1, [12] then,
i) µ is a non-transitive group action (One can also define right group action).
ii) Isotropy(X) = stabDiff(M)(X) = relDiff(M)(X) for all X ∈ X(M).
iii)For a given subset of vector fields B ⊆ X(M), then the relDiff(M)(B) =⋂
X∈B stabDiff(M)(X).

iv)The fixed point set X(M)Diff(M) = {O}.

Proof. i) Let M be a smooth manifold, the group Diff(M) act by µ(F,X) =
F∗ ◦X ◦F−1. Because, it is clear that Id∗ ◦X ◦ Id−1 = X for all vector fields, also
µ(F, µ(G,X)) = µ(F,G∗ ◦X ◦G−1) = (F ◦G)∗ ◦X ◦ (F ◦G)−1 = µ(F ◦G,X).
The orbit of zero vector fields under this group action becomes a singleton trivial
vector field, that is orbµ(O) = {µ(F,O) : for all F ∈ Diff(M)} = {O}, hence
group action is non-transitive.
ii) For each X ∈ X(M) let us compute stabDiff(M)(X) = Isotropy(X),

StabDiff(M)(X) = {F ∈ Diff(M) : µ(F,X) = F∗ ◦X ◦ F−1 = X}
= {F ∈ Diff(M) : F∗ ◦X = X ◦ F}
= relDiff(M)(X)

It is well-known that isotropy(X) is a subgroup of Diff(M) so the relDiff(M)(X).
Hence relDiff(M)(X) is a subgroup.
iii) For a given subset of vector fields B ⊆ X(M), we compute,

relDiff(M)(B) = {F ∈ Diff(M) : µ(F,X) = F∗ ◦X ◦ F−1 = X,∀X ∈ B}
= {F ∈ Diff(M) : F∗ ◦X = X ◦ F,∀X ∈ B}
=

⋂
X∈B

stabDiff(M)(X)

iv) For the fixed point set X(M)Diff(M) = {X ∈ X(M) : µ(F,X) = F∗ ◦ X ◦
F−1 = X, for every F ∈ Diff(M)}. Pushforward of a vector field under all
homeomorphisms is only the zero vector field. Therefore fixed point set {O}.

Proposition 4.10. Let M be a smooth manifold and for each F ∈ Diff(M) then
set relX(M)(F ) is a subspace of X(M).

Proof. Obviously relX(M)(F ) is a non-empty subset of the set of all vector fields on
M . Choose arbitrary X,Y ∈ relX(M)(F ), consider F∗◦(X+Y ) = F∗◦X+F∗◦Y =
X ◦ F + Y ◦ F = (X + Y ) ◦ F . Therefore X + Y ∈ relX(M)(F ). Also for every
α ∈ R and X ∈ relX(M)(F ), let us consider F∗ ◦ (α ·X) = α ·F∗ ◦ (X) = α ·X ◦F .
Therefore α ·X ∈ relX(M)(F ) . Thus relX(M)(F ) is a subspace.
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Note 4.11. Let M be a smooth manifold and for Id ∈ Diff(M) then relX(M)(Id) =
X(M).

Definition 4.12. Let M be a smooth manifold and H ⊆ Diff(M) then the set
of all vector fields X ∈ X(M) such that X is H−related i.e F∗ ◦X = X ◦ F , for
all F ∈ H, is called H−related vector fields or H− invariant vector fields, and is
denoted by relX(M)(H). i.e. relX(M)(H) = {X ∈ X(M) : F∗ ◦X = X ◦ F, for all
F ∈ H}.
For a given non-empty subset H of diffeomorphism group on M the set relX(M)(H)
is always non-empty, since F∗ ◦ O = O ◦ F , for all F ∈ H, therefore O ∈
relX(M)(H).

Proposition 4.13. Let M be a smooth manifold and H ⊆ Diff(M) then set
relX(M)(H) is a linear subspace of X(M).

Proof. It is quite similar to Proposition 4.10. (It is the intersection of all vector
spaces relX(M)(F ), for all F ∈ H).

Note 4.14. i) Let M be a smooth manifold then relX(M)Diff(M) = {O}.
ii) In the theory of Lie group, Left-invariant vector field set LX(G)(G) and the
diffeomorphism subgroup {lg : lg : G → G} yields by translation group action,
respectively have rich interrelations by referring relatedness as follows
a) relDiff(M)(LX(G)(G)) = {lg : lg : G→ G} and b) relX(M)({lg : lg : G→ G}) =
LX(G)(G).

Here we would like to pose the following questions,
i) For every non-trivial proper subspace B of X(M) is the relDiff(M)(B) always
equal to a non-trivial subgroup of the diffeomorphisms group, that emerges by a
group action?
ii) For every non-trivial proper subgroup H of Diff(M) is the relX(M)(H) always
equal to a finite-dimensional linear space?
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